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A susceptible-infective-recovered (SIR) epidemiological model based on probabilistic cellular
automaton (PCA) is employed for simulating the temporal evolution of the registered cases of
chickenpox in Arizona, USA, between 1994 and 2004. At each time step, every individual is in
one of the states S, I, or R. The parameters of this model are the probabilities of each individual
(each cell forming the PCA lattice) passing from a state to another state. Here, the values of these
probabilities are identified by using a genetic algorithm. If nonrealistic values are allowed to the
parameters, the predictions present better agreement with the historical series than if they are
forced to present realistic values. A discussion about how the size of the PCA lattice affects the
quality of the model predictions is presented.
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1. Introduction

In control engineering, it is fundamental to identify the system to be controlled in order to
determine the best strategy for achieving the intended goals. The task of identifying a system
is to determine the best model able of describing the dynamical behavior of such a system
from measured data (e.g., [1]). Mathematical models in terms of differential equations for
mechanical, electrical, thermal, and chemical systems are commonly obtained from well-
known physical laws or conservation principles. For instance, the model of a mechanical
system can be derived from the Newton’s laws of motion; the model of an electrical system
can be deduced from the Maxwell’s equations of electromagnetism; models for chemical and
thermal systems usually obey principles of energy and mass conservation. Biological systems,
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however, do not present a clear starting point for obtaining the corresponding mathematical
models. In fact, models for such systems are usually empirical, and the identification and
the controller synthesis are not usually simple. Moreover, scaling problems pose additional
difficulties to accomplish these tasks.

Scaling problems are ubiquitous in nature and prominent in biology. However, such
problems are not easily treated, or even recognized, in a plethora of cases. As put by Haldane
in the beginning of the 20th century, “The most obvious differences between different animals
are differences in size, but for some reason the zoologists have paid singularly little attention
to them” (cited in [2]). Interestingly, the same kind of “overlooking” attention is found in
many ecological and epidemiological contexts. The question that arises is whether we are
prone to obtain reliable identification of systems if this bias is maintained.

There are several approaches to scaling problems, from dimensional analysis to
fractal dimensions (e.g., [3, 4]). These approaches are extremely relevant in engineering
problems. For instance, the benefits of dimensional analysis and similitude principles both
in designing prototypes and in modeling general principles within given conditions are
above argument (e.g., [5]). However, ecological/epidemiological problems have a subtle
“dimensional architecture.” If system identification can be obtained in these problems, then
one of the basic goals of scaling approaches would be fulfilled, namely, “the design of
(relevant) experiments and the proper organization of the results” ([5, page 227]; we put
the brackets in that phrase). In other words, there should be expected an important gain both
in basic sciences and in economical aspects.

Here, we report a numerical study revealing the influence of scale on parametric
identification of an epidemiological model used for predicting the temporal evolution of the
number of chickenpox cases registered by the Arizona Department of Health Services [6],
USA, between 1994 and 2004. The model is based on probabilistic cellular automaton (PCA),
where each cell of the lattice corresponds to an individual, which is in one of three states:
S, I, or R. The state S represents the individual that is susceptible and therefore subjected to
this contagious disease; the state I is related to the individual that is infective and hence can
transmit the disease for susceptible ones; the state R is associated to the recovered individual.
The numerical values of the probabilities concerning the transitions among these three states
define this SIR model.

In Section 2, the epidemiological model is introduced. In Section 3, the genetic
algorithm (GA) employed for identifying the probabilities of state transitions in this SIR
model is described. In Section 4, the numerical results are shown. In Section 5, a discussion
about scaling problems in ecological and epidemiological systems is presented.

2. SIR Model Based on PCA

In our cellular automaton (CA) model [7–9], the population lives in a square matrix formed
by n × n = n2 cells (individuals) with periodic boundary conditions. At each time step t,
there is a probability Pi(v) of a S-cell being infected, where Pi depends on the number v
of infective neighbors and it obeys the constraints: Pi(0) = 0 (i.e., a susceptible individual
can contract the disease only if v > 0) and if v1 < v2, then Pi(v1) < Pi(v2) (i.e., Pi(v) is a
monotone increasing function of v). Each I-cell has probability Pc per time step of becoming
cured and probability Pd per time step of dying because of the disease. At each iteration,
infective and recovered cells may die for other causes with probability Pn. When individuals
die, susceptible ones replace them. Therefore, the total number of individuals n2 remains
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constant, a common assumption in epidemiological models (e.g., [10]). The states of all cells
are simultaneously updated at each time step t.

The coupling topology influences the dynamical behavior of biological, electronic, or
social networks (e.g., [9, 11, 12]). In studies on spreading diseases using CA, the contact
network among individuals (which defines the neighborhood of each cell in the lattice)
can be considered as regular in a first approximation. Hence, the von Neumann (e.g., [13])
and Moore (e.g., [7, 8, 14]) neighborhoods are commonly employed. The von Neumann
neighborhood of radius r of a cell is formed by the cells orthogonally surrounding such
a cell until the distance r (i.e., if r = 1, the von Neumann neighborhood comprises the 4
closest neighbors: left, right, up, and down); the Moore neighborhood of radius r of a cell is
constituted by all cells pertaining to the square matrix of size 2r +1 centered in this cell (i.e., if
r = 2, the Moore neighborhood consists of the 24 cells pertaining to the square matrix of size
5 centered in such a cell).

With this model, we intend to fit the data shown in Table 1 by finding appropriate
values for Pi(v), Pc, Pd, and Pn able of reproducing the number of chickenpox cases recorded
in each year, in the State of Arizona, USA, during 11 years. The values of these probabilities
are found by using a genetic algorithm (GA).

3. GA Used for Identifying the SIR Model

There have been published several works on identification of transition rules of CA by using
GA (e.g., [15–19]).

Here each generation of our GA is composed by 15 chromosomes (15-candidate
solutions), where the length of the chromosome depends on the kind and on the radius of
the neighborhood. For instance, when the von Neumann neighborhood of r = 1 is employed,
each chromosome is formed by 7 genes (the values of Pi(1), Pi(2), Pi(3), Pi(4), Pc, Pd, Pn),
when the Moore neighborhood of r = 1 is used, each one consists of 11 genes (the values of
Pi(1), Pi(2), . . . , Pi(8), Pc, Pd, Pn). Here, we investigate both neighborhoods for r = 1 and 2.

The fitness F of every chromosome is evaluated by simulations with the PCA model.
The value of F is high if the numbers of infective individuals in the PCA lattice are close to
the data composing the historical time series. The fitness function is written as F = 1/(F1F2),
where F1 is defined here by

F1 =
N∑

q=1

m∑

j=2

∣∣xj − xPCA
j,q

∣∣, (3.1)

and F2 by

F2 =
N∑

q=1

m∑

j=2

∣∣σ(xj − xj−1) − σ(xPCA
j,q − xPCA

j−1,q)
∣∣

2
, (3.2)

where σ is a signal function: σ(y) = −1 if y = −1 and σ(y) = +1; otherwise, m is the total
number of years composing the time series (here m = 11 according to Table 1); j labels each
year of the epidemiological series. Thus, j = 2 corresponds to the second year (1995), and j = 1
is the initial year (corresponding to 1994; in fact, the number of infective cases in this year is
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Table 1: Registered cases of chickenpox in Arizona between 1994 and 2004.

Year Number of cases (scale 1:1) Number of cases (scale 1:20)
1994 6783 339
1995 2658 133
1996 3319 166
1997 1987 99
1998 1673 83
1999 960 48
2000 1522 76
2001 951 47
2002 606 30
2003 1620 81
2004 1091 54

the initial condition of the PCA simulations). xj is the number of historical cases registered
in the jth year; xPCA

j,q is the number of infective individuals obtained in the PCA model in
the jth year in the qth simulation. Every chromosome is evaluated N times (here N = 4) in
lattices n×n, where the numerical values of the initial conditions are always the same, but the
corresponding geographical distributions of susceptible, infective, and recovered individuals
may be altered from one simulation to another.

The function F1 is the sum of the modules of the differences between the data and
the number of cases obtained in N simulations by using the probabilities corresponding to
that chromosome; thus, F1 gives the total error between the historical series and the series
produced by simulating N times the disease spreading in the lattice. The higher F1, the lower
F.

The function F2 is the number of segments of the time series, where the registered
cases and the predicted values present contrary tendencies of evolution in N simulations.
For instance, if in two consecutive years the numbers in Table 1 decreased but the numbers of
infective cases in the qth simulation increased (i.e., if both curves have slopes with different
signals), then |σ(xj−xj−1)−σ(xPCA

j,q −xPCA
j−1,q)|/2 = 1; if they have the same tendency of variation,

this term is zero. The higher F2, the lower F.
An initial population of chromosomes is randomly generated, and the value g of their

genes must always be real numbers between zero and one, that is, g ∈ [0, 1], because they
represent probabilities. Also the genes representing Pi(v) must obey the constraint: Pi(v1) <
Pi(v2) for v1 < v2. The best seven chromosomes are carried over to the next GA generation
without alteration. The other eight chromosomes (in order to complete 15) are obtained from
the current generation by applying crossover and mutation operations.

Crossover is performed by selecting a single point in two randomly picked
chromosomes (the parents) and swapping 1/3 of the genes between them. Thus, two new
chromosomes (the children) are created. The number of child chromosomes produced by
crossover is seven.

Every parent chromosome has 50% of chance of suffering mutation and producing a
child chromosome. Every gene composing such a chromosome has 50% of chance of changing
its value. If a gene is selected to suffer mutation, then a number between −0.3 and +0.3 is
added to the value g of this gene (if after this genetic operation g > 1, then we impose g = 1;
if g < 0, then we impose g = 0 in order to get g ∈ [0, 1]).



Mathematical Problems in Engineering 5

After applying these genetic operations for producing new chromosomes, the values
of Pi in such chromosomes are reordered (if necessary) because Pi(v) must be a monotone
increasing function of v.

To choose eight chromosomes for the next GA generation, the pool of parents and
children is organized in a crescent order in terms of F (excluding the seven fitter candidate
solutions). Then, eight chromosomes are selected by applying eight times the expression:

p = ρ
(
l
√
r
)
, (3.3)

where p is the position of the chromosome in such an ordering that will be chosen for
composing the next generation; ρ(y) is the highest integer number lesser than or equal to
y; l is the length of this ordering (the total number of candidate solutions excluding those
seven elite chromosomes); r ∈ [0, 1] is a random number. The idea of using

√
r instead of r

is to favor the selection of chromosomes in the end of this ordering (with higher value of F).
The total number of generations of this GA is 25.

Notice that the value of F2 does not depend on the lattice size n; it only depends on
the number of data of the historical series and on the number of simulations. Thus, 0 ≤ F2 ≤
(m − 1)N. However, F1 is dependent on n. In fact, 0 ≤ F1 ≤ (m − 1)n2N. In order to compare
the quality of predictions obtained in PCA lattices with different sizes, we propose a metric
E called efficiency written as E = (E1 + E2)/2. The value of E2 is obtained from F2 by E2 =
1 − [F2/(N(m − 1))], and the value of E1 is obtained from F1 by

E1 =
1
2
+
NF1 − F1

2NF1

, (3.4)

where F1 is given by

F1 =
m∑

j=2

∣∣xj − x
∣∣, (3.5)

and x is the average value of the historical series excluding the first datum; thus,

x =
1

(m − 1)

m∑

j=2

xj . (3.6)

Notice that if F1 = 0 (i.e., the numbers of infective individuals generated in the PCA lattice
of size n × n in all N simulations are equal to the numbers of registered cases converted to
this spatial scale), then E1 = 100%; if F1 = NF1 (i.e., the predictions in N simulations give
a value of F1 corresponding to the average deviation F1 presented by the historical series),
then E1 = 50%.

Because 0 ≤ E2 ≤ 100% and usually 0 ≤ E1 ≤ 100%, then 0 ≤ E ≤ 100%. The efficiency
E is calculated only for the fitter chromosome of the last GA generation. In the first phrase
of this paragraph, “usually” means that, at the end of the evolutionary process, the value of
F1 corresponding to the fitter chromosome commonly obeys the constraint 0 ≤ F1 ≤ 2NF1
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Figure 1: Historical series (solid line) and simulations in the spatial scale 1:20 with E = 68.2% (dashed
line), E = 50.2% (dotted line), and E = 36.4% (dash-dotted line).

(hence 0 ≤ E1 ≤ 100%). In fact, this always happened in our simulations. Obviously, the
higher the value of E, the better the PCA predictions.

4. Results

About 5 million people live in Arizona. For a lattice of size n = 250, the cases of chickenpox
must be multiplied by n2/(5 × 106) = 1/20 as shown in the third column of Table 1, in order
to convert the historical data to this spatial scale.

Each time step of the PCA is equivalent to 2 months. Thus, to predict the number
of infective individuals from one year to another, the PCA must be iterated by 6 time
steps.

At first, we performed simulations considering von Neumann and Moore neighbor-
hoods of r = 1 or 2, and 6 time steps per year. After 25 GA generations, the fitter chromosome
was obtained with Moore neighborhood of r = 1, and it was formed by the following genes:
Pi varies from 17.4% (for v = 1) to 75.5% (for v = 8), Pc = 86.4%, Pd = 4.4%, Pn = 89.5%.
The efficiency of this candidate solution was E = 68.2%. Observe that the numbers obtained
for Pd and Pn are far from being realistic because these values mean that more than 90%
of infective and recovered individuals die and are replaced by susceptible ones at each two
months. The value of Pn should be about 0.1% because about 0.1% of the population die at
each two months [20]. The usual death rate of chickenpox is 10 per 100 000 cases [21]; hence
Pd should be about 0.01%. The value of Pc found by the GA is small, since more than 99% of
infected individuals become cured in 2 months. In spite of these values being unrealistic, this
set of probabilities can reasonably approximate the historical series as shown in Figure 1 (see
the solid and the dashed lines).

In order to obtain realistic values for the state transition probabilities, the limit Pn ≤ 1%
was imposed to the evolutionary algorithm. In this case, the fitter chromosome (after 25 GA
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Figure 2: Historical series (solid line) and simulations in the spatial scale 1:5 with E = 61.6% (dashed line)
and E = 70.5% (dotted line).

generations) was found with Moore neighborhood of r = 2, and its efficiency was E = 50.2%,
a worst result than the previous one. Figure 1 also exhibits a temporal evolution (see the
dotted line) of the number of infective individuals simulated by employing the PCA model
with the corresponding chromosome.

Then, more modifications on the GA were accomplished. Now each time step
of the PCA can correspond to 1 or 2 months (thus, 12 or 6 time steps are necessary
to complete 1 year, resp.). And additional limits were imposed to the following genes:
0.001% ≤ Pd, Pn ≤ 1%, and Pc ≥ 70%. With such modifications, the efficiency of the
better candidate solution decreases to E = 36.4%, and it was obtained for von Neumann
neighborhood of r = 2 and 6 times steps per year. The values of Pi vary from 45.2% to
98.9%, Pc = 70.0%, Pd = 0.25%, and Pn = 1%. These values are still unrealistic. Figure 1
presents a temporal evolution of the PCA with these probabilities (see the dash-dotted
line).

In the simulations reported above, n = 250 and consequently the spatial scale is 1:20
(one cell of the lattice corresponds to 20 individuals living in Arizona). For n = 1000, the
scale is 1 : 5. By using this new spatial scale and the additional limits to the death and cure
probabilities, the best solution, with E = 61.6%, was found with von Neumann neighborhood
of r = 2 and 12 time steps per year. The values of Pi vary from 1.0% to 88.7%, Pc = 99.99%,
Pd = 0.001%, and Pn = 0.001%. A temporal evolution of the infective cases in PCA is presented
in Figure 2 (see the dashed line).

In the scale 1:5, if those additional limits on Pc, Pd, and Pn are removed, the best
chromosome was found with Moore neighborhood of r = 1 and 6 time steps per year. It
has the highest efficiency found in all numerical experiments, E = 70.5%; however, the
probabilities are again unrealistic. For instance, this chromosome presents Pn = 100% (an
absurd value, of course). Figure 2 also illustrates the temporal evolution of the corresponding
PCA. Observe the good agreement between the historical series and a PCA simulation (see
the dotted line).
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5. Discussion

We found that the size of the PCA lattice affects the quality of the predictions of our
epidemiological model, after being identified by using a GA. The best set of state transition
probabilities, with E = 70.5%, was obtained in the scale 1:5. By imposing realistic constraints
to the values of these probabilities, the efficiency of the best solution presented E =
61.6%. In the scale 1:20, the best solution respecting such constraints dropped to E =
36.4%.

Here, we had to deal with the problem of scaling the lattice of the CA in relation to
the number of individuals, healthy and infective ones. The most obvious first approach is to
maintain the ratios from the original data, that is, a linear relation of size. In this sense, space
is completely embedded in the number of individuals, which, ultimately, becomes the size
reference frame. One potential problem in doing this is that the neighborhood (either Moore
or von Neumann) maintains, therefore, its absolute size. Let us exemplify this.

Epidemiological models based on differential equations can be used for describing
the spreading of infectious diseases (e.g., [7–10]). These equations are a mean-field
approximation for PCA if the three groups (S, I, and R) are homogeneously distributed in
space. A parameter called basic reproduction number, R0, is obtained from the infectiveness,
mortality, and recovery rate constants (e.g., [7–10]). The value of R0 identifies the outbreak
or the extinction of the disease (usually R0 < 1 represents extinction and R0 > 1 represents
outbreak, e.g., [7–10]). It was suggested that “to make the R0’s equivalent,” the transmission
probability of the local model should be the global (mean-field) probability times the ratio
population size to neighborhood size ([22, page 116]). However, as it can be seen, our
results indicate that such a linear proportionality may not hold, at least to estimate reliable
parameters from real data.

Turner et al. [23] studied how spatial scale interferes with the identification of
estimators in landscapes indexes as diversity and dominance. They concluded that both
quantitative and qualitative changes in the measurements would be present depending on
how the scale is defined. Later, in the same lines, Dungan et al. [24] called into attention that
the various spatial scaling measures (as grain, resolution, range) are not interchangeable and
suggested avoiding the term scale. As the present study showed, this shortcoming in space is
readily present when size is an inherited variable of individuals.

DeAngelis and Petersen [25] focused in a predation model, where salmons migrate
through predators and concluded that the size resolution of the cells has a crucial importance
in the predicted outcome. The authors emphasize that fewer cells (therefore, a coarse spatial
resolution) over predict the mortality rate. Moreover, irrespectively to the spatial resolution,
the models give different predictions than the mean-field ones. On the other hand, Pascual et
al. [26] concluded that despite variations in the predicted rates due to scaling problems, the
functional forms are quite the same as the well-mixed (mean-field) models.

The discussion of system identification in ecological/epidemiological studies and
scaling issues is still an open question. Our investigation goes in the same direction as
many previous ones (see above), that is, that size matters. We add to the query the problem
of interchanging space with individuals (and their neighborhoods). Therefore, if modeling
is concerned with real predictions much more than simple data fitting, then a judicious
evaluation of the underlying scale should be performed as a first step. It seems that these
ecological/epidemiological problems need their particular definitions of size, whether this
means space itself or number of individuals or a combination of both. In other words, the
geometry for scaling these systems is still awaiting the due attention.
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