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We study the initial boundary value problem of the nonlinear Klein-Gordon equation. First we
introduce a family of potential wells. By using them, we obtain a new existence theorem of global
solutions and show the blow-up in finite time of solutions. Especially the relation between the
above two phenomena is derived as a sharp condition.
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1. Introduction

Klein-Gordon equation is one of the famous evolution equations arising in relativistic
quantum mechanics. There are a lot of literature giving the outline of its study trace. For
the following type nonlinear Klein-Gordon (NLKG) equation:

ϕtt −Δϕ + ϕ =
∣
∣ϕ

∣
∣
p−1

ϕ, (1.1)

a lot of papers show the global and local well-posedness and blow-up properties for the
Cauchy problem of the above NLKG equation, which can be found in [1–5]. Especially
Zhang derived a sharp condition for the global existence of the Cauchy problem of the above
NLKG equation in [6]. By introducing a so-called ground state solution, which is the positive
solution of the nonlinear Euclidean scalar field equation Δu − u + up = 0, he applied a host
of very useful properties of the ground state solution to show the sharp condition for this
Cauchy problem. In the present paper, we try to make use of the classical potential wells
argument [7], which is different from that in [6], to clarify the sharp condition for initial
boundary value problem (IBVP) of the same NLKG equation.
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2. Potential Wells and Their Properties

In this paper, we study the initial boundary value problem of nonlinear Klein-Gordon
equation

ϕtt− � ϕ + ϕ =
∣
∣ϕ

∣
∣
p−1

ϕ, x ∈ Ω, t > 0,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), x ∈ Ω,

ϕ(x, t) = 0, x ∈ ∂Ω, t � 0,

(2.1)

where 1 < p < ∞ for n � 2; 1 < p < (n + 2)/(n − 2) for n � 3.
For problem (2.1), we define the energy function and some functionals as follows:

E(t) =
1
2
∥
∥ϕt

∥
∥
2 +

1
2
∥
∥ϕ

∥
∥
2 +

1
2
∥
∥∇ϕ

∥
∥
2 − 1

p + 1
∥
∥ϕ

∥
∥
p+1
p+1,

J
(

ϕ
)

=
1
2
∥
∥ϕ

∥
∥
2 +

1
2
∥
∥∇ϕ

∥
∥
2 − 1

p + 1
∥
∥ϕ

∥
∥
p+1
p+1,

I
(

ϕ
)

=
∥
∥ϕ

∥
∥
2 +

∥
∥∇ϕ

∥
∥
2 − ∥

∥ϕ
∥
∥
p+1
p+1,

Iδ
(

ϕ
)

= δ
∥
∥∇ϕ

∥
∥
2 +

∥
∥ϕ

∥
∥
2 − ∥

∥ϕ
∥
∥
p+1
p+1.

(2.2)

In aid of the above functionals, we define the potential well as follows:

W =
{

ϕ ∈ H1
0(Ω) | I(ϕ) > 0, J

(

ϕ
)

< d
}

∪ {0}, (2.3)

where

d = inf
ϕ∈N

J
(

ϕ
)

,

N :=
{

ϕ ∈ H1
0(Ω) | I(ϕ),∥∥∇ϕ

∥
∥/= 0

}

.

(2.4)

Then we further give the following definitions

d(δ) = inf
ϕ∈Nδ

J
(

ϕ
)

,

Nδ :=
{

ϕ ∈ H1
0(Ω) | Iδ

(

ϕ
)

= 0,
∥
∥∇ϕ

∥
∥/= 0

}

.

(2.5)
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Now, it is ready for us to define a family of potential wells and the outside sets of the
corresponding potential wells sets as follows:

Wδ =
{

ϕ ∈ H1
0(Ω) | Iδ

(

ϕ
)

> 0, J
(

ϕ
)

< d(δ)
}

∪ {0}, 0 < δ < 1,

V =
{

ϕ ∈ H1
0(Ω) | I(ϕ) < 0, J

(

ϕ
)

< d
}

,

Vδ =
{

ϕ ∈ H1
0(Ω) | Iδ

(

ϕ
)

< 0, J
(

ϕ
)

< d(δ)
}

.

(2.6)

The following lemmas are given to show the relations between the functional Iδ(ϕ)
and ‖∇ϕ‖.

Lemma 2.1. If 0 < ‖∇ϕ‖ < r(δ) then Iδ(ϕ) > 0, where r(δ) = (δ/Cp+1
∗ )

1/(p−1)
and C∗ =

sup (‖ϕ‖p+1/‖∇ϕ‖).

Proof. If 0 < ‖∇ϕ‖ < r(δ), then

Iδ
(

ϕ
)

= δ
∥
∥∇ϕ

∥
∥
2 −

(∥
∥ϕ

∥
∥
p+1
p+1 −

∥
∥ϕ

∥
∥
2
)

,

∥
∥ϕ

∥
∥
p+1
p+1 −

∥
∥ϕ

∥
∥
2 � C

p+1
∗

∥
∥∇ϕ

∥
∥
p+1 � δ

∥
∥∇ϕ

∥
∥
2
.

(2.7)

Hence Iδ(ϕ) > 0.

Lemma 2.2. If Iδ(ϕ) < 0 then ‖∇ϕ‖ > r(δ).

Proof. Note that Iδ(ϕ) < 0 gives

δ
∥
∥∇ϕ

∥
∥
2
<
∥
∥ϕ

∥
∥
p+1
p+1 −

∥
∥ϕ

∥
∥
2
<
∥
∥ϕ

∥
∥
p+1
p+1 � C

p+1
∗

∥
∥∇ϕ

∥
∥
p−1∥

∥∇ϕ
∥
∥
2
, (2.8)

which implies

∥
∥∇ϕ

∥
∥
p−1

>
δ

C
p+1
∗

= rp−1(δ), (2.9)

that can be deduced from (2.8).

Lemma 2.3. As the function of δ, d(δ) is increasing on 0 < δ ≤ 1, decreasing on 1 ≤ δ ≤ (p + 1)/2,
and takes the maximum d = d(1) at δ = 1.

Proof. Now we prove that d(δ1) < d(δ2) for any 0 < δ1 < δ2 < 1 or 1 < δ2 < δ1 < (p + 1)/2.
Clearly, it is enough to prove that for any 0 < δ1 < δ2 < 1 or 1 < δ2 < δ1 < (p + 1)/2
and for any ϕ ∈ Nδ2 , there exist a v ∈ Nδ1 and a constant ε(δ1, δ2) ≥ Nδ1 such that J(v) <
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J(ϕ)−ε(δ1, δ2). In fact, for the previous ϕwe also define λ(δ) by δ(‖λϕ‖2+‖λ∇ϕ‖2) = ‖λϕ‖p+1p+1,
then Iδ(λ(δ)ϕ) = 0, λ(δ2) = 1. Let g(λ) = J(λϕ), then

d

dλ
g(λ) =

1
λ

(∥
∥λϕ

∥
∥
2 +

∥
∥λ∇ϕ

∥
∥
2 − ∥

∥λϕ
∥
∥
p+1
p+1

)

=
1
λ

(

(1 − δ)
∥
∥λ∇ϕ

∥
∥
2 + Iδ

(

λϕ
))

= (1 − δ)
∥
∥λ∇ϕ

∥
∥
2
.

(2.10)

Take v = λ(δ1)ϕ, then v ∈ Nδ1 .
For 0 < δ1 < δ2 < 1, we have

J
(

ϕ
) − J(v) = g(1) − g

(

λ
(

δ1
))

>
(

1 − δ2
)

r2
(

δ2
)

λ
(

δ1
)(

1 − λ
(

δ1
))

≡ ε
(

δ1, δ2
)

. (2.11)

For 1 < δ2 < δ1 < (p + 1)/2, we have

J
(

ϕ
) − J(v) = g(1) − g

(

λ
(

δ1
))

>
(

δ2 − 1
)

r2
(

δ2
)

λ
(

δ2
)(

λ
(

δ1
)

− 1
)

≡ ε
(

δ1, δ2
)

. (2.12)

These give the conclusion.

3. Sharp Condition for Global Existence and Blow-Up

Definition 3.1 (weak solution). The function ϕ(x, t) ∈ L∞(0, T ;H1
0(Ω)) with ϕt(t, x) ∈

L∞(0, T ;L2(Ω)) is called a weak solution of problem (2.1) for t ∈ [0, T) if the following
conditions are satisfied:

(1) (ϕt, v) +
∫T

0 (∇ϕ,∇v)dτ +
∫T

0 (ϕ, v)dτ =
∫T

0 (ϕ|ϕ|p−1, v)dτ + (ϕ1(x), v),

(2) ϕ(x, 0) = ϕ0(x) in H1
0(Ω), ϕt(x, 0) = ϕ1(x) in L2(Ω),

for all v ∈ H1
0(Ω).

Theorem 3.2 (global existence). Let p satisfy
(H) 1 < p < ∞ for n ≤ 2; 1 < p < (n + 2)/(n − 2) for n ≥ 3.
Let ϕ0(x) ∈ H1

0(Ω), ϕ1(x) ∈ L2(Ω). Suppose that 0 < E(0) < d, I(ϕ0) > 0, or
‖∇ϕ0‖ = 0. Then problem (2.1) admits a global weak solution ϕ(x, t) ∈ L∞(0,∞;H1

0(Ω)),
ϕt(x, t) ∈ L∞(0,∞;L2(Ω)) with ϕ(t) ∈ W .

Proof. Let {wj(x)} be a system of base functions in H1
0(Ω). Construct the approximate

solutions ϕm(x, t) of problem (2.1) as done in [7]

ϕm(x, t) =
m∑

j=1

gjm(t)wj(x), m = 1, 2, . . . , (3.1)
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satisfying

(

ϕmtt,ws

)

+
(∇ϕm,∇ws

)

+
(

ϕm,ws

)

=
(

ϕm

∣
∣ϕm

∣
∣
p−1

, ws

)

, s = 1, 2, . . . ,

ϕm(x, 0) =
m∑

j=1

ajmwj(x) −→ ϕ0(x) in H1
0(Ω),

ϕmt(x, 0) =
m∑

j=1

bjmwj(x) −→ ϕ1(x) in L2(Ω).

(3.2)

Multiplying (3.2) by g ′
sm(t) and summing for s we can obtain

1
2
d

dt

∥
∥ϕmt

∥
∥
2 +

1
2
d

dt

∥
∥∇ϕm

∥
∥
2 +

1
2
d

dt

∥
∥ϕm

∥
∥
2 − 1

p + 1
d

dt

∥
∥ϕm

∥
∥
p+1
p+1 = 0. (3.3)

Integrating with respect to t we obtain

Emt(t) =
1
2
∥
∥ϕmt

∥
∥
2 +

1
2
∥
∥∇ϕm

∥
∥
2 +

1
2
∥
∥ϕm

∥
∥
2 − 1

p + 1
∥
∥ϕm

∥
∥
p+1
p+1

=
1
2
∥
∥ϕmt(0)

∥
∥
2 +

1
2
∥
∥∇ϕm(0)

∥
∥
2 +

1
2
∥
∥ϕm(0)

∥
∥
2 − 1

p + 1
∥
∥ϕm(0)

∥
∥
p+1
p+1

= Em(0).

(3.4)

For the cases E(0) < d and I(ϕ0) > 0 or ‖∇ϕ0‖ = 0, we have

1
2
∥
∥ϕmt

∥
∥
2 + J

(

ϕm

)

= Em(0) < d, 0 � t < ∞,

J
(

ϕm

)

=
1
2
∥
∥∇ϕm

∥
∥
2 +

1
2
∥
∥ϕm

∥
∥
2 − 1

p + 1
∥
∥ϕm

∥
∥
p+1
p+1

=
(
1
2
− 1
p + 1

)(∥
∥∇ϕm

∥
∥
2 +

∥
∥ϕm

∥
∥
2
)

+
1

p + 1
I
(

ϕm

)

� p − 1
2
(

p + 1
)

(∥
∥∇ϕm

∥
∥
2 +

∥
∥ϕm

∥
∥
2
)

.

(3.5)

Hence we arrive at

1
2
‖ϕmt‖2 +

p − 1
2
(

p + 1
)

(

‖∇ϕm‖2 + ‖ϕm‖2
)

< d, (3.6)
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then

∥
∥ϕmt

∥
∥
2 � 2d,

∥
∥∇ϕm

∥
∥
2 �

2
(

p + 1
)

p − 1
d,

∥
∥ϕm

∥
∥
2 �

2
(

p + 1
)

p − 1
d.

(3.7)

Hence, there exist a ϕ and a subsequence ϕv such that ϕv → ϕ in L∞(0,∞;H1(Ω))
weak star and a.e. in Q = Ω × [0,∞), |ϕv|p−1ϕv → |ϕ|p−1ϕ in L∞(0,∞;Lq(Ω)) weak star,
ϕvt → ϕt in L2(0,∞;L2(Ω))weakly.

In (3.2) for fixed s, letting m = v → ∞, we get

(

ϕt,ws

)

+
(∇ϕ,∇ws

)

+
(

ϕ,ws

)

=
(∣
∣ϕ

∣
∣
p−1

ϕ,ws

)

, ∀s. (3.8)

Integrating t from 0 to t, we obtain that ϕ(t, x) ∈ L∞(0,∞;H2
0(Ω)), ϕt(x, t) ∈

L∞(0,∞;L2(Ω)) is a global weak solution of problem (2.1).
Next we prove the fact that ϕ(t) ∈ W for 0 ≤ t < ∞. First of all, we will show that

ϕ0(x) ∈ W . Let ϕ(t) be any solution of problem (2.1) with

E(0) =
1
2
∥
∥ϕ1

∥
∥
2 + J

(

ϕ0
)

< d, (3.9)

which gives that J(ϕ0) < d. If I(ϕ0) > 0 then from the definition ofW we obtain ϕ0(x) ∈ W . If
‖∇ϕ0‖ = 0 then ϕ0(x) ∈ W also. It is easy to see ϕm0(x) ∈ W for sufficiently large m.

It is enough for us to prove ϕm(t) ∈ W for sufficiently large m and t > 0. If it is false,
then there must exist a t0 > 0 for sufficiently large m such that ϕm(t0) ∈ ∂W , that is,

I
(

ϕm(t0)
)

= 0,
∥
∥∇ϕm(t0)

∥
∥/= 0, or J

(

ϕm(t0)
)

= d. (3.10)

From the energy inequality E(0) < d, we get Em(0) < d for sufficiently large m, that is,

1
2
∥
∥ϕmt

∥
∥
2 + J

(

ϕm

)

= Em(0) < d. (3.11)

Then we can see that J(ϕm(t0)) = d is impossible. On the other hand, if I(ϕm(t0)) = 0,
‖∇ϕm(t0)‖/= 0 we obtain ϕm(t0) ∈ N. By the definition of N, we get J(ϕm(t0)) � d, which
contradicts (3.11). Hence ϕm(t) ∈ W is true.

Theorem 3.3 (blow-up). Assume that ϕ0(x) ∈ H1
0(Ω), ϕ1(x) ∈ L2(Ω), E(0) < d, and I(ϕ0) < 0,

then the solution of problem (2.1) must blow up in finite time, that is, there exists a T > 0 such that
limt→ T ‖ϕ(t)‖ = +∞.
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Proof. Let ϕ(t) be any solution of problem (2.1) with E(0) < d and I(ϕ0) < 0. Set F(t) = ‖ϕ‖2,
then (F(t))′ = 2(ϕt, ϕ),

(F(t))′′ = 2
∥
∥ϕt

∥
∥
2 + 2

(

ϕtt, ϕ
)

= 2
∥
∥ϕt

∥
∥
2 − 2I

(

ϕ
)

, (3.12)

(F(t))′′ �
(

p + 3
)∥
∥ϕt

∥
∥
2 +

(

p − 1
)

(λ1 + 1)F(t) − 2
(

p + 1
)

E(0), (3.13)

where λ1 > 0 is the first eigenvalue of problem Δϕ + λϕ = 0, ϕ(x, t)|∂Ω = 0.
Now we will consider the following two cases to finish the proof:

(i) if E(0) � 0, then (F(t))′′ � (p + 3)‖ϕt‖2;
(ii) if 0 < E(0) < d, we should discuss this case in aid of set Vδ.

Let δ1 < δ2 be two roots of equation d(δ) = E(0). For any δ ∈ (δ1, δ2) we will prove
ϕ(t) ∈ Vδ.

First let us prove ϕ0 ∈ Vδ. From the energy equality

1
2
∥
∥ϕ1

∥
∥
2 + J

(

ϕ0
)

= E(0) < d(δ), (3.14)

we get

J
(

ϕ0
)

< d(δ) for δ1 < δ < δ2, (3.15)

and I(ϕ0) < 0 gives Iδ(ϕ0) < 0 for δ1 < δ < δ2. Thereby we obtain ϕ0 ∈ Vδ.
Next let us show that ϕ(t) ∈ Vδ for δ1 < δ < δ2 and t � 0. If it is false, we can find a

t0 ∈ (0,+∞) as the first time such that ϕ(t0) ∈ ∂Vδ, that is, J(ϕ(t0)) = d(δ) or Iδ(ϕ(t0)) = 0
for some δ1 < δ < δ2. However from the conservation law we can see that J(ϕ(t)) = d(δ)
is impossible. If Iδ(ϕ(t0)) = 0 then Iδ(ϕ(t)) < 0 for 0 � t < t0. At the same time, Lemma 2.2
yields that ‖∇ϕ(t)‖ � r(δ) > 0 and ‖∇ϕ(t0)‖ � r(δ). Hence, by the definition of d(δ) we get
J(ϕ(t)) � d(δ), which contradicts J(ϕ) < d(δ). So we obtain ϕ(t) ∈ Vδ for δ1 < δ < δ2 and
t � 0. Hence, Iδ(ϕ) < 0 and ‖∇ϕ‖ � r(δ). Let δ → δ2, then Iδ2(ϕ) � 0 and ‖∇ϕ‖ � r(δ2). By
(3.12)we obtain

(F(t))′′ = 2
∥
∥ϕt

∥
∥
2 − 2I

(

ϕ
)

� −2I(ϕ)

= 2(δ2 − 1)
∥
∥∇ϕ

∥
∥
2 − 2Iδ2

(

ϕ
)

� 2(δ2 − 1)r2(δ2) ≡ a0, t � 0.

(3.16)

For a = min{(p + 3)‖ϕt‖2, a0} we have

(F(t))′ � at + (F(0))′, ∀t � 0. (3.17)

Hence there exists a t0 � 0 such that

(F(t))′ � (F(t0))′ > 0, t � t0, (3.18)
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which gives

F(t) � (F(t0))′(t − t0) + F(t0), t � t0. (3.19)

By (3.13) for sufficiently large t, we obtain

(F(t))′′ F(t) − p + 3
4

F(t)′ �
(

p + 3
)(∥

∥ϕt

∥
∥
2∥
∥ϕ

∥
∥
2 − (

ϕt, ϕ
)2
)

� 0. (3.20)

By a direct computation we can see that

(

F(t)−α
)′′ = −αF−α−2

(

FF ′′ + (−α − 1)
(

F ′)2
)

. (3.21)

Let α = (p − 1)/4, then we get

FF ′′ + (−α − 1)
(

F ′)2 � 0, (3.22)

that is,

(

F(t)−α
)′′ � 0. (3.23)

Applying properties of concave function we can get that there exists a bounded T > 0 such
that

lim
t→ T

F(t) = +∞. (3.24)

From the above two theorems we can easily get a sharp condition for global existence
and blow-up of solutions to problem (2.1) like the following.

Let p satisfy (H). Assume that ϕ0(x) ∈ H1
0(Ω), ϕ1(x) ∈ L2(Ω), 0 < E(0) < d. Then

I(ϕ0) > 0 supports problem (2.1) to admit a global weak solution, and I(ϕ0) < 0 leads blow-
up of solutions for problem (2.1).
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