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1. Introduction

It is well known that the existence of delay in a system may cause instability or bad
system performance in control systems. Time-delay phenomenon appears in many practical
systems, such as AIDS epidemic, aircraft stabilization, chemical engineering systems, inferred
grinding model, manual control, neural network, nuclear reactor, population dynamic model,
rolling mill, ship stabilization, and systems with lossless transmission lines. Hence stability
analysis for time-delay systems has been considered in the recent years [1–3]. Neutral
systems are described by functional differential equations which depend on the delays of
state and state derivative. Some practical examples of neutral systems include distributed
networks, heat exchanges, and processes including steam [4].

Switched system is a class of hybrid systems which is consisting of several subsystems
and uses the switching signal to specify which subsystem is activated to the system
trajectories at each instant of time. Some examples for switched systems are automated
highway systems, constrained robotics, power systems and power electronics, transmission
and stepper motors [5]. Stability analysis of switched time-delay systems has been an
attractive research topic [6–13]. It is interesting to note that the stability for each subsystem
cannot imply that of the overall system under arbitrary switching signal [9]. Another
interesting fact is that the stability of a switched system can be achieved by choosing
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the switching signal even when each subsystem is unstable [6, 7, 10]. In this paper, the
switching signal design will be considered for uncertain switched neutral systems with mixed
delays. The switching signal will be proposed to guarantee the stability of switched system
even when each subsystem is unstable. Based on Razumikhin-like approach [11], delay-
dependent and delay-independent results are provided. New and flexible LMI conditions
are proposed to design the switching signal which guarantees the global exponential and
asymptotic stability of uncertain switched neutral systems. Some numerical examples are
provided to demonstrate the use of our results.

The notation used throughout this paper is as follows. For a matrix A, we denote the
transpose by AT , spectral norm by ‖A‖, symmetric positive (negative) definite by A > 0 (A <
0), maximal eigenvalue by λmax(A), and minimal eigenvalue by λmin(A). A ≤ B means that
matrix B −A is symmetric positive semidefinite. For two sets X and Y , X − Y means that the
set of all points in X that are not in Y . For a vector x, we denote the Euclidean norm by ‖x‖
and ‖xt‖s = sup−H≤θ≤0

√
‖x(t + θ)‖2 + ‖ẋ(t + θ)‖2. I denotes the identity matrix. Rn denotes

n-dimensional real space.

2. Problem Formulations and Main Results

Consider the following switched neutral system with mixed time delays:

ẋ(t) −Dẋ(t − τ) = A0σx(t) +A1σx(t − h(t)), t ≥ 0,

x(t) = φ(t), t ∈ [−H, 0],
(2.1)

where x ∈ Rn, xt is state at time t defined by xt(θ) := x(t + θ), ∀θ ∈ [−H, 0], σ is a switching
signal which is a piecewise constant function and may depend on t or x, σ, taking its values in
the finite set {1, 2, . . . ,N}, and time-varying delay satisfies 0 ≤ h(t) ≤ hM, ḣ(t) ≤ hD, hM > 0,
τ > 0, H = max{hM, τ}. Matrices D, A0i, and A1i ∈ Rn×n, i = 1, 2, . . . ,N, are constant, and the
initial vector φ ∈ C1, where C1 is the set of differentiable functions from [−H, 0] to Rn.

Now we define some functions λi(t), i = 1, 2, . . . ,N, that will be used to represent our
system:

λi(t) =

⎧
⎨
⎩

1, σ = i,

0, otherwise,
i = 1, 2, . . . ,N. (2.2)

The switched system in (2.1) can be rewritten as follows:

ẋ(t) −Dẋ(t − τ) =
N∑
i=1

λi(t){A0ix(t) +A1ix(t − h(t))}, t ≥ 0,

x(t) = φ(t), t ∈ [−H, 0],

(2.3)

where λi(t) is defined in (2.2) and
∑N

i=1 λi(t) = 1, ∀t ≥ 0.
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Lemma 2.1 (see [14]). Let U, V , W, and M be real matrices of appropriate dimensions with M
satisfyingM =MT , then

M +UVW +WTV TUT < 0 ∀V TV ≤ I, (2.4)

if and only if there exists a scalar ε > 0 such that

M + ε−1 ·UUT + ε ·WTW =M + ε−1 ·UUT + ε−1 · (εW)T (εW) < 0. (2.5)

Lemma 2.2 (Schur complement of [15]). For a given matrix S =
[
S11 S12

ST12 S22

]
with S11 = ST11, S22 =

ST22, the following conditions are equivalent:

(1) S < 0,

(2) S22 < 0, S11 − S12S
−1
22S

T
12 < 0.

Assumption 2.3. Assume that there exists a convex combination F =
∑N

i=1 αiA0i such that F is
Hurwitz, where 0 ≤ αi ≤ 1 and

∑N
i=1 αi = 1.

Since F is Hurwitz, there exist positive definite matrices P and Q satisfying

FTP = PF ≤ −Q. (2.6)

Define some domains

Ωi =
{
x ∈ Rn : xT

(
A0i

TP + PA0i

)
x ≤ −xTQx

}
, i ∈ {1, 2, . . . ,N}. (2.7)

From the similar proof of [7], it is easy to show
⋃N
i=1 Ωi = Rn. Construct some domains

Ω1 = Ω1,Ω2 = Ω2 −Ω1,Ω3 = Ω3 −Ω1 −Ω2, . . . ,ΩN = ΩN −Ω1 − · · · −ΩN−1. (2.8)

We can obtain
⋃N
i=1 Ωi = Rn and Ωi ∩Ωj = Φ, i /= j, where Φ is an empty set. If Assumption 2.3

is satisfied, then the following results can be derived:

xT
(
A0i

TP + PA0i

)
x ≤ −xTQx, x(t) ∈ Ωi. (2.9)

Define the following switching function:

σ = i, ∀x ∈ Ωi. (2.10)

Definition 2.4 (see [14]). The system (2.1) with the designed switching signal is said to be the
globally exponentially stabilizable with convergence rate α > 0 by the designed switching
signal, if there are two positive constants α and Ψ such that

‖x(t)‖ ≤ Ψ · e−αt, t ≥ 0. (2.11)
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Now we present a result to design the switching signal that guarantees global
exponential stability of system (2.1).

Theorem 2.5. Assume that for ‖D‖ < 1, 0 < α < −(ln ‖D‖)/τ , 0 ≤ αi ≤ 1, i = 1, 2, . . . ,N, and∑N
i=1 αi = 1, there exist some n × n matrices P,Q,R1, R2 > 0, such that the following LMI conditions

hold for all i = 1, 2, . . . ,N:

Ξi =

⎡
⎢⎢⎣
Ξ11i Ξ12i Ξ13i

∗ Ξ22i Ξ23i

∗ ∗ Ξ33i

⎤
⎥⎥⎦ < 0,

FTP + PF +Q < 0, F =
N∑
i=1

αiA0i,

(2.12)

where

Ξ11i = 2α · P + R1 + R2 −Q, Ξ12i = −2α · PD −A0i
TPD, Ξ13i = PA1i,

Ξ22i = 2α ·DTPD − e−2ατ · R1, Ξ23i = −DTPA1i, Ξ33i = −(1 − hD) · e−2αhM · R2.

(2.13)

Then the system (2.1) is globally exponentially stabilizable with convergence rate α by the switching
signal given in (2.10).

Proof. Define the Lyapunov functional

V (xt) = e2αt · (x(t) −Dx(t − τ))TP(x(t) −Dx(t − τ))

+
∫ t
t−τ
e2αs · xT (s)R1x(s)ds +

∫ t
t−h(t)

e2αs · xT (s)R2x(s)ds,
(2.14)

where P,R1, R2 > 0. The time derivatives of V (xt) along the trajectories of system (2.3) under
the switching function (2.10) satisfy

V̇ (xt) = e2αt ·
[
2α · (x(t) −Dx(t − τ))TP(x(t) −Dx(t − τ))

]

+ e2αt ·
N∑
i=1

λi(t)
[
(A0ix(t) +A1ix(t − h(t)))TP(x(t) −Dx(t − τ))

]

+ e2αt ·
N∑
i=1

λi(t)
[
(x(t) −Dx(t − τ))TP(A0ix(t) +A1ix(t − h(t)))

]

+ e2αt ·
[
xT (t)R1x(t) − e−2ατ · xT (t − τ)R1x(t − τ)

]

+ e2αt ·
[
xT (t)R2x(t) −

(
1 − ḣ(t)

)
· e−2αh(t) · xT (t − h(t))R2x(t − h(t))

]
.

(2.15)
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By the condition (2.9) and switching function (2.10), we obtain

V̇ (xt) ≤ e2αt ·
N∑
i=1

λi(t) ·
[
XT · Ξi ·X

]
, (2.16)

where Ξi, i = 1, 2, . . . ,N, are defined in (2.12), XT = [xT (t) xT (t − τ) xT (t − h(t))]. From
(2.16) with Ξi < 0, we have

V (xt) ≤ V (x0), t ≥ 0, (2.17)

where

V (x0) ≤ δ1 · ‖x0‖2
s, δ1 = λmax(P)(1 + ‖D‖)2 + τ · λmax(R1) + hM · λmax(R2). (2.18)

From (2.14), we have

λmin(P) · e2αt ·
∥∥℘(t)∥∥2 ≤ e2αt · ℘T (t)P℘(t) ≤ V (xt) ≤ δ1 · ‖x0‖2

s, (2.19)

where ℘(t) = x(t) −Dx(t − τ). From (2.19), we can obtain

‖x(t)‖ =
∥∥℘(t) +Dx(t − τ)∥∥ ≤ ‖D‖ · ‖x(t − τ)‖ + ∥∥℘(t)∥∥ ≤ ‖D‖ · ‖x(t − τ)‖ + δ2 · e−αt, t ≥ 0,

(2.20)

where δ2 =
√
δ1/λmin(P) · ‖x0‖s. Since ‖D‖ < 1 and τ > 0, we can choose a sufficiently

small positive constant ξ = α < −(ln ‖D‖)/τ satisfying ‖D‖ · eξτ < 1. By the Razumikhin-like
approach of [14], we have

‖x(t)‖ ≤
[
‖x0‖s +

δ2

1 − ‖D‖eξh

]
· e−ξt, t ≥ 0. (2.21)

This completes the proof.

Consider the following uncertain switched neutral system with mixed time delays:

ẋ(t) −Dẋ(t − τ) = [A0σ + ΔA0σ(t)]x(t) + [A1σ + ΔA1σ(t)]x(t − h(t)), t ≥ 0, (2.22a)

x(t) = φ(t), t ∈ [−H, 0], (2.22b)

where ΔA0i(t) and ΔA1i(t) are some perturbed matrices and satisfy the following condition:

[
ΔA0i(t) ΔA1i(t)

]
=MiFi(t)

[
N0i N1i

]
, ∀i ∈ {1, 2, . . . ,N}, t ≥ 0, (2.22c)
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where Mi, N0i, and N1i, i = 1, 2, . . . ,N, are some given constant matrices with appropriate
dimensions, and Fi(t), i = 1, 2, . . . ,N, are unknown matrices representing the parameter
perturbation which satisfy

FTi (t)Fi(t) ≤ I, ∀i ∈ {1, 2, . . . ,N}, t ≥ 0. (2.23)

The uncertain switched system in (2.22a)–(2.22c) can be rewritten as follows:

ẋ(t) −Dẋ(t − τ) =
N∑
i=1

λi(t){[A0i + ΔA0i(t)]x(t) + [A1i + ΔA1i(t)]x(t − h(t))}, t ≥ 0,

x(t) = φ(t), t ∈ [−H, 0],

(2.24)

where λi(t) is defined in (2.2) and
∑N

i=1 λi(t) = 1, ∀t ≥ 0.
Now we consider the exponential stability for uncertain switched system (2.22a)–

(2.22c).

Theorem 2.6. Assume that for ‖D‖ < 1, 0 < α < −(ln ‖D‖)/τ , 0 ≤ αi ≤ 1, i = 1, 2, . . . ,N, and∑N
i=1 αi = 1, there exist constants εi > 0, i = 1, 2, . . . ,N, and some n × n matrices P,Q,R1, R2 > 0,

such that the following LMI conditions hold for all i = 1, 2, . . . ,N:

Ξi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ11i Ξ12i Ξ13i Ξ14i Ξ15i

∗ Ξ22i Ξ23i Ξ24i 0

∗ ∗ Ξ33i 0 Ξ35i

∗ ∗ ∗ Ξ44i 0

∗ ∗ ∗ ∗ Ξ55i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

FTP + PF +Q < 0, F =
N∑
i=1

αiA0i,

(2.25)

where Ξjki, j, k = 1, 2, 3, are defined in (2.12)

Ξ14i = PMi, Ξ15i = εi ·NT
0i, Ξ24i = −DTPMi, Ξ35i = εi ·NT

1i, Ξ44i = Ξ55i = −εi · I. (2.26)

Then the system (2.22a)–(2.22c) is globally exponentially stabilizable with convergence rate α by the
switching signal given in (2.10).

Proof. The time derivatives of V (xt) in (2.14) along the trajectories of system (2.22a)–(2.22c)
under the switching function (2.9) satisfy

V̇ (xt) ≤ e2αt ·
N∑
i=1

λi(t) ·
[
XT · Ξ̂i ·X

]
, (2.27)
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where

Ξ̂i = Ξi +

⎡
⎢⎢⎣

PMi

−DTPMi

0

⎤
⎥⎥⎦Fi(t)

[
N0i 0 N1i

]
+

⎡
⎢⎢⎣
NT

0i

0

NT
1i

⎤
⎥⎥⎦FTi (t)

[
MT

i P −M
T
i PD 0

]
. (2.28)

By Lemmas 2.1 and 2.2, the condition Ξi < 0 in (2.25) is equivalent to Ξ̂i < 0. By the same
derivation of Theorem 2.5, this proof can be completed.

If we choose the convergence rate α = 0, we can obtain the following delay-
independent condition for the global asymptotic stability of system (2.22a)–(2.22c).

Corollary 2.7. Assume that for ‖D‖ < 1, 0 ≤ αi ≤ 1, i = 1, 2, . . . ,N, and
∑N

i=1 αi = 1, there exist
constants εi > 0, i = 1, 2, . . . ,N, some n × n matrices P,Q,R1, R2 > 0, such that the following LMI
conditions hold for all i = 1, 2, . . . ,N:

Ξ̃i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ̃11i Ξ̃12i Ξ̃13i Ξ̃14i Ξ̃15i

∗ Ξ̃22i Ξ̃23i Ξ̃24i 0

∗ ∗ Ξ̃33i 0 Ξ̃35i

∗ ∗ ∗ Ξ̃44i 0

∗ ∗ ∗ ∗ Ξ̃55i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

FTP + PF +Q < 0, F =
N∑
i=1

αiA0i,

(2.29)

where

Ξ̃11i = R1 + R2 −Q, Ξ̃12i = −A0i
TPD, Ξ̃13i = PA1i, Ξ̃14i = PMi, Ξ̃15i = εi ·NT

0i,

Ξ̃22i = −R1, Ξ̃23i = −DTPA1i, Ξ̃24i = −DTPMi, Ξ̃33i = −(1 − hD) · R2,

Ξ̃35i = εi ·NT
1i, Ξ̃44i = Ξ̃55i = −εi · I.

(2.30)

Then the system (2.22a)–(2.22c) is globally asymptotically stabilizable by the switching signal given
in (2.10).
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If D = 0, Corollary 2.7 can be reduced to the following corollary.

Corollary 2.8. Assume that for some constants αi, i = 1, 2, . . . ,N, there exist constants εi > 0,
i = 1, 2, . . . ,N, some n × n matrices P,Q,R2 > 0, such that the following LMI conditions hold for all
i = 1, 2, . . . ,N:

˜̃Ξi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

˜̃Ξ11i
˜̃Ξ12i

˜̃Ξ13i
˜̃Ξ14i

∗ ˜̃Ξ22i 0 ˜̃Ξ24i

∗ ∗ ˜̃Ξ33i 0

∗ ∗ ∗ ˜̃Ξ44i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

FTP + PF +Q < 0, F =
N∑
i=1

αiA0i,

(2.31)

where

˜̃Ξ11i = R2 −Q, ˜̃Ξ12i = PA1i,
˜̃Ξ13i = PMi,

˜̃Ξ14i = εi ·NT
0i,

˜̃Ξ22i = −(1 − hD) · R2,

˜̃Ξ24i = εi ·NT
1i,

˜̃Ξ33i =
˜̃Ξ44i = −εi · I.

(2.32)

Then the system (2.22a)–(2.22c) is globally asymptotically stabilizable by the switching signal given
in (2.10).

Assumption 2.9. Assume that there exists a convex combination F =
∑N

i=1 αiA0i, some positive
definite matrices P and Q, some matrices Ŝi, i = 1, 2, . . . ,N, such that

FTP + PF +
N∑
i=1

αi ·
(
Ŝi + ŜTi

)
< −Q, (2.33)

where 0 ≤ αi ≤ 1 and
∑N

i=1 αi = 1.

Define some domains

Ω̂i =
{
x ∈ Rn : xT

(
A0i

TP + PA0i + Ŝi + ŜTi
)
x ≤ −xTQx

}
, i ∈ {1, 2, . . . ,N}. (2.34)

From the similar proof of [7], it is easy to show
⋃N
i=1 Ω̂i = Rn. Construct some domains

Ω̃1 = Ω̂1, Ω̃2 = Ω̂2 − Ω̃1, Ω̃3 = Ω̂3 − Ω̃1 − Ω̃2, . . . , Ω̃N = Ω̂N − Ω̃1 − · · · − Ω̃N−1. (2.35)
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We can obtain
⋃N
i=1 Ω̃i = Rn and Ω̃i ∩ Ω̃j = Φ, i /= j, where Φ is an empty set. If Assumption 2.9

is satisfied, then the following results can be derived:

xT
(
A0i

TP + PA0i + Ŝi + ŜTi
)
x ≤ −xTQx, x(t) ∈ Ω̃i. (2.36)

Define the following switching function:

σ = i, ∀x ∈ Ω̃i. (2.37)

Remark 2.10. In [6, 7, 10], their assumption is given by

FT1 P + PF1 = −Q, (2.38)

where F1 =
∑N

i=1 αi · (A0i + A1i). We can see that our Assumption 2.9 is more flexible with
Ŝi = PA1i, ∀i = 1, 2, . . . ,N. The main difference of Assumptions 2.3 and 2.9 is that some
matrices Ŝi are introduced in Assumption 2.9. These matrices play a key role to derive the
delay-dependent results.

Theorem 2.11. Assume that for ‖D‖ < 1, 0 < α < −(ln ‖D‖)/τ , 0 ≤ αi ≤ 1, i = 1, 2, . . . ,N, and∑N
i=1 αi = 1, there exist constants εi > 0, i = 1, 2, . . . ,N, some n×nmatrices P,Q,R1, R2, R3, R4 > 0,

and some n × n matrices R12, U, Ŝi, V1i, V2i, and V3i, i = 1, 2, . . . ,N, such that the following LMI
conditions hold for all i = 1, 2, . . . ,N:

Σi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ11i Σ12i Σ13i Σ14i Σ15i Σ16i Σ17i Σ18i

∗ Σ22i 0 Σ24i Σ25i 0 Σ27i 0

∗ ∗ Σ33i Σ34i Σ35i Σ36i Σ37i 0

∗ ∗ ∗ Σ44i Σ45i 0 Σ47i 0

∗ ∗ ∗ ∗ Σ55i Σ56i 0 Σ58i

∗ ∗ ∗ ∗ ∗ Σ66i 0 0

∗ ∗ ∗ ∗ ∗ ∗ Σ77i 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ88i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

FTP + PF +
N∑
i=1

αi ·
(
Ŝi + ŜTi

)
+Q < 0, F =

N∑
i=1

αiA0i,

[
R1 R12

∗ R2

]
> 0,

(2.39)
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where

Σ11i = 2α · P −Q + R1 + R3 − V1i − V T
1i , Σ12i = R12 +AT

0iU
T ,

Σ13i = −2αPD −A0i
TPD − ŜTi D, Σ14i = −A0i

TUTD,

Σ15i = PA1i − Ŝi − V2i + V T
1i , Σ16i = −Ŝi − V3i + V T

1i , Σ17i = PMi, Σ18i = εi ·NT
0i,

Σ22i = R2 + h2
M · R4 −U −UT, Σ24i =

(
U +UT

)
D, Σ25i = UA1i, Σ27i = UMi,

Σ33i = 2αDTPD − e−2ατ · R1, Σ34i = −e−2ατ · R12, Σ35i = −DTPA1i +DTŜi, Σ36i = DTŜi,

Σ37i = −DTPMi, Σ44i = −e−2ατ · R2 −DT
(
U +UT

)
D, Σ45i = −DTUA1i, Σ47i = −DTUMi,

Σ55i = −(1 − hD) · e−2αhM · R3 + V2i + V T
2i , Σ56i = V3i + V T

2i , Σ58i = εi ·NT
1i,

Σ66i = −e−2αhM · R4 + V3i + V T
3i , Σ77i = Σ88i = −εi · I.

(2.40)

Then the system (2.22a)–(2.22c) is globally exponentially stabilizable with convergence rate α by the
switching signal given in (2.37).

Proof. Define the Lyapunov functional

V (xt) = e2αt · (x(t) −Dx(t − τ))TP(x(t) −Dx(t − τ))

+
∫ t
t−τ
e2αs ·

[
xT (s) ẋT (s)

] [R1 R12

∗ R2

][
x(s)

ẋ(s)

]
ds

+
∫ t
t−h(t)

e2αs · xT (s)R3x(s)ds + hM ·
∫ t
t−hM

e2αs · (s − (t − hM))ẋT (s)R4ẋ(s)ds,

(2.41)

where P,R3, R4 > 0,
[
R1 R12

∗ R2

]
> 0. The time derivatives of V (xt) along the trajectories of system

(2.24) satisfy

V̇ (xt) = e2αt ·
[
2α · (x(t) −Dx(t − τ))TP(x(t) −Dx(t − τ))

]

+ e2αt ·
N∑
i=1

λi(t)

[(
(A0i + Si + ΔA0i(t))x(t) − Si ·

∫ t
t−h(t)

ẋ(s)ds

+(A1i + ΔA1i(t) − Si)x(t − h(t))
)T

P(x(t) −Dx(t − τ))

⎤
⎦

+ e2αt ·
N∑
i=1

λi(t)

[
(x(t) −Dx(t − τ))TP

(
(A0i + Si + ΔA0i(t))x(t) − Si ·

∫ t
t−h(t)

ẋ(s)ds

+(A1i + ΔA1i(t) − Si)x(t − h(t))
)]
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+ e2αt ·
[[
xT (t) ẋT (t)

][R1 R12

∗ R2

][
x(t)

ẋ(t)

]

−e−2ατ ·
[
xT (t − τ) ẋT (t − τ)

][R1 R12

∗ R2

][
x(t − τ)
ẋ(t − τ)

]]

+ e2αt ·
[
xT (t)R3x(t) −

(
1 − ḣ(t)

)
· e−2αh(t) · xT (t − h(t))R3x(t − h(t))

]

+ e2αt ·
[
h2
M · ẋ

T (t)R4ẋ(t) − hM ·
∫ t
t−hM

e2α(s−t) · ẋT (s)R4ẋ(s)ds

]
,

(2.42)

where Ŝi = PSi. By the inequality in [1, page 322], we have

−hM ·
∫ t
t−hM

e2αs · ẋT (s)R4ẋ(s)ds ≤ −h(t) · e2αt · e−2αhM ·
∫ t
t−h(t)

ẋT (s)R4ẋ(s)ds

≤ −e2αt · e−2αhM ·
[∫ t

t−h(t)
ẋ(s)ds

]T
R4

[∫ t
t−h(t)

ẋ(s)ds

]
.

(2.43)

By system (2.24) and Leibniz-Newton formula, we have

N∑
i=1

λi(t) · e2αt ·
[∫ t

t−h(t)
ẋ(s)ds− x(t)+ x(t − h(t))

]T[
V1ix(t) + V2ix(t − h(t))+ V3i

∫ t
t−h(t)

ẋ(s)ds

]

+
N∑
i=1

λi(t) · e2αt ·
[
V1ix(t) + V2ix(t − h(t)) + V3i

∫ t
t−h(t)

ẋ(s)ds

]T

×
[∫ t

t−h(t)
ẋ(s)ds − x(t) + x(t − h(t))

]
= 0,

− e2αt · (ẋ(t) −Dẋ(t − τ))T
(
U +UT

)
(ẋ(t) −Dẋ(t − τ))

+
N∑
i=1

λi(t) · e2αt · (ẋ(t) −Dẋ(t − τ))TU{[A0i + ΔA0i(t)]x(t) + [A1i + ΔA1i(t)]x(t − h(t))}

+
N∑
i=1

λi(t) · e2αt ·{[A0i + ΔA0i(t)]x(t)+ [A1i + ΔA1i(t)]x(t − h(t))}TUT (ẋ(t)−Dẋ(t − τ))=0.

(2.44)

By the conditions (2.42)–(2.44), we obtain the following result:

V̇ (xt) ≤ e2αt ·
N∑
i=1

λi(t) ·
[
XT · Σi ·X

]
, (2.45)
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where

XT =

[
xT (t) ẋT (t) xT (t − τ) ẋT (t − τ) xT (t − h(t))

∫ t
t−h(t)

ẋT (s)ds

]
,

Σi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ11i Σ12i Σ13i Σ14i Σ15i Σ16i

∗ Σ22i 0 Σ24i Σ25i 0

∗ ∗ Σ33i Σ34i Σ35i Σ36i

∗ ∗ ∗ Σ44i Σ45i 0

∗ ∗ ∗ ∗ Σ55i Σ56i

∗ ∗ ∗ ∗ ∗ Σ66i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PMi

UMi

−DTPMi

−DTUMi

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fi(t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NT
0i

0

0

0

NT
1i

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NT
0i

0

0

0

NT
1i

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

FTi (t)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PMi

UMi

−DTPMi

−DTUMi

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

(2.46)

By Lemmas 2.1 and 2.2, the condition Σi < 0 in (2.39) is equivalent to Σi < 0 in (2.45). From
Σi < 0 and by the similar derivation of Theorem 2.5, the proof can be completed.

If D = 0, Theorem 2.11 can be reduced to the following corollary.

Corollary 2.12. Assume that for α > 0, 0 ≤ αi ≤ 1, i = 1, 2, . . . ,N, there exist constants εi > 0,
i = 1, 2, . . . ,N, some n × n matrices P,Q,R3, R4 > 0, some n × n matrices U, Ŝi, V1i, V2i, and V3i,
i = 1, 2, . . . ,N, such that the following LMI conditions hold for all i = 1, 2, . . . ,N:

Σ̂i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ̂11i Σ̂12i Σ̂13i Σ̂14i Σ̂15i Σ̂16i

∗ Σ̂22i Σ̂23i 0 Σ̂25i 0

∗ ∗ Σ̂33i Σ̂34i 0 Σ̂36i

∗ ∗ ∗ Σ̂44i 0 0

∗ ∗ ∗ ∗ Σ̂55i 0

∗ ∗ ∗ ∗ ∗ Σ̂66i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

FTP + PF +
N∑
i=1

αi ·
(
Ŝi + ŜTi

)
+Q < 0, F =

N∑
i=1

αiA0i,

(2.47)
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where

Σ̂11i = 2α · P −Q + R3 − V1i − V T
1i , Σ̂12i = AT

0iU
T , Σ̂13i = PA1i − Ŝi − V2i + V T

1i ,

Σ̂14i = −Ŝi − V3i + V T
1i , Σ̂15i = PMi, Σ̂16i = εi ·NT

0i, Σ̂22i = h2
M · R4 −U −UT,

Σ̂23i = UA1i, Σ̂25i = UMi, Σ̂33i = −(1 − hD) · e−2αhM · R3 + V2i + V T
2i , Σ̂34i = V3i + V T

2i ,

Σ̂36i = εi ·NT
1i, Σ̂44i = −e−2αhM · R4 + V3i + V T

3i , Σ̂55i = Σ̂66i = −εi · I.
(2.48)

Then the system (2.22a)–(2.22c) with D = 0 is globally exponentially stabilizable with convergence
rate α by the switching signal given in (2.37).

If D = Mi = N0i = N1i = 0, i = 1, 2, . . . ,N, Corollary 2.12 can be reduced to the
following corollary.

Corollary 2.13. Assume that for α > 0, 0 ≤ αi ≤ 1, i = 1, 2, . . . ,N, there exist some n × n matrices
P,Q,R3, R4 > 0, some n × n matricesU, Ŝi, V1i, V2i, and V3i, i = 1, 2, . . . ,N, such that the following
LMI conditions hold for all i = 1, 2, . . . ,N:

Σ̂i =

⎡
⎢⎢⎢⎢⎢⎢⎣

Σ̂11i Σ̂12i Σ̂13i Σ̂14i

∗ Σ̂22i Σ̂23i 0

∗ ∗ Σ̂33i Σ̂34i

∗ ∗ ∗ Σ̂44i

⎤
⎥⎥⎥⎥⎥⎥⎦
< 0,

FTP + PF +
N∑
i=1

αi ·
(
Ŝi + ŜTi

)
+Q < 0, F =

N∑
i=1

αiA0i,

(2.49)

where Σ̂jki, j, k = 1, 2, 3, 4, i = 1, 2, . . . ,N, are defined in Corollary 2.12. Then the system (2.22a)–
(2.22c) with D = Mi = N0i = N1i = 0 is globally exponentially stabilizable with convergence rate α
by the switching signal given in (2.37).

Remark 2.14. By setting α = 0 in Theorems 2.5–2.11 and Corollaries 2.7–2.13, the global
asymptotic stability for system (2.22a)–(2.22c) can be guaranteed.

3. Numerical Examples

Example 3.1. Consider the system (2.22a)–(2.22c) and the following parameters:

N = 2, D =

[
0.1 0

0.1 −0.1

]
, A01 =

[
−4 2

1 0

]
, A11 =

[
1 0

0.5 1

]
, A02 =

[
0 −1

−1 −4

]
, (3.1)
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Table 1: Comparison with other previous results.

Allowable time-varying delay bounds retaining global asymptotic stability (α = 0)
of the system (2.22a)–(2.22c) with (3.1) under switching signal (3.4)

Results hD = 0 hD = 0.2 hD = 0.3
Reference [10] (without perturbations and D = 0) hM = 0.9999998 hM = 0.9999997 hM = 0.9999996
Our results (with perturbations) hM ≥ 0 hM ≥ 0 hM ≥ 0

A12 =

[
0.5 0

0.5 1

]
, M1 =

[
0.1

0.2

]
, M2 =

[
0.2

0.1

]
, N01 =N02 =

[
0.1 0.1

]
, N11 =N12 =

[
0.2 0.1

]
.

(3.2)

By Corollary 2.7, a feasible solution of LMI (2.29) with (3.1), α = 0, hD = 0.2, and
α1 = α2 = 0.5 is given by

P =

[
169.0808 6.9691

6.9691 147.4925

]
, Q =

[
618.4486 − 21.7634

− 21.7634 538.3595

]
, R1 =

[
120.4512 − 58.0284

− 58.0284 90.4631

]
,

R2 =

[
275.0262 25.6702

25.6702 180.9190

]
, ε1 = 145.7753, ε2 = 180.2272.

(3.3)

Select the switching signal by

σ =

⎧
⎨
⎩

1, x ∈ Ω1,

2, x ∈ Ω2,
(3.4)

where Ω1 = Ω1, Ω2 = Ω2 −Ω1,

Ω1 =
{
x ∈ Rn : −720.2596x2

1 + 872.0285x1x2 + 566.2359x2
2 ≤ 0

}
,

Ω2 =
{
x ∈ Rn : 604.5104x2

1 − 732.4262x1x2 − 655.5187x2
2 ≤ 0

}
.

(3.5)

The switching regions Ω1 and Ω2 are sketched in Figure 1. The system (2.22a)–(2.22c) with
hD = 0.2 and (3.1) is globally asymptotically stabilizable by the switching signal (3.4). Some
comparisons are made in Table 1. The result of this paper provides a major improvement to
guarantee the global asymptotic stability of system (2.22a)–(2.22c) with (3.1).
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Figure 1: Switching regions.

Table 2: Comparison with other previous results.

Allowable time-varying delay bounds retaining global asymptotic stability (α = 0)
of the system (2.22a)–(2.22c) with (3.6)

Results hD = 0 hD = 0.1 hD = 0.5 hD = 0.9 hD = 1
Reference [7] hM = 0.001573 No results
Reference [6] hM = 0.00392 No results
Reference [10] hM = 0.0202 hM = 0.0179 hM = 0.0176 hM = 0.0176 hM = 0.0176

Our results hM = 0.0309 hM = 0.0271 hM = 0.0193 hM = 0.0181 hM = 0.0180

Example 3.2. Consider the system (2.22a)–(2.22c) and the following parameters [7]:

N = 2, D =Mi =N0i =N1i = 0, A01 =

[
−2 2

−20 −2

]
,

A11 =

[
−1 −7

23 6

]
, A02 =

[
−2 10

−4 −2

]
, A12 =

[
4 −5

1 −8

]
.

(3.6)

By Corollary 2.13, some comparisons with the obtained results for switched system
(2.22a)–(2.22c) with (3.6) are made in Table 2. The results of this paper provide a larger
allowable upper bound for time delay to guarantee the global asymptotic stability of system
(2.22a)–(2.22c) with (3.6) by the switching signal (2.37).

Example 3.3. Consider the following switched system with input time delay [7]:

ẋ(t) = A0σx(t) + Bσu(t − h(t)), t ≥ 0, (3.7)
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Table 3: Comparison with other previous results.

Allowable time-varying delay bounds retaining global asymptotic
and exponential stability of the system (3.7) with (3.9)

Results hD = 0, α = 0 hD = 0.1, α = 0 hD = 0, α = 0.1 hD = 0, α = 0.2
Reference [7] hM = 0.008723 No results
Reference [10] hM = 0.0189 hM = 0.0182 No results

Our results hM = 0.03112 hM = 0.0294 hM = 0.0296 hM = 0.0281

where

N = 2, A01 =

[
3 2

−5 −1

]
, A02 =

[
−1 20

−2 2

]
, B1 =

[
−1 0

1 −1

]
, B2 =

[
1 1

0 −1

]
. (3.8)

The feedback control is given by u(t) = Kσ(t)x(t) with

K1 =

[
5 0

20 1

]
, K2 =

[
−3 −14

2 4

]
. (3.9)

For the given feedback control (3.9), system (3.7) can be rewritten as

ẋ(t) = A0σx(t) +A1σx(t − h(t)), t ≥ 0, (3.10)

where A1σ = BσKσ . As shown in Table 3, the results obtained in this paper provide larger
allowable time delay bounds guaranteeing the global stability of system (3.7) with (3.9) by
switching signal (2.37). In [7, 10], the convex combination parameters are chosen by α1 = 1/3
and α2 = 2/3. The convex combination parameters of our results are chosen by α1 = 0.1 and
α2 = 0.9.

4. Conclusions

In this paper, the switching signal design for global exponential stability of uncertain
switched neutral systems with mixed time delays has been considered. LMI and Razumikhin-
like approaches are used to derive delay-dependent and delay-independent stability criteria.
The results obtained in this paper are less conservative than the previous ones for the
numerical examples investigated in this paper.
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