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Whenever there exists a crossover from one potential to another, computational problems are
introduced in Molecular Dynamics (MD) simulation. These problem are overcome here by
an algorithm, described in detail. The algorithm is applied to a 2-body particle potential for
a hysteresis loop reaction model. Extreme temperature conditions were applied to test for
algorithm effectiveness by monitoring global energy, pressure and temperature discrepancies in
an equilibrium system. No net rate of energy and other flows within experimental error should
be observed, in addition to invariance of temperature and pressure along the MD cell for the
said system. It is found that all these conditions are met only when the algorithm is applied. It
is concluded that the method can easily be extended to Nonequilibrium MD (NEMD) simulations
and to reactive systems with reversible, non-hysteresis loops.
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1. Introduction

The packages used extensively for biophysical simulations include CHARMM, GROMACS,
DL POLY, IMD, and AMBER [1–5] where routine model reactions are not included. This is
a significant limitation at attempting to model processes. One of the many reasons is that
in the space of potential interactions, it is not so easy to specify when a species comes
into existence, and when it ceases to exist; these criteria at the molecular level seems to
be arbitrary or subjective, and macroscopic level designations are not always applicable.
Another reason is that the complex potentials are not single-valued and would require costly
3 body interaction calculations. Probably newer phenomena—from the simulation point of
view—might be uncovered if cost-effective reactive potentials could be used. The current
algorithm is primitive enough to provide first steps in this direction for very large molecular
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assemblies encountered in Biophysical simulation where n-body (n > 2) potentials would be
currently prohibitive in terms of computational time. This work presents a simple dimeric
single bond reaction as an example of how reactions can be included. From these tests, it
is concluded that the method can easily be extended to reversible chemical systems. The
theory is general and works for n-body interactions for the coordinates involved in any cross-
over trajectory irrespective of the degree of interaction. Recently, a 3-body potential modeled
after the method of Stillinger [6] was used to study a chemical reaction at relatively low
temperatures where by assumption, no precautions were taken into account for changes due
to the steep gradients in the potential. While such methods might obtain for non-synthetic
MD when the temperature and other thermodynamical variables are relatively small in
magnitude, implying low velocities of the particles, more care must be taken at extremely
high temperatures. Synthetic MD methods—meaning those techniques where the equations
of motion are solved so as to replicate the ensemble probability distribution of the specified
Hamiltonian and where the temperature, pressure, and other thermodynamical variables are
introduced into a pseudo-Hamiltonian directly so that the successive trajectory coordinates
can be computed at any time, with fixed temperature or pressure variables, [7–10]—unlike
non synthetic methods where thermostats and barostats are placed in possibly localized
regions by perturbing the system, are probably more immune to energy violations due to
the artificial nature of computing the particle trajectories. We note that the gerund forms such
as ”thermostatting” for thermostat has been used routinely to refer to the application of a
method to a simulation to control temperature [11, pages 143–144, 535]. The same applies for
the gerund forms of barostats [11, pages 158–160] which refer to a method for controlling the
pressure of a system under simulation. However, even for synthetic simulations, conservation
of energy, and momentum at crossovers could lead to less fluctuation of the quantities
or variables which appear and are set in the apparent or synthetic Hamiltonian. Thus
various dispersion and variance relationships, from which quantities like the Specific Heat
are derived, would differ from those described by a nonsynthetic Hamiltonian. Elementary
statistical mechanics and the Boltzmann H theorem all indicate that in systems with a
conservative Hamiltonian, the equilibrium state would be that in which equipartition of
energy and the Maxwell distribution of velocities would obtain, and this would always be
the case as the system relaxes to equilibrium; hence the temperature T too, as determined by
the equipartition result n(3/2)kT =

∑n
i=1〈(1/2)miv

2
i 〉. For large enough systems in terms of

number of free coordinates, these results imply that once a system has reached equilibrium,
it would persist in that state indefinitely. If, therefore, the simulation algorithm were perfect,
it would evolve about an equilibrium trajectory indefinitely. There would, therefore, be no
need to ”thermostat” any closed system. For canonical and other ensembles, on the other
hand, where energy exchange is investigated, then thermostatting would be required even
for perfect algorithms that produce for each discrete time step the exact trajectory as would
be produced in principle by integrating exactly the equations of motion. For the majority of
cases however, thermostats are used just to maintain a particular temperature for a system at
either local or global equilibrium. Hence, one can conclude for these cases that thermostats
are implemented as a corrective to imperfect trajectory algorithms that does not constantly
place the system on an equilibrium trajectory, as required by the H theorem; that is, it would
appear that in the majority of instances, thermostatting in equilibrium systems is related to
the fact that one’s algorithm is imperfect in the sense that it cannot compute a bona fide
equilibrium state. This can only be the case if accumulated machine and computational
errors create a trajectory not corresponding to a microcanonical or canonical ensemble of
states. Hence, for these situations, thermostatting refers to the implementation of algorithms
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that forces the system to adopt on average a canonical or microcanonical distribution of
energies among the principle components within the system. In synthetic methods, the
”actual” trajectory is not traced, but one that reproduces a canonical trajectory, but even here,
opinions differ as to how accurately these trajectories are traced. Indeed, recent work seems
to show that external perturbations can modify the ”noise” spectrum of a natural system.
For instance, the presence of an external random contribution to a high-frequency periodic
electric field can reduce the total noise power [12]. This suggests that some natural properties
connected to time correlation functions is a function of external perturbations and so one
may conclude that basic synthetic methods may not include such elements of stochasticity.
Another interesting observation of [12, 13] is the use of Monte Carlo techniques to model
the system. In this case, Monte Carlo is used to simulate the dynamics of electrons in the
semiconductor lattice by taking into account stochastic averaging. This is to be contrasted
with the method here of attempting direct (and approximate) integration of the equations
of motion, moderated by probabilistic inputs of energy at the ends of the box to simulate a
”thermostat.” One guess is that such Monte Carlo methods might be suitable if the details
of molecular motion are not being investigated, and that given that a particular form of
behavior is accepted, then one might superimpose stochasticity upon it through a Monte
Carlo algorithm to simulate scattering phenomena, which includes temperature control. One
possible problem with synthetic methods is that if a phenomenon is due to the system being
in a particular phase space of a particular fixed Hamiltonian, then such events may not be
detected or may be underrepresented in these synthetic methods. An overview of some of
the above is in order. In the Nosé-Hoover method, one defines a Lagrangian for the system
coordinates {ṙi, ṗi} as

LNose =
N∑

i=1

mi

2
s2ṙ2

i − U
(
rN

)
+
Q

2
ṡ2 − L

β
ln s, (1.1)

where β is the temperature parameter. This so-called Lagrangian defines the conjugate
momenta to ri and s as, respectively, pi = mis

2ṙi and ps = Qṡ. Then for this system, there
results ultimately a pseudo-Hamiltonian:

HNose =
N∑

i=1

mi

2
s2p2

i − U
(
rN

)
+
Q

2
ξ2 +

L

β
ln s, (1.2)

whose trajectory is determined by the coupled equations that must be solved:

ṙi =
pi
mi

,

ṗi =
∂U(ri)
∂ṙi

− ξpi,

ξ̇ =

(∑
i p

2
i /m − L/β

)

Q
,

ṡ

s
=
d ln s
dt

= ξ,

(1.3)
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where the last equation in superfluous. Equation (1.3) is solved by special and time
consuming techniques that are not typical of those used for the standard Hamiltonian, such as
the well-known Verlet and Gear algorithms. An analogous set of equations can be derived for
constant pressure studies [14]. Another algorithm to correct for machine errors in following a
PES is temperature-coupling method of Berendsen et al. [15] which has been widely used in
many systems but it is claimed [11, page 161] that the canonical distribution is not produced
”exactly.” In this method, the velocities are scaled every time step by factor λ given by

λ =
[

1 +
δt

τT

(
T0

T
− 1

)]1/2

. (1.4)

The upshot of the above is that these algorithms can be viewed as some sort of corrective
procedure used to overcome problems of trajectory calculation accuracy for the rather
simplistic, single-valued potential that are used for nonreactive systems due to the nonperfect
integration of the equations of motion [16]. Paradoxically perhaps, the theories that were
developed never allude to the machine error basis behind equilibrium thermostatting, which
is not required by the H theorem when the system relaxes to equilibrium, and thus hardly
any reference is made to the error in the computations of their new equations of motion
that incorporates fixed thermodynamical variables like the pressure or temperature. It may
be argued that they were referring to the canonical ensemble, but a careful examination
of the Nosé justification of the method refers to a microcanonical phase space trajectory
with the delta function having a component form δ(Ĥ − E + α). This might imply that
machine error was not the foremost reason for the invention of the algorithms together with
the accompanying theory. To date however, there has been little—if any—development in
providing corrective measures to trajectory calculations for multivalued and other potentials
which require switches to transfer trajectories from one PES to another for various molecular
species which involve the variables pertaining to the surfaces. This particular review refers
to one such attempt, which will be described in detail in what follows.

For both synthetic and nonsynthetic methods using n-body potentials, various
switches and lists would have to be created to keep track of which potential energy surface
a particle can transit to, and exit from, in order to define when a molecule is formed or
destroyed in a reaction. Nonsynthetic Nonequilibrium Molecular Dynamics (NEMD) does
not presuppose a theory concerning molecular interactions and therefore if new phenomena
and relationships are sought in simulation studies, making use of quantitative values for
the mechanical variables, conservation algorithms would have to be employed for systems
with multipotential surfaces. In such studies, especially under extreme conditions, algorithms
that can control energy and momentum variations so that larger time steps could be utilized
seem essential; for nonsynthetic methods, they would be essential because gradients of
energy flow could be artificially induced by violation of energy and momentum conservation
due to the extreme potential gradients, thereby compromising any quantitative studies in
nonequilibrium energy flows in NEMD simulations where gradients of thermodynamical
variables exists by imposed boundary conditions. To initiate such studies, especially at
extreme conditions, an algorithm was devised to correct for such momentum and energy
conservation violations at crossover points in the potential curves due to reactions. The
method is applicable to any n-body interaction system; in our case, we use a 2-body
interaction system with switches that can turn on the potentials at prescribed distances.



Mathematical Problems in Engineering 5

−10

−5

0

5

10

15

20

Po
te

nt
ia

le
ne

rg
y/

L
Ju

ni
te

s

0.8 1 1.2 1.4 1.6 1.8

r/LJ distance units

Potentials for simulation model

uLJ intermolecular potential
s(r) switiching function
Atomic LJ potential

rf

rb

Figure 1: Potentials used for this work.

The model reaction simulated may be written as

2Ak1
�
k−1

A2, (1.5)

where k1 and k−1 are the forward and backward rate constant, respectively. The reaction
simulation was conducted at high temperatures not used ordinarily in simulations of LJ
(Lennard-Jones) fluids where the reduced temperatures T ∗ (all units used are reduced LJ
ones [17]) ranges ∼0.3–1.2, [17] whereas here, T ∗ ∼ 8.0–16.0, well above the supercritical
regime of the LJ fluid. At these temperatures, the normal choices for time step increments do
not obtain without also taking into account energy-momentum conservation algorithms in
regions where there are abrupt changes of gradient [11, 17, 18]. The global literature does not
seem to cover such extreme conditions of simulation with these precautions. The simulation
was at density ρ = 0.70 with 4096 atomic particles. The potentials used are as given in Figure 1
where rb = 1.20 for the vicinity where the bond of the dimer is broken (2 free particles emerge)
and rf = 0.85 is the point along the hysteresis potential curve where the dimer is defined to
exist for two previously free particles. The reaction proceeds as follows: all particles interact
with the splined LJ pair potential uLJ except for the dimeric pair (i, j) formed from particles i
and j which interact with a harmonic-like intermolecular potential modified by a switch u(r)
given by

u(r) = uvib(r)s(r) + uLJ[1 − s(r)], (1.6)

where uvib(r) is the vibrational potential given by (1.7)

uvib(r) = u0 +
1
2
k(r − r0)2. (1.7)
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The switching function s(r) is defined as

s(r) =
1

1 + (r/rsw)
n , (1.8)

where

s(r) −→ 1 if r < rsw,

s(r) −→ 0 for r > rsw.
(1.9)

The switching function becomes effective when the distance between the atoms approach
the value rsw (see Figure 1). Some of the other parameters used in the equations that
follow include u0 = −10, r0 = 1.0, k ∼ 2446 (exact value is determined by the other
input parameters), n = 100, rf = 0.85, rb = 1.20, and rsw = 1.11. Switches are commonly
encountered in theoretical accounts of complex interactions, such as found in polymer
interactions and in chemical reactions. There are many flavors of switch categories, and some
are more effective than others in forcing the merging of one potential type to another for a
given distance defined by a metric [19–23]. The ideal switch would resemble a Heaviside step
function but such functions cannot be so easily incorporated into the dynamical equations of
motion which feature continuous variables because the various orders of differentials must
be defined and computable over the discrete time steps. For instance, a switching function
with several known applications, including those from statistical mechanics is given by the
form [19]:

S(R) = 1 − tanh
[
a(R − Re)b

]
, (1.10)

where a and b are defined constants and the R′s represent distances. For various optimization
schemes to check for global minima, such as claimed in the Hunjan-Ramaswamy global
optimization method, switches such as the g(t) function of the following form has been used
[20]:

g(t) = exp(−ζt)cos2(3πζt)(1 − λζt), (1.11)

where t is a time-dependent variable. On the other hand, for cluster dynamics, a switch of the
form [21, equation 7],

Φ(r) = tanh
(
r − E
F

)

, (1.12)

is used, where the parameters E and F are adjusted to minimum energy of sub-clusters
according to their species partitioning scheme. Switches without explicit details have been
mentioned in other complex molecular structural studies to define topologies [22]. Similarly,
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switching functions SW to demarcate potential boundaries [23, equations 5, 6] about bonding
angles θ and bond distances r having the forms below have been used:

SW(θabc) =
(

1 − cos16θabc
)4
,

SW(rab) = 1 − tanh
[
a(rab − Re)(rab + b)

8
]
.

(1.13)

The above all refer to clearly defined spatial boundaries where there is a change
of potential interaction type. In stochastic analysis [24, page 4] of response functions to
a symmetric dichotomous switch variable ξ(t) having values ±1, analytical values may be
derived for the flow variables. The situation here, on the other hand, is not stochastic where
the particle trajectories are concerned, and the rate laws can only be determined through
simulation and integration of the system Hamiltonian with the system potential given by
(1.6). Coming back to our description of the particle dynamics and the switch function, our
particles i and j above also interact with all other particles not bonded to it via uLJ. Details
of these potentials and their interactions are given elsewhere [18]; here we note the high
activation energy at rf of approximately 17.5. At rf , the molecular potential is turned on
where at this point there is actually a crossing of the potential curves although the gradients
of the molecular and free uLJ potentials are ”very close.” On the other hand, at rb, the switch
forces the two curves to coalesce, but detailed examination shows that there is an energy
gap of about the same magnitude as the cut-off point in a normal nonsplined LJ potential
(∼0.04 energy units), meaning there is no crossing of the potentials. It might be argued that
there might be improvements of the results due to a choice of another type of switching
potential, involving, for example, exponentials or the hyperbolic tanh function. The problem
however, is not the smoothness of the curves and the degree of continuity (with ever smaller
energy gaps between states but the fact that finite time steps are used, and that the cross-over
trajectory between different states of the particles (from dimer to free particle and vice versa—
is calculated according to potential before the bifurcation, so that an a posteriori calculation
or algorithm must be invented to scale the velocites in such a way as to be consistent with
the new potentials that are operating after the switch and transition. The current algorithm
is applied for both these types of cross-over regions. The MD cell is rectangular, with unit
distance along the axis (x direction) of the cell length, whereas the breadth and height was
both 1/16, implying a thin pencil-like system where the thermostats were placed at the
ends of the MD cell, and the energy supplied per unit time step δt at both ends of the cell
(orthogonal to the x axis) in the vicinity of x = 0 and x = 1 maintained at temperatures Th
and Tl could be monitored, where this energy per unit step time is, respectively, εh and εl. At
equilibrium (when Th = Tl) the net energy supplied within statistical error (meaning 1–3 units
of the standard error of the ε distributions) is zero, that is, εl ≈ εh ≈ 0. The cell is divided up
uniformly into 64 rectangular regions along the x axis and its thermodynamical properties
of temperature and pressure are probed. The resulting values of the ε’s and the relative
invariance of the pressure and temperature profiles would be a measure of the accuracy of the
algorithm from a thermodynamical point of view at the steady state. For systems with a large
number of particles such thermodynamical criteria are appropriate. The synthetic thermostats
now frequently used in conjunction with ”non-Hamiltonian” MD [11] cannot be employed
for this type of study. The runs were for 4 million time steps, with averages taken over 100
dumps, where each variable is sampled every 20 time steps. The final averages were over the
20–100 dump values of averaged quantities.
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The temperature T and pressure p are computed by the equipartition and Virial
expression given, respectively, by

〈∑N
i=1 pi · pi

mi

〉

= 3NkBT, P = ρkBT +
W

V
, (1.14)

where W = −(1/3)
∑

i

∑
j>i w(rij) and the intermolecular pair Virial w(r) is given by w(r) =

r(dv(r)/dr) with v being the potential.

2. Algorithm and Analysis of Numerical Results

The velocity Verlet algorithm [25, page 81] used here [17] and allied types generate a
trajectory at time nδt from that at (n − 1)δt with step increment δt through a mapping Tm,
where (v(nδt), r(nδt)) = Tm(v((n − 1)δt), r((n − 1)δt)) which does not scale linearly with δt.
This follows from the form used here consisting of 3 steps in computing the trajectory at time
t + δt from the data at time t:

v
(

t +
1
2
δt

)

= v(t) +
1
2
δta(t),

r(t + δt) = r(t) + δtv
(

t +
1
2
δt

)

,

v(t + δt) = v
(

t +
1
2
δt

)

+
1
2
δta(t + δt).

(2.1)

For a Hamiltonian H whose potential V is dependent only on position r having
momentum components pi, the system without external perturbation has constant energy
E, and the normal assumption in MD (NEMD) is that for the nth step, ΔEn = |H(nδt)−E| ≤ ε
and also

∑N
i=1 ΔEi ≤ εs for the specified ε′s. In the simulation under NEMD, the force fields are

constant and do not change for any one time step. In these cases, the energy is a constant of
the motion for any time interval δtT when no external perturbations (e.g., due to thermostat
interference) are impressed. When there is a crossing of potentials at such a time interval
from φb to φa at an interparticle distance (icd) rc (such as points rf and rb of Figure 1) of
general particle 1 and 2 (the (1, 2) particle pair) due to a reactive process (such as occurs
in either direction of (1.5)), a bifurcation occurs where the MD program computes the next
step coordinates as for the unreacted system (potential φb), which needs to be corrected. Let
the icd at time step i be ri (with φb potential) and at step i + 1 after interval δt be rf = ri+1

where rf < rc < ri. Due to this crossover, a different Hamiltonian H ′ is operative after point
rc is crossed, where under NEMD, the other coordinates not undergoing crossover are not
affected. For what follows, subscripts refer to the particle concerned. Let the interparticle
potential at rf be Ea = Ef = φa(rf) for φa and Eb = φb(rf) for φb, where Δ = Eb −Ea. Then if rf
be the final coordinate due to the φb potential and force field, two questions may be asked: (i)
can the velocities of (1, 2) be scaled, so that there is no energy or momentum violation during
the crossover based on the φb trajectory calculation? and (ii) can a pseudostochastic potential
be imposed from coordinates rc (at virtual time tc) to rf such that (i) above is true? For (ii)
we have the following.
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Theorem 2.1. A virtual potential which scales velocities to preserve momentum and energy can be
constructed about region rc.

Proof. The external work done δW on particles 1 and 2 over the time step is proportional
to the distance traveled since these forces are constant and so for each of these particles i,
Fext,i · Δri = δWi where Δri is the distance increment during at least part of the time step
from rc to rf . For the nonreacting trajectory over time λδt (λ ≤ 1) (virtual because it is not the
correct path due to the crossover at rc),

δW2 + δW1 −
(
φb

(
rf
)
− φb(rc)

)
= Δ

∑
(K.E.), (2.2)

where Δ
∑
(K.E.) is the change of kinetic energy for the (1, 2) pair from the First Law between

the end points rf , rc. Now over time interval tc to tf , for the reactive trajectory, we introduce
a ”virtual potential” V vir that will lead to the same positional coordinates for the pair at the
end of the time step with different velocities than for the nonreactive transition leading to the
transition

δW2 + δW1 −
(
V vir(rf

)
− V vir(rc)

)
= Δ

′∑
(K.E.), (2.3)

where Δ
∑′(K.E.) is the change of kinetic energy for the pair with V vir turned on and along

this trajectory, the change of potential for V vir is equated to the change in the K.E. of the pair
as given in the results of Theorem 2.2 for all three orthogonal coordinates, that is,

δV vir(r) − δφb(r) = δ
(

Δ
∑(

K.E.x,y,z
)
−Δ

′∑
(K.E.)x,y,z

)

, (2.4)

with momentum conservation, that is, δV vir(ri) = δφa(ri) for the variation along the ri
coordinate, but δφa(ri) = −δK.E. along internuclear coordinate ri whereas δV vir = −K.E.
(scaled about all three axes). Continuity of potential implies

φa
(
rf
)
= V vir(rf

)
; φa(rc) = V vir(rc); φb(rc) = V vir(rc). (2.5)

Subtracting (2.2) from (2.3) and applying b.c.’s (2.5) leads to

Δ = φb
(
rf
)
− V vir(rf

)

= φb
(
rf
)
− φa

(
rf
)

= Eb − Ea

= Δ
′∑
(K.E.) −Δ

∑
(K.E.).

(2.6)

The above shows that a conservative virtual potential could be said to be operating in the
vicinity of the transition (from tc to ta).

Question (i) above leads to the following.
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Theorem 2.2. Relative to the velocities at any rf due to the φb potential, the rescaled velocities v′ due
to the potential differenceΔ leading to these final velocities due to the virtual potential can have a form
given by

v′i = (1 + α)vi + β, (2.7)

(where i = 1, 2) for a vector β.

Proof. From the v velocities at rf due to φb, we compute the v′ velocities at rf due to the virtual
potential. Since net change of momentum is due to the external forces only, which is invariant
for the (1, 2) pair, conservation of total momentum relating v′ and v in (2.7) yields a definition
of β (summation from 1 to 2 for what follows, where the mass of particle i is mi)

β = −α
∑

mivi
∑

mi
. (2.8)

Defining for any vector s, s2 = s.s, β2 = α2Q, where

Q =
(
∑

mivi)
2

(
∑

mi)
2
, (2.9)

then the rescaled velocities become from (2.7)

v′i
2 = (1 + α)2vi2 + 2(1 + α)vi · β + β2. (2.10)

With Δ = Eb − Ea, energy conservation implies

∑ 1
2
miv′i

2 −
∑ 1

2
mivi2 = Δ. (2.11)

The coupling of (2.10) and (2.11) leads, after several steps of algebra to

Δ =
α2m1m2

2(m1 +m2)

[
v1

2 + v2
2 − 2v1 · v2

]

+
2αm1m2

2(m1 +m2)

[
v1

2 + v2
2 − 2v1 · v2

]
.

(2.12)

Defining a = (v1 − v2)
2, q = m2m1/[2(m1 +m2)], (q > 0, a ≥ 0), then the above is equivalent

to the quadratic equation:

α2qa + 2qaα −Δ = 0, (2.13)

and in simulations, only α is unknown and can be determined from (2.13) where real
solutions exist for Δ/qa ≥ −1.



Mathematical Problems in Engineering 11

Table 1: Values for the mean heat supply per unit step and temperature. The error is one unit of standard
error for the quantities.

Curve εh εl Mean temperature
l1 −.2274E+00 ± 0.19E−02 −.2295E+00 ± 0.21E−02 0.9063E+01 ± 0.62E−02
l2 −.5602E+00 ± 0.22E−02 −.5596E+00 ± 0.22E−02 0.1032E+02 ± 0.63E−02
l3 −.4161E−01 ± 0.14E−02 −.4089E-01 ± 0.14E−02 0.8774E+01 ± 0.79E−02
l4 −.5201E−01 ± 0.16E−02 −.5103E−01 ± 0.17E−02 0.8980E+01 ± 0.98E−02
t1 −.5312E−03 ± 0.92E−03 −.3334E−03 ± 0.76E−03 0.8082E+01 ± 0.49E−02
l5 0.1311E−02 ± 0.82E−03 0.1147E−02 ± 0.84E−03 0.7731E+01 ± 0.97E−02
t2 −.6823E−03 ± 0.12E−02 −.1507E−02 ± 0.13E−02 0.1216E+02 ± 0.17E−01
l6 0.7291E−02 ± 0.12E−02 0.6343E−02 ± 0.14E−02 0.1088E+02 ± 0.15E−01
t3 −.9348E−03 ± 0.18E−02 −.3379E−02 ± 0.17E−02 0.1622E+02 ± 0.18E−01
l7 0.1918E−01 ± 0.14E-02 0.1938E−01 ± 0.16E−02 0.1329E+02 ± 0.20E−01

The above Inequality leads to a certain asymmetry concerning forward and backward
reactions, even for reversible reactions where the regions of formation and breakdown of
molecules are located in the same region with the reversal of the sign of approximate Δ. For
this simulation, a reaction in either direction (formation or breakdown of dimer) proceeds
if (2.12) is true for real α; if not, then the trajectory follows the one for the initial trajectory
without any reaction (i.e., no potential crossover). We would like to suggest that the real
reasons for shifted potentials showing ”instability in the numerical solution of the differential
equations” [25, page 146, line 5] has nothing to do with the forces being discontinuous. It
will be recalled that this potential vS has the form vS(rij) = v(rij) − vc for 0 < rij ≤ rc,
and vS = 0 otherwise with vc = v(rc). This is because the potentials are continuous and by
Newton’s Third Law there can be no net change in the momentum due to intermolecular
forces implying momentum conservation. Further, the energies (both kinetic and that for the
continuous potential) cannot change over an instantaneous change of the forces over zero
distance. Thus there is also energy conservation. The reason for the instabilities is due to the
fact that the change of position is calculated from the forces of the previous step before the
sudden change in force, that puts the particle position away from the PES where there is no
mechanical algorithm to correct for the violation in energy conservation with respect to the
PES and the kinetic energy. Hence, the problem has nothing to do with the mechanical or
dynamical setup of the potential and the forces, but with the MD move algorithm that cannot
handle effectively discontinuities of the forces.

Interpretation of Results

Figure 1 shows a rapidly changing potential curve with several inflexion points used in the
simulation at very high temperature (as far as I know such ranges have not been reported
in the literature for nonsynthetic methods) warranting smaller time steps; larger ones would
introduce errors due to the rapidly changing potential and high K.E.; thus, even with the
application of the algorithm about coordinates rf and rb, curves l1 and l2 have too large
δt value to achieve equilibrium—meaning flat or invariant—temperature (see Figure 2) or
pressure (see Figure 3) or unit step thermostat heat supply (see Table 1). (εh and εl) profiles
where for these curves, the (εh, εl) values show net heat absorption.

The curve at t1 with δt = 5.0 ep − 5 shows flat profiles (within statistical fluctuations
and 2 standard errors of variation) for temperature, pressure, and net zero heat supply; and
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Figure 2: Temperature profile across the cell for different set conditions a − e for temperature T ∗ and step
time δt pairs (T ∗, δt) where a = (8.0, 2.0 ep − 3), b = (8.0, 5.0 ep − 4), c = (8.0, 5.0 ep − 5), d = (12.0, 5.0 ep −
5), e = (16.0, 5.0 ep − 5). The curves {l1, l3, t1, t2, t3} results with the application of the algorithm at rb and
rf with associated conditions l1 ⇔ a, l3 ⇔ b, t1 ⇔ c, t2 ⇔ d, t3 ⇔ e while the curves {l2, l4, l5, l6, l7} are
for the cases without implementing the algorithm with the associated conditions l2 ⇔ a, l4 ⇔ b, l5 ⇔ c,
l6⇔ d, l7⇔ e, where ep x ≡ 10x.
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Figure 3: Pressure profile across the cell for different runs. The conditions of the runs and the labeling of
the curves are exactly as in Figure 2.
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this choice of time step interval was found adequate for runs at much higher temperatures
(T = 12 and T = 16) which was used to determine thermodynamical properties [18]. For this
δt value and all others, no reasonable stationary equilibrium conditions could be obtained
without the application of the algorithm (curves l2, l4, l5, l6 and l7). The algorithm is seen to
be effective over a wide temperature range for this complex dimer reaction simulated under
extreme values of thermodynamical variables and the results here do not vary for longer
runs and greater sampling statistics (e.g., 6 or 10 million time steps). The thin, pencil-like
geometry of the rectangular cell with thermostats located at the ends would highlight the
energy nonconservation leading to a nonflat temperature distribution, as observed and which
was used to determine the regime of validity of the algorithm.

3. Conclusions

Without difficulty, one can easily construct a reversible system where rf and rb coincide,
and this will be investigated next. Such systems would typically have most of the particles
in the molecular or dimer state, and accumulated machine computational errors would
be one factor to consider which this algorithm should effectively address. The two body
potentials considered here saves time but the methodology is general and applies to all
n-body interactions, because the essential kinetics and dynamics of all physical phenomena
are governed by the principle of conservation of energy and momentum without exception.
This element has often been bypassed or has received little emphasis in non-Hamiltonian and
other synthetic methodologies used currently.
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