
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2009, Article ID 238960, 35 pages
doi:10.1155/2009/238960

Review Article
Modeling Nonlinear Dynamics and Chaos:
A Review

Luis A. Aguirre1 and Christophe Letellier2
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1. Introduction

The field of nonlinear dynamics experienced a very quick and intense development in the
last thirty years or so. To determine the starting point of any subject is very difficult simply
because we all stand on somebody elses showlders in any “new” attempt we make. For the
sake of presentation, and because we feel that this understanding is not absurd anyway, the
origins of what we nowadays call the field of nonlinear dynamics can be traced back to the
work of Henri Poincaré.

In his studies on nonlinear dynamical systems Poincaré figured out that, since no ana-
lytical solution to most of nonlinear systems can be obtained, the whole set of solutions can be
investigated in the so-called phase space spanned by the set of variables required for a com-
plete description of states of the system [1]. A few years later, while investigating the three-
body problem, he observed that small perturbations can deeply affect the solution [2]. In
order to investigate nonlinear dynamics, Poincaré introduced the concepts of phase portrait,
Poincaré section, periodic orbit, return map, bifurcation, fixed point, and so on. Most of these
concepts were used by Andronov’s school in the 20 s [3] but the first representation in the
phase space of a now called “chaotic solution” was due to the solution Edward Norton Lorenz
[4]. The so-called Lorenz attractor thus represents the first chaotic attractor ever drawn.
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Figure 1: Number of papers published per year up to 1994. The search machine used was ISI Web of Science
using Topic= (“nonlinear dynamics” OR chaos). Up to 1994 the total number of entries found was 8 400
(shown in this figure). Up to 2008 the total number of entries is 39 180 and only in 2008 over 2 700 papers
were published within the topics nonlinear dynamics or chaos.

From the publication of Lorenz’s paper up to the mid of the 70 s not many papers were
published. Among those who contributed to the emergence of “chaos theory,” we can quote
Ruelle and Takens paper on turbulence [5], May about bifurcation [6], Rössler’s new chaotic
attractors [7], Li and Yorke’s theorem for existence of chaos in map [8]. These contributions,
published before 1980, popularized the word “chaos” as well as related techniques to
investigate these new types of solutions.

An important turning point happened around 1980 (Figure 1). There can be little
doubt that such a turning point was provoked, by the papers [9, 10]. The reason for this
is quite simple. So far, in the investigation of a nonlinear system ẋ = f(x), with f : R

m �→ R
m,

typically it was assumed that the entire state vector x was available. This constraint was
clearly too restrictive in practical problems and consequently it was unclear what kind of
role could the theory of nonlinear dynamics play in real world problems. From a suggestion
by Ruelle, Packard and colleagues showed that it was possible to build a phase portrait for
the original system using a scalar s(t) = h(x), with h : R

m �→ R [9]. Furthermore, Takens
and Mañé mathematically proved under which conditions the phase space reconstructed
using s(t) was diffeomorphically equivalent to the one that would be obtained if the entire
state vector x was available [10, 11]. A decade later, other important works on the subject
were published [12, 13]. When such works came to light, hopes of using the “new theory of
nonlinear dynamics” in practical problems were kindled, because now all that was required,
in principle, and assuming an ideal measurement function was the recording of a single
variable.

When, in the early 1980, it became accepted that a scalar-reconstructed attractor could
be equivalent to the original one, a great deal of work was devoted to developing tools to
quantitatively characterize chaotic attractors. In the following decade, geometric measures
such as dimensions [14, 15], Lyapunov exponents [16] and entropies [17] were adapted,
applied, and intensively investigated in the context of nonlinear dynamics. By the end of
the 1980, there was a large set of works on these subjects as can be found in [18, 19].

Another turning point which can be detected in the number of papers published in
the field of nonlinear dynamics and chaos happened in the end of the decade 1980 (Figure 1).
Unlike the turning point in the beginning of the decade, which quite clearly can be related to
fundamental papers on embedding theory, it is quite hard to relate the turning point in the
late 1980 to a specific topic within the field. Most likely, such a turning point was an indication
that several important topics started to be investigated as well as many applications started in
various fields. Among such topics we are to find the modeling of nonlinear dynamics and chaos.
To survey the main developments of this topic is the aim of the present paper.
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2. Nonlinear System Identification

Before actually addressing how the modeling of nonlinear dynamics and chaos developed
within the field, it is important to say that a significant amount of work was developed
independently, and sometimes previously, in the field of nonlinear system identification. The
basic goals were very similar to those that later were pursued by the nonlinear dynamics
community but there were some important differences. Nonlinear system identification,
which has its origins in the field of engineering, is usually concerned with nonautonomous
systems, discrete-time models, disturbance modeling (this is vital to correctly deal with noisy
data), and hardly ever was concerned with chaos. On the other hand, modeling nonlinear
dynamics and chaos, with its origins in physics and applied mathematics, usually concerned
with autonomous systems, very often considers continuous-time models, does not typically
model disturbances, and is strongly focused on chaotic systems.

Having established such main distinctions between the two fields, let us point out that
this paper is a survey of modeling techniques applied to nonlinear dynamics and chaos. Many
such techniques have indeed been developed in the field of nonlinear system identification
and will be mentioned in this survey only to the extent in which they were applied to
modeling nonlinear dynamics and chaos. In the reminder of this section, for the sake of
completion, we present some issues in nonlinear system identification which will be relevant
in the discussion of modeling techniques applied to nonlinear dynamic and chaos. In [20]
the authors also point out some conceptual differences between what they call stochastic and
deterministic modeling.

By the end of the 1970 linear system identfication was well established. The typical
problem was to build a model, usually a transfer function of the form

y (k) =
B
(
q
)

A
(
q
)u (k) , (2.1)

from a set of possibly noisy data y(k), u(k), k = 1, 2, . . . ,N. In (2.1) A(q) and B(q) are
polynomials in the backward shift operator q−1, that is, y(k − i) = q−iy(k). A commonly used
representation of (2.1) is the ARX (autoregressive model with exogeneous inputs) model

y (k) = a1y (k − 1) + · · · + anyy
(
k − ny

)
+ b1u (k − 1) + · · · + bnuu (k − nu) , (2.2)

where ny and nu are the maximum lags used. Noise is usually assumed to appear in the
output y(k). The presence and the type of noise usually are such that the standard least
squares estimator will produce wrong results. This calls for disturbance modeling and some
type of generalized least squares algorithm, which is no longer a linear estimator. The simples
disturbance model which is the moving average (MA), which added to (2.2), yields the well-
known ARMAX model. More general disturbance and system models have been proposed
and studied in detail in standard texts such as [21, 22].

The approach to nonlinear system identification happened along different lines of
action. One such line of action was to build so-called block-oriented models which consisted
of a linear transfer function model (see (2.1)) either after or before a nonlinear static
funtion g(·), such were the Hammerstein and Wiener models. Another line of action was
the development of nonparametric models like the Volterra models [23]. The numerical
algorithms involved in the development of such models were, in one way or another, related
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to the correlation function. A glimps of the state-of-the-art in the development of block-
oriented and Volterra models at the end of 1970 can be found in [24].

A third, and last one to be mentioned here, line of action was to rewrite (2.2) as

y (k) = f
(
y (k − 1) , . . . , y

(
k − ny

)
, u (k − 1) , . . . , u (k − nu)

)
, (2.3)

and to generalize for the case in which f(·) was a nonlinear function. Because the regressor
variables in (2.3) were of the ARX type, and because f(·) was now allowed to be nonlinear,
(2.3) was referred to as a NARX model. As before, in the case of noisy data, disturbance
modeling is a must and, therefore, additional regressor terms of the MA (moving average)
type have to be included in (2.3). This lead to the now well-known acronym NARMAX. The
building of a NARMAX model is typically composed of three steps: (1) the choice of the
class of models to be used for approximating f(·). Some model classes include: polynomial
models [25], rational models [26], neural models [27], radial basis function models [28], and
wavelet networks [29]. (2) The following step is to determine which regressor variables to
use in (2.3), this is equivalent, although it is more general, to the choice of the embedding
space in modeling nonlinear dynamics and chaos. For recent discussions and a survey on
such techniques we refer the reader to [30–35]. (3) In model building the final step is to
estimate whatever parameters f(·) may have. This step is far the easiest. Standard and robust
techniques for accomplishing parameter are available [21, 22]. The important problem of
model validation, which will be addressed later on, has more to do with model testing than
model building.

3. Model Building for Nonlinear Dynamics and Chaos

After presenting a brief introduction (Section 1) and pointing out some standard problems in
nonlinear system identification (Section 2), we are ready to start surveying the development
of data-driven models for nonlinear dynamics and chaos. There are various possible ways of
addressing this vast subject, and it is not clear which will turn out to be the most pedagogical
one. We choose to start covering five of the earliest papers in the field and follow by
discussing some of the mostly used model classes.

3.1. A Few Pioneering Works

In what follows, we begin by mentioning explicitly five pioneering works, the first four of
which were of great influence; [36–40]. The reason for including [40] in this group is its early
date. In the remainder of the section we will survey some of the major developments in the
field. Together, these five papers have been quoted 2 719 times from their publication up to
the end of 2008. (The search machine used was ISI Web of Science.)

3.1.1. The Local Linear Predictor

The first papers on modeling nonlinear dynamics and chaos seem to have appeared in 1987.
One of them is related to local linear modeling, the rest is generally concerned with some
aspect of global modeling. Because of its historical importance, in this subsection, the main
points concerning the local linear predictor [36, 41] will be reviewed.
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Suppose that a measured time series y(1), y(2), . . . , y(N) lies on a D-dimensional
attractor of an n th-order deterministic dynamical system. The starting point obtains an
embedding from the recorded data. A convenient, though not unique, representation is
achieved by using delay coordinates, for which a delay vector has the following form:

y (k) =
[
y (k) y (k − τ) · · · y (k − (de − 1) τ)

]T
, (3.1)

where de is the embedding dimension and τ is the delay time. Takens has shown that embeddings
with de > 2n will be faithful generically so that there is a smooth map f : R

de �→ R such that

y (k + 1) = f (y (k)) (3.2)

for all integers k, and where the forecasting time T and τ are also assumed to be integers.
Takens’ theorem gives no indication as to how find. One of the first attempts to to build the
map f from the data was the local linear predictor method, which started by partitioning
the embedding space into neighbourhoods {Ui}Nn

i=1 within which the dynamics can be
appropriately described by a linear map g : R

de �→ R such that

y (k + 1) ≈ gi (y (k)) for y (k) ∈ Ui, i = 1, . . . ,Nn. (3.3)

Several choices for g have been suggested in the literature such as linear polynomials
[36, 42] which can be interpolated to obtain an approximation of the map f [43]. Simpler
choices include zeroth-order approximations, also known as local constant predictors [36, 44], and
a weighted predictor [45]. Linsay proposed to weigh the predictions according to information
obtained from the local data [45]. In [46] the authors put forward the concept of pseudofalse
neighbors which are left out from the construction of a local linear predictor to improve
performance, and in [47] the authors consider the multivariate case.

A common difficulty of such approaches is that the data have to be separated into
neighbourhoods. Thus given a point in the embedded space the closest neighbours to such a
point must be found. It is well-known that for many methods most of the CPU time is spent
in searching for close neighbours in the embedding space within the data [48] and that the
effort required to accomplish this grows exponentially with the embedding dimension.

Another drawback has to do with model representation. The local linear predictor
does not have a closed form, in other words, it is not a global model. This prevents using the
obtained model in any kind of analytical investigation.

The local linear predictor has been applied to several real-time series including Wolf’s
sunspot numbers [20, 49], daily dollar exchange rates [50], R-R heart intervals [49], to
mention a few.

3.1.2. Equations of Motion

In 1987 James Crutchfield and Bruce McNamara published a paper that became a reference in
the field [37]. The title of this section is a reference to that paper rather to a particular class of
models. It seems safe to say that this was the first journal paper in the field devoted to global
modeling, as oposed to the “patchwork-models” produced by the local linear approach, and
which the authors call the “atlas equation of motion procedure.”
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In [37] the authors consider linear-in-the-parameter models of the type �̇x = �F(�x), with
�F(�x) = AT �φ(�x), where �φ is a vector of function basis and A is a vector of parameters to
be estimated from data. Discrete-time models are also considered in the paper. The authors
described their method without any particular class of function basis in mind. The parameter
vector was estimated using a singular value decomposition implementation of least squares.
Their method is general and quite basic: the embedding dimension and the number of basis
functions used are varied over a set of alternatives. The choosen model is the one with
smallest entropy I(M). In their examples, that include the Hénon map, Duffing, and van
der Pol oscillators, the function basis used was B-splines and discrete monomials.

In closing, it should be said that more than a method, Crutchfield and McNamara
put forward a general philosophy for modeling chaotic data. With the exception of some
issues that are specific to such data, their procedure does not differ substantially from works
in the field of nonlinear system identification using linear-in-the-parameter models widely
available at that time (see [34] for a survey).

3.1.3. Multivariable Functional Interpolation

The paper by David Broomhead and David Lowe is among the four pioneering works that we
have selected to start surveying the main developments in modeling of nonlinear dynamics
and chaos [38]. Such a paper is often quoted as being responsible for the proposition of
using Radial Basis Function (RBF) models to describe nonlinear systems. Although in their
paper the authors quote a review work by M. J. D. Powell entitled “Radial basis functions
for multivariable interpolation: a review,” it seems that the work by Powell did not consider
dynamical systems but only static problems.

A typical model, as proposed by Broomhead and Lowe, can be written as

y (k) = b0 +
p∑

i=1

ωiφ (‖x (k − 1) − c‖) , (3.4)

where p is the number of radial basis functions, φ, b0, and wi are the unknown parameters to
be estimated, c are the centers, and ‖ ·‖ is usually the Euclidean norm. As it will be seen in the
next section, Martin Casdagli also worked with RBF models, as pointed out by Broomwhead
and Lowe: “We note that in this application our approach is very close to that of Casdagli
who has applied radial basis functions to the construction of nonlinear maps from time series
data. (Here the authors quote Casdagli’s paper as “submitted to Physica D.” That paper, that
will be mentioned in the next section, was eventually published in 1989.) Unlike Casdagli
who used strict interpolation, we will employ the least squares generalization.” By “strict
interpolation” the authors mean that the number of unknowns (parameters) and constraints
(built from data) is the same (more on this in Section 3.1.4).

This paper is curious in some aspects. First of all, it is clearly devoted to machine
learning for purposes of classification. Several pages are devoted to the problem of
approximating the exclusive-OR function. The last examples in the paper seem to be an
afterthought and consist of the modeling of the doubling map xn+1 = 2xn (modulo 1) and
of the quadratic map xn+1 = 4xn(1 − xn). Also, only three works are listed in the references
which are related to modeling nonlinear dynamics and chaos: [36, 39] and a preprint by
Lapedes and Farber [51]. (Such a manuscript was at the time submitted to Proceedings of the
IEEE. It seems that this paper was never published as such, but has circulated as a technical
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report. This report is cited by a number of early papers on modeling nonlinear dynamics and
chaos, proving to have been quite influential.) It is also very curious that no paper or result
on embedding theory was used by Broomhead and Lowe. Because both their examples use
1D maps, there was no need for any serious embedding. In summary, the contribution of [38]
seems to be the suggestion of using RBF models for nonlinear dynamics, but for the general
view of the embedding-modeling problem we should look into [37] as the pioneering work.
The fusion of such papers, that is, the use of RBF models in an embedding environment to
model and predict nonlinear dynamics, happened in the next paper to be considered.

3.1.4. Prediction of Chaotic Time Series

From the abstract of the paper we clearly read the objective of the paper: “numerical
techniques are presented for constructing nonlinear predictive models directly from time
series data” [39]. The basic motivation for such was to “convincingly distinguish low-
dimensional chaos from randomness.” In fact, Casdagli argues in favor of his model-based
approach when comparing it with the use of dimension calculations and Lyapunov exponents
to distinguish noise from chaos.

With respect to the model class, this paper is remarkable because it compared
polynomial, rational, and RBF models, plus local linear predictions. Very few papers present
results for more than one model class, a more recent exception to this rule is [52].

As for the use of “strict interpolation” (Broomhead and Lowe) or simply “inter-
polants” (Casdagli) or “approximants” (Casdagli), the situation is not completely clear. The
paper mentions both. When describing general techniques (polynomial and rational models),
Casdagli mentions the least squares solution. However, when presenting the RBF model the
only case considered is that of choosing the model structure so as to have an inverse problem
with unique solution. At the end of that section, the least squares solution is mentioned
again, but as “ongoing research.” One of the critical problems of the “strict interpolation”
approach is the total lack of robustness to noise. In fact, Casdagli does not consider any
noise in the “global modeling” examples, but only in the “distinguishing noise from chaos”
examples. In two occasions interesting remarks are made. In discussing modeling difficulties
Casdagli says: “this does not appear to be due to numerical errors in the least-squares fitting
and matrix inversion algorithms” [39, page 343]. This gives the impression that he was
actually implementing both: the least-squares algorithm (to fit approximants) and the matrix
inversion algorithm (to find the solution to the strict interpolation problem). The first was
probably related to polynomial and rational models and the latter to RBF models. The second
case, when discussing the use of RBF models for predicting invariant measures, the number
of data points is quoted as N = 25 and the data were noise-free. This clearly suggests “strict
interpolation.”

The RBF models considered by Casdagli were of the form (compare with (3.4))

y (k) =
N−1∑

i=1

ωiφ (‖x (k − 1) − c‖) +
d̂∑

n=1

μnpn (x) , (3.5)

where N is the number of data iterates, pn is a basis of the space of polynomials of degree
at most d from R

n to R, with d known, and μn are parameters. The author points out that
“frequently the polynomial term is not included,” which is interesting in the light of other
results, to be mentioned in Section 3.2.3.
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Casdagli investigated the accuracy of short-term predictions based on model iteration
and the direct method, which amounts to fitting a predictor with a single prediction horizon
equivalent to the various one-step-ahead predictions of the iterative method. In the various
cases investigated, the iterative method proved superior. A similar aim was pursued in the
context of neural networks in [53], in the context of Volterra expansions in [54] and using a
kernel-based approach in [43]. Finally, the author showed that the fitted RBF models were
capable of reproducing some invariants, such as Poincaré sections and bifurcation diagrams.
Although he only considered the noise-free case, a very significant step towards serious
model validation was given. Perhaps the greatest lack in this relevant paper is that there is no
mention on structure selection. Model instability under iteration is prematurely attributed to
the model class and not to an unsuitable model structure.

By model class we mean the type of models used, as for instance polynomials, RBFs
or neural networks. By model structure we mean the model topology, of a particular class.
For instance, in the case of RBF models, the model structure is determined by the type and
number of basis functions used, the lags used to compose the input space, and so on.

3.1.5. Construction of Differential Equations

The early paper by Cremers and Hübler had the clear objective to “obtain a concise
description of an observed chaotic time sequence” [40]. From the beginning, the authors were
clearly concerned with chaotic data. The model class they considered was a basis of Legendre
polynomials, and in the introduction of the paper it was stated that the true objective was to
estimate the parameters of a differential equation. This more restricted aim was confirmed
later in [55].

The authors discuss a few aspects of embedding and the effect of dynamical noise. In
their numerical examples no noise is considered. They mention sucessful estimation of the
parameters for two systems: Lorenz and an autonomous version of the van der Pol oscillator,
for which the following 4th-order approximation was used:

ẋj =
l+m<4∑

l,m=0

cj,l,mP
l (x1)Pm (x2) , j = 1, 2, (3.6)

where cj,l,m are the parameters to be estimated. The Legendre polynomials Pl(x1) and Pm(x2)
must be evaluated at x1 and x2, in addition to the time derivatives of x1 and x2 at each point
in state space considered. The derivatives were estimated numerically, but there is no clear
indication as to how this was accomplished nor what would be the effect on such estimates of
measurement noise (which they considered not). The authors justify the use of a polynomial
expansion by stating “if nothing is known about the properties of the flow vector field, a fit by
a polynom (sic) series is frequently favourable” [40, page 800]. This last remark results from
a general theorem by Weierstrass stating that any analytical function can be approximated by
an infinite polynomial expansion.

Breeden and Hübler later remarked that the 1987 paper also considered the discrete-
time case, which is definitely not obvious. Then, so far the field of nonlinear dynamics
is concerned, this paper seems to mark the beginning of building differential polynomial
equations from data. Although no mention on important practical issues is made in this
paper, such as structure selection, derivative and parameter estimation, it has the merit of
having opened the way for a prosperous modeling class of techniques, to be surveyed in
Section 3.2.1.
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The citation relationships among these five pioneering papers are illustrated in
Figure 2. In the center of the diagram the embedding papers [9, 10] appear as a common
feature, with the exception of the paper [38] (see discussion in Section 3.1.3). This quotation
diagram suggests that Cremers and Hübler were not aware of the other papers on model
building. (Their paper was submitted in September 1986.) It is interesting to notice (not
shown in the diagram) that Broomhead & Lowe and Casdagli mention the work of Lapedes
and Farber (see [51]).

3.2. Model Classes

In the description to follow, the order of the model classes mentioned is somewhat arbitrary.
We follow a rough chronological order of the first papers in each class.

3.2.1. Continuous-Time Polynomials

A number of papers appeared in the early nineties which had as a common goal fitting
ordinary differential equations (ODEs) to observed data. As pointed out in Section 3.1.5, the
paper [40] was pioneering in this field, although it did not deal with any practical issue.
Unlike Cremers and Hübler, most papers that followed, instead of using a basis of Legendre
polynomials, used “Taylor-series expansions.” As an example, such an expansion for a 2D
system is [56]

ẋ = f
(
x, y
)
= a00 + a10x + a01y + a11xy + · · · + aijxiyj + · · · ,

ẏ = g
(
x, y
)
= b00 + b10y + b01x + b11xy + · · · + bijxjyi + · · · .

(3.7)

A similar representation was used by Gouesbet who started investigating under which
conditions it was possible to reconstruct the vector field (X,Y,Z) from a single measurement
X = x of an original vector field (x, y, z) [57, 58]. The reconstructed system was expressed as

Ẋ = Y,

Ẏ = Z,

Ż = F (X,Y,Z) ,

(3.8)

and both polynomial and rational expansions for F were investigated. The polynomial
expansions of F used were equivalent to (3.7). Although no reconstruction from data was
performed in that paper, the challenge was acknowledged and pursued shortly after [59].
In the last paper, the important issue of estimating the derivatives based on finite-difference
schemes from data was considered. This was an important step towards dealing with real
data but a key hurdle still had to be transposed: measurement noise. To do this was one of
the key objectives in [60], where this global modeling technique finally reached maturity. As
pointed out in an early paper “noise removal (· · · ) is required because standard systems (· · · )
rely on derivative evaluations” [58, page 1795], to deal with noise was to remove it from the
data, not so much as for discrete-time modeling techniques which are made to cope with
noise.

Other polynomial expansions are to be found in the literature. Giona and colleagues
investigated the use of a basis of polynomials to approximate both continuous-time and
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Broomhead
&

Lowe
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Hubler

Crutchfield
&

McNamara

Packard et al.
Takens

Casdagli

Figure 2: Quotation diagram. A → B indicates that A quotes B. The � indicates that only paper [10] was
quoted. Also, Crutchfield and McNamara quoted Farmer and Sidorowich’s paper as the technical report:
Preprint LA-UR-87-1502.

discrete-time dynamical systems [61]. In both cases the system was approximated by a linear
combination of such polynomial functions which are obtained “from the knowledge of the
hierarchy of moments.” The procedure is quite involved, and long data sets are required to
estimate the parameters. In their examples, N = 5 × 104 was used for the Hénon and Ikeda
maps, and N = 4 × 105 was used for the Lorenz system.

Practical implementation of global modelling using continuous-time model requires
an integration scheme. For instance, the explicit Euler integration scheme

yn+1 = yn + F (yn) δt, (3.9)

where yn = y(nδt) with the time step may be used. It is known that the Euler is not very robust
against time step change. This is why a Runge-Kutta scheme is most often used. Another
alternative was proposed by [62]. They used an Adams-predictor-corrector scheme according
to

yn+1 = yn + δt
M∑

j=0

a
(M)
j F

(
yn+1−j

)
, (3.10)

where a
(M)
j are the implicit Adams predictor-corrector coefficients [62]. M designates the

order of the corrector portion of the integration. The global model F has a polynomial form
and is optimized with the help of a minimum description length criterion and the error
function

χ2 =
1

2Nσ2

N∑

n=1

⎡

⎣yn+1 − yn − δt
M∑

j=0

a
(M)
j

Np∑

i=0

Kiφi(yn+1−j)

⎤

⎦

2

(3.11)

which is quadratic with respect to cœ fficients Ki. This is thus a least square problem.
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Structure selection issues for continuous-time polynomials have been discussed in
[63, 64]. In [65] the authors use a priori knowledge of the driving force to help determining
the model structure. When differential embeddings are used, the global model (3.8) is usually
searched using a truncated polynomial expansion involving successive derivatives of the
measured time series. In order to reduce the number of monomials, that is, the length of
the model, it is possible to use a rational function whose monomials are selected according
to an Ansatz library. Such a library contains canonical forms which can be mapped into
an equivalent polynomial system whose variables are combinations of the measured time
series and its successive derivatives. The canonical function F thus only contains selected
terms. This reduced function allows to avoid numerical instabilities usually encountered with
rational function. This procedure was introduced in [66] and improved in [67]. For instance a
very accurate 7-term global model was obtained from the x-variable of the Lorenz system. A
26-term model was obtained from a copper electrodissolution experiments [68]. This model
has to be compared to the 52-term model previously obtained in [69].

Other approximations for functions f and g in (3.7) include Volterra series expansions
[70]. Examples of building global continuous-time models from real data can be found in a
number of papers [69, 71–74].

3.2.2. Neural Networks

A neural network is a model class that resembles some aspects of a brain. Conventional
simplifications made for perceptron models are: (i) to take only one hidden layer of nodes,
(ii) to consider the output node linear, and (iii) to consider all the activation functions h of
the hidden layer nonlinear are the same. A perceptron model with such features is illustrated
in Figure 3(a) and can be described mathematically as

y (k) = bo +
m∑

j=1

wo
j h

(

bj +
n∑

i=1

wh
ji xi (k − 1)

)

, (3.12)

where wh
ji indicates a weight (to be estimated) of the hidden layer that connects the ith

input to the jth neuron of the hidden layer. wo
j is the weight (to be estimated) of the jth

hidden neuron output, b’s are constants, called bias parameters, and the neuron activation
function is h. Finally, n = dim(x) and m is the number of neurons in the hidden layer. The
function shown in the right-hand side of (3.12) is often called feed-forward because there
are no feedback loops internal to the network. It is important to notice that (3.12) is in the
form y(k) = f[x(k − 1)]. Common choices for nonlinear activation functions are Gaussian,
sigmoidal, and the hyperbolic tangent. In [75] they discuss the use of polynomials as
activation functions for neural networks. An accessible introduction on the subject of neural
networks applied to modeling chaotic systems is given in [76].

The first papers to build this kind of models from chaotic data seems to have been the
references [78, 79]. (An earlier paper built and characterized a chaotic neural model with a
single neuron but the network was not trained from data [80].) More recent and impressive
results have been discussed in [81].

A rare study of bifurcation diagrams achieved by neural models has been presented
in [82]. And an early work which reports on the improved performance of pruned networks
is [83]. Neural networks have been applied in a number of instances, some examples include
[84–86].
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Figure 3: Schematic representation of some general model classes. (a) Typical perceptron model, (b) single-
type basis function models, (c) multitype basis function models. The solid lines correspond to parameters
that must be estimated. Dashed lines indicate absence of parameters. Therefore (a) is nonlinear in the
parameters whilst (b) and (c) are linear in the parameters. Usually Φ depends on some parameters. When
this is the case, such parameters are chosen beforehand. Figure reproduced from [77].

3.2.3. Radial Basis Function Models

The RBF model class is shown in Figure 3(b). One important difference with respect to the
first class is that now there are no weights associated to the connections between the inputs
and the nodes in the hidden layer. The φ—which is usually chosen as a radial function—is
nonlinear and often depends on certain tuning parameters which are usually known when
the weights associated to the connections indicated by solid lines (Figure 3(b)) are to be
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estimated. As a consequence, the model is linear in the parameters and can be written thus
(compare with (3.4) and (3.5))

y (k) = b0 +
p∑

i

ωiφ (x (k − 1)) +
n∑

i=1

aixi (k − i) , (3.13)

where p is the number of radial basis functions. b0, wi, and ai are the unknown parameters to
be estimated. Two of the first works to use this model class were mentioned in Sections 3.1.3
and 3.1.4 above. Work using this type of model has been recently surveyed in [87].

A number of papers have described the application of RBF networks in the modeling
of nonlinear dynamical systems and chaos [88–91]. An accessible introduction on the subject
of RBF models applied to modeling chaotic systems is given in [76].

3.2.4. Discrete-Time Polynomials

The model class illustrated in Figure 3(c) is quite similar to the preceding one. The main
difference is that the basis functions are usually different, that is, ωi /=ωj . Another important
difference, not revealed in the figure, is that, whereas it is usually assumed in the second
class that the input vector is uniform, in the third class such uniformity is not required (see
Section 4.1). However, the main difference is that various basis functions are often used in
Figure 3(c) in such a way as to enable matching different data features. One possible choice
of basis functions ωi is monomials of different degrees of nonlinearity in the range 1 ≤ m ≤ 
.
Each mth-order term can contain a pth-order factor in y(k − ni) and a (m − p)th-order factor
in u(k − ni) and is multiplied by a coefficient cp,m−p(n1, . . . , nm) as follows:

y (k) =

∑

m=0

m∑

p=0

ny,nu∑

n1,nm

cp,m−p (n1, . . . , nm)
p∏

i=1

y (k − ni)
m∏

i=p+1

u (k − ni) , (3.14)

where

ny,nu∑

n1,nm

≡
ny∑

n1=1

· · ·
nu∑

nm=1

, (3.15)

and the upper limit is ny if the summation refers to factors in y(k − ni) or nu for factors in
u(k − ni). In the case of noisy data y(k − ni), noise terms must be included in (3.14) to avoid
the error-in-the-variables problem (see Section 5).

The choice of monomials as basis functions constrains the resulting models to
those cases in which the dynamics underlying the data can be approximated by a linear
combination of nonlinear monomials. For systems that are more strongly nonlinear, other
basis functions should be preferred. On the other hand, the choice of monomial basis
functions enables building models which are more information dependent than models for
which all the basis functions are of the same type.

Discrete-time polynomial models have been used in a number of papers within the
field of nonlinear dynamics and chaos. Bagarinao and colleagues used this model class to
reconstruct bifurcation diagrams from data [92–95]. Data analysis and modeling applications
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include [96–103]. Applications to real data—in the field of nonlinear dynamics—include
[104–106].

3.2.5. Rational Models

Rational models are composed by the division of two polynomials such as (3.7) in the
continuous time, and such as (3.14) in discrete time. It should be noticed at once that
whereas deterministic polynomial models are linear-in-the-parameters, rational models, even
deterministic, are nonlinear-in-the parameters. This calls for a series of cares in their
estimation [107–109].

Rational models for continuous-time systems were considered in [57], although only
analytically, as no model building was attempted in that paper. Rational models were
estimated from data produced by an electronic oscillator in [110]. The practical difficulties
with rational models seem to be revealed by the small number of papers that deal with
such models in the context of nonlinear dynamics and chaos. At least for continuous-time
model, rational functions lead to many numerical instabilities that are not trivial to remove.
Nevertheless, such a problem is no longer observed when return maps are considered. Thus,
Lorenz map and Ikeda map have been successfully reproduced with rational models [111].

3.2.6. Wavelet-Based Models

Wavelet models, wavelet networks, or just wavenets are similar to the linear-in-the-parameter
models described in Sections 3.2.3 and 3.2.4. The main difference is that instead of radial basis
functions or monomials, wavenets are composed of a linear combination of a set of wavelet
functions ψa,b(t) formed from a so-called wavelet prototype ψ(t) by dilations and translations
such as

ψa,b (t) =
1√
a
ψ

(
t − b
a

)
, (3.16)

where t, a, b ∈ R and a > 0. As for RBF models, there are various choices of the wavelet
function ψ(t). There seems to be no clear guidance as to which type of function to choose.
Since the various functions ψa,b(t) used to compose the model are different (for different a
and b), then the structure selection for this type of models resembles that of the discrete
polynomials described in Section 3.2.4 because the user must chose not only the number of
basis functions to use, but also the features of them (the as and bs).

One of the first papers to use wavenets in order to model a chaotic system was [29].
The authors used a mexican hat type wavelet function ψ(t) to model various benchmark
models. Optimized tensor product wavelet models were obtained for data from a vibrating
string experiment in [112], and B-splines wavelet models for the nonautonomous Duffing
oscillator were discussed in [113]. Wei and Billings investigated the use of structure selection
algorithms for wavelet models in the context of chaotic systems [114].

3.2.7. Fuzzy Logic

Fuzzy models use internal variables which are linguistic. At a certain point of modeling the
numerical variables must become linguistic by taking labels such as small negative large
positive. The core of a fuzzy model then consists of a set of rules of the type: if x is large, then
y is medium. Finally, the linguistic variables must be changed back to numerical variables.
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Of course there are a number of subtelties which actually make this type of modeling work
[115–118].

From the list of model classes surveyed in this paper, it seems to us that fuzzy logic
models have been the least used to model nonlinear dynamics and chaos. One of the first
papers on the subject seems to be [119]. A comparison of serveral techniques, including fuzzy
models, in a problem of nonlinear prediction can be found in [120].

3.2.8. Input-Output Models

Input-output models are not a class of models but simply mean that the model class caters
for the use of input signals. By input we mean external, time-dependent signal(s). Therefore
an input-output model will be nonautonomous.

For the modeling of input-output models it is necessary to record not only the output,
but also the input. As a general rule, global differential equations built from data are
autonomous (for an exception, see [65] where the method applies to harmonically driven
systems). In [121] the authors discuss the use of a bifurcation parameter (as an input) in the
estimation of differential equations. However, in general, if inputs must be handled, then
discrete-time models are more convenient.

There have been attempts to develop an embedding theory for input-output models
[122, 123]. The feasibility of this theory and its benefits are not totally clear. Fortunately, there
are other theoretical approaches to the input-output case [25, 124], and a vast number of
examples illustrate the practical value of such models.

Nonautonomous chaotic models have been obtained in [65, 113, 125].

3.2.9. Equivalence between Continuous and Discrete-Time Polynomials

As surveyed above, there are various methods for building continuous-time models, typically
in the form of ODEs. However, the data available is always discrete in time, and the
simulation of ODEs is also carried out on digital computers. Therefore, at some stage some
type of discretization of the ODEs must occur. In some methods such discretization is
intentional [62, 126], however, in such cases the final aim was to have an ODE at the end
of the day. What happens to the ODEs fixed-points after it is discretized was discussed in
[127].

A more fundamental question concerns the choice of the integration step of numerical
integration schemes. Given an ODE, say that produces a chaotic attractor, what happens to
the attractor if the integration is varied? If it becomes too great, certainly the attractor will
change, but will the “new” attractor still be some attractor of the original system? These
questions have been addressed in [128]. In fact, so long as the frequency corresponding to the
integration step is more than twice the highest frequency in the Fourier spectrum (Nyquist
criterion), the “new” attractor is still topologically equivalent to an attractor solution to the
set of ODEs. Only a displacement in the parameter space is induced by the integration step,
which functions as a bifurcation parameter in some cases. It is only when the integration step
is larger than the maximum established by Nyquist’s criterion that the obtained attractor is
spurious, that is, associated with numerical instabilities.

4. Structure Selection

In few words, the problem of structure selection is that of deciding how many and in some
cases which function basis (see, e.g., Figure 3(c)) should be used to build a dynamical model
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from data. This problem gains different tones depending on the model class considered but it
is always present. Often in the context of networks, structure selection is known as “topology
determination.” This issue has been addressed in a number of papers [129–133]. In the case of
fuzzy models, structure selection boils down to define how to partition the input space and to
define the number of rules. Structure selection issues for fuzzy models have been investigated
in [35, 134, 135]. Even for local linear models, structure selection would be the definition of
the embedding and the number, size and location of neighborhoods, and so forth.

In the field of system identification, the issue of structure selection for nonlinear
models gained much attention by the late 80 s. However, in the field of nonlinear dynamics
and chaos this trend was delayed a few years. In the early (and sometimes late!) 90 s
several papers simply assumed the structure known [55, 136–138]. A good example of what
happens when structure selection is not considered during model building is provided in
[139].

Soon the practical importance of model structure selection started to be recognized
and dealt with in various ways and in varying degrees of success [62, 140, 141]. By the mid
90 s most authors became aware of the necessity of structure selection regardless of the model
class chosen. However, the problems due to overparametrization were not well diagnosed,
usually being attributed to an allegedly poor model class, poor data, and so on. A detailed
study of the dynamicall effects of overparametrization on model attractors and bifurcation
diagrams was produced in [142]. Other similar studies followed [143–147].

The key point in structure selection is to choose a model structure that is as simple as
possible, but also sufficiently complex to capture the dynamics underlying the data. One of
the easiests (and less efficient) methods for model selection is called zeroing-and-refitting
[141] which consists of estimating the parameters for a large model—which is already a
problem—and to eliminate those which are “sufficiently small.” Of course, the “size” of a
parameter will depend on the particular window of data used, on the noise variance, and
on the particular type of basis function used, especially if the data are not normalized [148].
Therefore, zeroing-and-refitting does not generally work in practice [62].

An alternative and simple way of tackling this problem for nonlinear systems has been
proposed in [149]. Instead of of deleting specific model terms, entire term clusters should be
deleted, based on the behavior of the respective cluster parameters. Also, certain term clusters
can be deleted to force symmetry [144, 150], which is necessary in some cases [151]. The
concept of the nearest neighboors was used in [152] to determine the best input and output
lags in NARX (nonlinear autoregressive with exogenous inputs) models.

One way of addressing the structure selection problem are to define some measure of
complexity for a given model. In their paper Crutchfield and McNamara were concerned with
quantifying and limiting the complexity of their models. They chose models that minimized
the model entropy I(M) and argue the importance of such a measure in the context of chaotic
data [37]. The maximum description length (MDL) [153] has been used in several papers [132,
154]. Other ways of tackling the structure selection problem is to define a measure of quality
for each regressor in an orthogonal space and then use such a criterion to select those regressors
that are most relevant. This is the basic idea behind the Error Reduction Ratio (ERR) proposed
in [155] and used in [156].

Unfortunately, there is no definite solution to the model structure selection problem so
far. Situations in which the current methods fail abound. Brown and colleagues report failure
of the MDL criterion [150], and Piroddi provides simple examples in which the ERR fails [33].
Fortunately, the benefits and successes outnumber the failures. New algorithms for structure
selection are published at an amazing pace [30–35]. The authors of this survey are convinced
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that the use of a priori information (see, e.g., [144, 151, 157]) will prove useful in addition to
the new techniques.

4.1. Uniform and Nonuniform Embeddings

A key issue in modeling nonlinear dynamics is that of selecting an appropriate embedding
space. In principle, this would include two stages: the choice of observables [158, 159] and the
choice of embedding parameters [160]. In many practical situations, although the observable
is determined before data acquisition, the embedding parameters—basically the embedding
dimension and the delay time—can be determined by the user a posteriori. In [161] a method
has been suggested to try to detect if a given variable is appropriate for global modeling.
Using the nomenclature of Figure 3, the input vector, at the left-hand side of the models,
determines the embedding space.

It has been duly pointed out that the problem of choosing an embedding in the
context of model building is a bona fide stage of the modeling procedure [162]. Also, the
uniform embedding defined by taking the elements of y(k) in (3.1) to be the coordinates
is not necessarily optimal. Therefore, which elements (coordinates) should be chosen to
compose y(k) is also part of the modeling problem. An optimal solution to such a problem
might require an embedding space in which the “temporal distances” from one coordinate to
another are not necessarily the same. The authors of [162] classify such embedding spaces as
irregular. Despite this, to build discrete-time models using regular embeddings seems to be
the rule rather than the exception in most of the literature.

To enable irregular embeddings (see Figure 3) it suffices not to connect certain input
nodes to the middle layer. Here it is pointed out that the choice of particular basis functions
ωi is, in some cases equivalent to the choice of embedding coordinates which could turn
out to be irregular. This is one of the advantages of using the ERR criterion to accomplish
structure selection. In fact, (13) and (21) of [156] and (37) of [125] are some examples of
models (automatically) built on irregular embeddings. In conclusion, it becomes clear that
the modeling procedure followed in [125], for instance, includes the choice of embedding
coordinates as a part of the modeling procedure, as pointed out in [162].

5. Parameter Estimation

Before, it is noted that synchronization has been used in parameter estimation problems [163–
166].

One of the most commonly used algorithms for estimating unknowns in linear-in-
the-parameters models is the least-squares algorithm or some generalization of it [34]. In
the case of noisy measured data the least-squares estimator is biased due to the error-in-
the-variables problem [167, 168] because such an estimator does not take into account the
measurement errors [169]. Fortunately, there are well-established and robust algorithms
for such situations which are mildly nonlinear [22]. Some of such algorithms solve the
optimization problem in a higher-dimensional space thus successfully avoiding bias. Due to
the unbiased estimators—some of which take into account the measurement errors—in the
field of system identification, the error-in-the-variables problem only occurs when both input
and output are noise contaminated. When only the output is noisy, the unbiased estimators
successfully circumvent the error-in-the-variables problem.

All such algorithms are based in some norm of one-step-ahead prediction error. An
alternative would be to minimize some norm of a k-step-ahead prediction error, with the



18 Mathematical Problems in Engineering

advantage of gaining robustness to noise. In such a case, however, the resulting optimization
problem becomes strongly nonlinear and should be solved with adequate tools. The use of
a back-propagation algorithm in this context was used in [170]. In [43], which also followed
a local model procedure, the local maps were fitted to the data in such a way as to be
consistent with k-step-ahead predictions. The authors of that paper reported that estimating
parameters by least squares did not always yield good results. This should come as no
surprise because they were fitting local maps and therefore required additional information
to constrain parameter estimation. Global models are less sensitive to this type of problem.

In what concerns parameter estimation, an important difference between [59, 60] and
[56] is that, whereas the former uses linear estimators—at the expense of having to estimate
derivatives from data—the latter numerically integrates (3.7) and uses the observed data as
they are. This procedure, which was called the trajectory method, results in an optimization
problem which the authors solve using standard routines in the IMSL10 library. In [55],
the authors provide more information on this estimation procedure and also consider the
discrete-time case. The trajectory method in the context of RBF models is discussed in [76]. It
should be noticed that [55, 56] do not consider modeling problems such as structure selection.
The application of the trajectory method was illustrated in [171], and the use of the multiple
shooting approach to estimated parameters of ordinary differential equations was discussed
in [73, 136, 169].

For neural networks the weights and the bias terms are determined by optimization
algorithms that search to minimize a cost function which usually depends on the difference
between the given data and the network output. Because such models are nonlinear in the
parameters, the optimization problem must be solved using some kind of nonlinear estimator,
such as the back-propagation algorithm. In a recent study, different approaches to network
training were compared [172].

Breeden and Packard have discussed the use of genetic algorithm and evolutionary
programming for solving a number of optimization problems which occur in the modeling
of nonlinear dynamics and chaos [173]. Other parameter estimation techniques include
a generalized Gauss-Newton method for maximizing a likelihood function [74]; ridge
regression or regularization [49, 89]. The multiple shooting approach has been used and
discussed in a number of papers [136, 174]. Nonparametric estimation (a rare example in
nonlinear dynamics) was provided in [175]. The use of regularization has been considered in
[49, 76]. A specific procedure for estimating three parameters of a differential-delay equation
was put forward in [176] and another method, specific to a certain class of one-dimensional
maps, was put forward in [177]. A multiobjective estimator was discussed in [178]. Finally,
a number of issues directly concerned with the estimation of dynamical invariants and
indirectly related to the estimation of model parameters were discussed in [167].

6. Model Validation

The issue of model validation is vast. In order to cover such a wide subject in limited space,
we will base this section on the paper [179] and refer the reader to [180] for a coverage of the
field up to the beginning of the nineties.

Before actually starting to describe some results in the literature, a few remarks are in
order. First and foremost, the challenge of model validation or of choosing among candidate
models should take into account the intended use of the model. Hence, a model could be good
for one type of applications and, nonetheless, perform poorly in another. In the context of this
paper, the main concern is to assess the model dynamics. A different concern, though equally
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valid, that would probably require a different approach would be to assess the forecasting
capabilities of a model. Second, it should be realized that two similar though different
problems are: (i) model validation, which usually aims at an absolute answer like: valid or
not valid, (ii) model selection, which usually aims at a relative answer such as: modelM1 is
better than model M2 according to criterion C. Finally, when it comes to model validation,
the safest approach is to use many criteria, rather than just one.

Although very popular in other fields, the computation of various measures of prediction
errors (one-step-ahead and free-run) in the case of nonlinear dynamical systems is not
conclusive in what concerns the overall dynamics of the identified model [81, 132, 180],
though it does convey much information on the forecasting capabilities of a model.

Subjective though it is, the visual inspection of attractors (or simply comparing the
morphology of two time series) is quite common a way of assessing the quality of models
[52, 60, 65, 72, 73, 78, 91, 119, 132, 162, 168, 171, 174, 181–183]. Such a procedure is not only
subjective but also ineffective to discriminate between “close” models, that is, models with
slight, but important, differences in their dynamical behavior. What renders this procedure
subjective is the fact that no quantitative mechanism is used to compare how close are
two reconstructed attractors. In this respect the work by Pecora and coworkers could be an
alternative for determining how close are the original and the model attractors [184]. To the
best of our knowledge the statistic measures that put forward in the mentioned paper have
not yet been used in the context of model validation.

Still in relation to the visual inspection of attractors, it should be noticed that in many
practical instances there is not much more that can be done consistently. For instance, in the
case of slightly nonstationary data, to compare short-term predictions with the original data
is basically the best that can be done. Building a model for which the free-run simulation
approximates the original data in some sense is usually a nontrivial achievement. (In this
respect we rather disagree with [185] who consider free-run simulation of models a trivial
validity test.)

Other attractor features are still in common use when it comes to model validation.
Among such features the following are frequently used: (some of such properties have
been recently discussed in the context of model validation in [186]) Lyapunov exponents
[43, 81, 97, 145, 147, 187, 188]; correlation dimension [78, 81, 132, 188]; location and stability
of fixed-points [112, 125, 183]; (In particular, it has been shown that fixed-point stability of
nonlinear models is consistent with breathing patterns found in real data [189].) Poincaré
sections [81, 176]; geometry of attractors [85]; attractor symmetry [150, 151]; first-return maps
on a Poincaré section [66, 190]; probability density functions of recurrence in state-space
[191]; topological features such as linking numbers and unstable periodic orbits (UPOs) [192–
194].

Meaningful validation can only be accomplished by taking into account the intended
use of the model. A model that provides predictions consistent with the observed data will
probably not be a good model to study, say, the sequence of bifurcations of the original
system.

The use of model free-run simulations in the context of surrogate data analysis for
model validation was suggested in [195]. For details on surrogate data analysis the reader
is referred to [196, 197] and for achemical process application; see [198]. The main idea is to
use estimated models to produce a large number of time series and to use some test statistic
to try to assess if it is likely that the data could have been produced by a model (or models)
such as those used to produce the surrogates. Of course, a key point in this procedure is the
choice of the test statistic. For instance, suppose that the correlation dimension or the largest
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Figure 4: Graphical interpretation of (a) consistent prediction and (b) inconsistent prediction [200]. G and
F are the “true” dynamics and model, respectively. xi is the true state at time i and the observed state at
that time is si. Bε(si) is an observational uncertainty sphere of radiusε. In (a) the shaded region indicates
that there is a subset of forecasts made with F that are indistinguishable from the “true” state (xi+1) within
observational uncertainty. Figure reproduced from [179].

Lyapunov exponent is chosen to compare a set of free-run simulated data with the measured
data. Suppose further that the null hypothesis is that the measured data is compatible with
the estimated model. Even if we cannot reject the null hypothesis, that does not guarantee
equivalence of dynamical behavior because quite different attractors may have similar indices
[199]. This is also true for the correlation dimension.

A related method has been described in [200] and has been named consistent
nonlinear dynamic (CND) testing. The main idea is depicted in Figure 4.

In the following two subsections we briefly discuss two other procedures which
the authors have developed for model validation. The first one, following an early paper
by Brown and colleagues [201], is based on the concept of synchronization. The second
procedure, which is much more demanding, but also provide a much deeper insight into
the model dynamics is based on topological analysis.

6.1. Synchronization

As done in Figure 4, let us denote the “true” dynamics by G and a given model by F. In the
present section it is assumed that the dynamics are continuous, that is [201],

dx
dt

= G (x) ,

dy
dt

= F (y) − E (y − x) ,

(6.1)

where it has been assumed that dim[x] = dim[y] and where the matrix E denotes the coupling
between the true system and the model. The scheme illustrated in (6.1) will be referred to as
dissipative synchronization or entrainment.

The rationale behind this procedure is as follows. Assume that the data x lies on a
chaotic attractor. In many situations, provided E is adequately chosen and G = F, y → x.
That is, the model will synchronize to the system. If G and F differ slightly, the error e = y− x
will not go to zero but will stay around the origin of the error space. The average distance to
the origin of such a space will depend on G(x) − F(x). Therefore such a distance (which in
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practice is a measure of quality of “synchronization”) is a measure of how far the estimated
model F is from the true dynamics G [201].

The difference |x − z|—where z is the model state vector without any driving force—is
compared to |x − y|. If |x − y| drops below a certain threshold (10−2 was used in [185]) and is
“clearly” smaller than |x − z|, that is, x ≈ y and it is assumed that the model is synchronized
to the data, therefore F should be sufficiently close to G.

As it often happens in the realm of model validation, this procedure also is highly
subjective, since it requires an ad hoc threshold, mentioned in the previous paragraph.
In what concerns dissipative synchronization, it is well-known that in many cases by
increasing the strength of the coupling (matrix E) it is possible to force a greater degree of
synchronization and, in some cases, even attain identical synchronization [201]. For instance,
in [185] the authors found that for values of the coupling greater than 2, models of an
electronic circuit would synchronize with the measured data. On the other hand, in [202]
they have found a lower bound of 0.1 for the coupling strength in order to guarantee
synchronization between the Rössler system and perturbed versions of the original equations.
It therefore becomes clear that it is sometimes possible to synchronize even a poor model to
the data so long as the coupling strength is made sufficiently large. In fact, is has been shown
that even different systems can synchronize, at a rather high cost [203].

Therefore although the concept of synchronization could be useful in the context of
model validation, it becomes apparent that some adjustments are required to render the
procedure more practical. In [179] some steps were given in this direction, and it was
shown using numerical examples that synchronization yielded similar results to the use of
bifurcation diagrams for model validation [180] but at a much lower computational cost.
Bifurcation diagrams in model validation were used in [86, 89].

6.2. Topological Analysis

A topological analysis usually starts by computing a first-return map to a Poincaré section
of the phase portrait. This is indeed useful for extracting periodic orbits using a close return
method although that other techniques can be used. In the best cases, the first-return map
is made of n monotonic branches separated by an n − 1 critical point. The first-return map
induces therefore a partition of the phase portrait in n zones. A symbol is associated with
each branch.

Chaotic trajectories and the periodic orbits constituting their skeleton are thus encoded
over the symbol set {0, 1, . . . , n − 1}. Even symbols are associated with increasing branches.
Increasing branches are preserving order and decreasing branches are reversing order. The
phase portrait is thus divided in preserving order and reversing order strips. A preserving
order strip presents an even number of half-turns while a reversing order strip represents
an odd number of half-turns. The attractor can thus be schemed by a branched manifold—a
template or a knot holder—on which periodic orbits can be drawn.

All topological properties are encoded in the template. Thus it is possible to extract
topological invariants like linking numbers from a template construction. Linking number
between two periodic orbits is the most often used topological invariant. It can be counted on
a regular plane projection of the two periodic orbits. Each crossing (in the plane projection)
between the two orbits is associated to ±1 according to the third coordinate of each orbit
segment. The linking number is then the half sum of the orientated crossings. The template
is valid when all linking numbers it predicts are equal to those counted from the periodic
orbits extracted from the attractor studied. Many details about topological analysis can be
found in [204].
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Topological analysis is surely the strongest validation method. Unfortunately, it is up-
to-now restricted to 3D dyanmics. Topological validation of global models was performed
for the copper electrodissolution experiments [69], a string experiment [193], a Belousov-
Zhabotinskii reaction [205], and so forth.

7. Modeling with A Priori Knowledge

We start this section with a quotation from one of the pioneering papers of the field:
“If extra information is available about a system in addition to a time series, such as
explicit underlying partial differential equations or symmetries, then the inverse approach
as presented here does not exploit such information. Consequently, for such systems it may
be possible to improve significantly upon the inverse approach using other techniques” [39,
page 354].

Despite opinions as the one just quoted, the problem of building models from data and
additional information (sometimes referred to as a priori or auxiliary) has been postponed.
In the context of linear models or nonlinear process models, some results are available
[206–210]. However, as pointed out in [211] there seems to be less applications of gray-box
modeling in the realm of nonlinear dynamics.

The general setting is to have the dynamical data plus some other source of information
and to use both in building a model. The knowledge of the model equations is optimistic to
be considered a priori information, and here it is assumed that structure selection techniques
(Section 4) will be used to find out which basis functions should be used to compose the
model. If all that is desired of the system is already available in the particular set of data
used for model building, then granted that the model class is sufficiently general and
that the model structure is adequate, the resulting model should be a sufficiently accurate
representation of the system. In this case there is no motivation to use an additional piece of
information. However, often in practice, for a number of different reasons—such as presence
of noise, poor choice of observable, poor frequency content in the data, limited amplitude
excursion, and the like—the available data either does not have all the desired information
about the system or such information is difficult to obtain. In such cases it is conceivable
that additional information is available and it is natural to enquire if it is possible to build the
model. Thus, more often than not, if the data is of “good” quality and “sufficiently” complete,
black-box modeling should be the practitioner’s first choice.

In the realm of nonlinear dynamics, procedures have been put forward for building
models using auxiliary information. A number of fixed-points were used in [144], the
location of fixed points were used in [178]. Information about the harmonic driving were
used to choose the model structure in [65]. Information about the symmetry was used to
constrain not only the topology but also the parameter estimates of network and radial-basis
function models [151]. In the last quoted paper, for instance, symmetry was imposed on a
multilayer perceptron neural network in order to guarantee the pitchfork bifurcation—which
is structurally unstable—when modeling the Duffing-Ueda oscillator. Topological features
such as folding and tearing mechanisms [199, 212] in addition to the location and local
eigenstructure of fixed points have been used in [213]. Lastly, information about the first
period-doubling bifurcation diagram was used in [77].

8. Remaining Challenges and Conclusions

As early as 1987, the issue of modeling spatiotemporal nonlinear dynamical systems can be
found in the literature [37]. Defining which type of a priori information is usable and then
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learning how to use it for a given model class remain a challenge. In this difficult problem
it is necessary to find adequate duplets of information and model class. To posses a priori
information and not knowing how to use it for a given model class is useless. The reverse is
equally true. The combination of models with different properties in an assemble approach
[52] seems a promissing line for future research in nonlinear dynamics and chaotic systems.

Over fifteen years ago Robert Gilmore, referring to model building, mentioned: “There
are at present two distinct methods to model data. One is analytic, and has not been
extensively used. The other is topological, and has been used even less” [214, page 515].
Although this paper did not aim at describing in detail the significant progress made in the
field of “topological analysis,” hopefully the reader did get the feeling that much has been
done. On the other hand, concerning the “analytic methods” for modeling data, which was
the main focus of this paper, it should become clear that quite a lot has been achieved since
Gilmore’s summary was written.

The view presented in this work, as any review paper, is strongly influenced by the
authors’ experience. A varied list of introductory and review articles was included. A rather
short list of benchmark models and widely available data with indication of works that have
used such models and data were provided. Although every effort has been made to survey
such a wide subject in a comprehensive way, it goes without saying that a complete list of
papers is outside the authors’ reach. Nevertheless we are sure that the present survey will
serve as a good starting point for future works in modeling nonlinear dynamics and chaos.

Appendix

A. Benchmark Models and Data Sets

As a helpful aid to those involved in developing new tools for modeling nonlinear dynamics
and chaos, in this appendix we list some benchmark toy models and benchmark data sets
(widely available) and point out papers that have discussed their modeling and analysis.

A.1. Maps

Logistic

The logistic map was originally investigated by Robert May [215, 216]. Papers that
investigated the estimation of models from data produced by the logistic map include
[38, 125].

Hénon

The logistic map was originally proposed in [217]. It was considered as a benchmark for
modeling in [61, 125, 168, 218]. This map was modeled using a kernel estimation approach in
[43], recurrent networks in [84], and a wavelet model in [114].

Ikeda

The Ikeda map was introduced in [219] and considered as a benchmark in [39, 61]. In [29]
this map was modeled using wavelet networks, and in [132] results are reported for neural
networks.
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A.2. Autonomous Systems

van der Pol’s Oscillator

The autonomous van der Pol oscillator settles to a limit cycle and therefore can be modeled.
This oscillator has been considered in [119].

Lorenz

The Lorenz system was introduced in [4] and considered as a benchmark in [39, 76], although
only model prediction errors are given. The polynomial and rational expansions of that
system from a single observable were considered in [58], and the construction of ODEs
from data was presented in [59, 60, 62]. This system was modeled using a kernel estimation
approach in [43], in [125] it was modeled usign discrete-time polynomials, and in [29] it was
modeled using wavelet networks.

Fuzzy models for this system were built in [119]. A piece-wise affine model for this
system was developed and analyzed in [213], in a sense such a model bears resemblance with
Takagi-Sugeno fuzzy models [116]. Unconstrained [85] neural networks and constrained RBF
models [151] were also used in the modeling of this system.

Rössler

The well-known Rössler system was proposed in [220]. The polynomial and rational
expansions of that system from a single observable were considered in [57], and the
construction of ODEs from data was presented in [59, 60]. Fuzzy models for this system were
built in [119, 125] it was modeled usign discrete-time polynomials. A piece-wise affine model
for this system was developed and analyzed in [213], and a neural network was reported in
[132].

Makey-Glass

The Makey-Glass delay-differential equation was introduced in [221] and considered as a
benchmark in [39, 76, 125]. In [29] this system was modeled using wavelet networks, and in
[84] the reader will find results with feedforward and recurrent neural networks.

A.3. Nonautonomous Systems

It must be pointed out that a nonautonomous oscillator or order n driven by a single
frequency, say, an input of the type cos(ωt) is, in practice, an autonomous system with
dynamical order n + 2 [191]. In such cases the resulting models do not have an external
variable u(t) or u(k) which can be any time-dependent signal.

Duffing’s Oscillator

This oscillator was considered for a fixed input of the type cos(ωt) in [37]. In [125] a model
valid for any input was built from data. The estimated model and original oscillator have
very similar bifurcation diagrams. Wavelet models with similar features were obtained in
[113]. A close look at the pitchfork bifurcations will reveal that they are not (the symmetrical)
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pitchforks but rather (the unsymmetrical) saddle-node bifurcations. Because symmetry is
structurally unstable, any small deviation due to noise or “imperfect” estimation from data
will destroy it, and with it the hope to reproduce a pitchfork bifurcation. However, by
imposing symmetry it is possible to recover the correct bifurcation pattern. This has been
done with neural network models for the Duffing oscillator in [151].

van der Pol’s Oscillator

This oscillator appeared in [222]. An experimental implementation of this oscillator was
considered for a fixed input of the type cos(ωt) in [37]. In [125] a model valid for any input
was built from data. The estimated model and original oscillator have very similar bifurcation
diagrams. Wavelet models for this oscillator have been obtained in [114].

A.4. Benchmark Measured Time Series

Several papers in the literature illustrate the proposed techniques using measured time series.
It would be impossible to list all of them. In this subsection, however, we list those time series
that are most commonly used because they are widely available and therefore constitute
typical benchmarks.

Santa Fé Time Series Competition Data

In 1994 the Santa Fé Institute promoted a time series prediction competition, which is
described in [223]. Some measured and simulated time series were made available as
benckmarks for the competition. The description of these data and the files can still be found
at http://www-psych.stanford.edu/andreas/Time-Series/SantaFe.html.

The Laser data was considered in [81, 91]. The biomedical data set has been described
in detail by Rigney and coworkers [224] in view of the Santa Fé Time Series Prediction and
Analysis Competition [225]. Such data were considered in [189, 226–230].

Wolf’s Sunspot Number Time Series

These data can be found at http://www.ngdc.noaa.gov/ and have been considered in [20,
49, 91, 106, 132, 231, 232]. In the last two references, the original data was transformed to
a symetrical space in which the modeling is easier. The transformed data can be found at
http://www.atomosyd.net/.

Copper Electrodissolution Data

These data can be found at http://www.atomosyd.net/spip.php?article40 and have been
considered in [68, 69]. They were recorded by Zihao Fei and Jack Hudson. A 52-term global
continuous-time model [69] and a 26-term model [68] were obtained from the data. A
structure selection using an Ansatz library was used in the second case.

Canadian Lynx

These data results from the recrods of the Hudson Bay Company regarding the populations
of lynx and hares. They can be found at http://www.atomosyd.net/spip.php?article39 and
have been considered in [233]. They were recorded by Zihao Fei and Jack Hudson.
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Electronic Oscillators

The electronic oscillator described in [234] was modeled and analyzed in [71, 73]. These data
can be found at http://www.y2k.maths.ox.ac.uk/.

The so-called Chua’s circuit [235] was modeled and analyzed in [236] using discrete-
time polynomials, in [64] usign continuous-time polynomials and in [110] using rational
models. Neural networks from simulated data of this circuit are described in [237]. These
data can be found at http://www.cpdee.ufmg.br/∼MACSIN/.
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Rössler and Lorenz systems,” Chaose, vol. 16, no. 1, Article ID 013115, 14 pages, 2006.

[214] R. Gilmore, “Summary of the second workshop on measures of complexity and chaos,” International
Journal of Bifurcation and Chaos, vol. 3, no. 3, pp. 491–524, 1993.

[215] R. M. May, “Deterministic models with chaotic dynamics,” Nature, vol. 256, no. 5514, pp. 165–166,
1975.

[216] R. M. May, “Simple mathematical models with very complicated dynamics,” Nature, vol. 261, no.
5560, pp. 459–467, 1976.
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