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1. Introduction

Coupled first-order IVPs are frequently used in many parts of engineering and sciences
[1–3], and we presented a package seems to be useful for researchers to solve IVPs [4]. It is
possible to describe many dynamical problems using IVPs; MATLAB is the best software for
engineers and applied scientists to solve the problems numerically, specially solving IVPs.
In our early studies, we have utilized a numerical “MATLAB-linked solver” to calculate
stiff or nonstiff first-order coupled IVPs using MATLAB software [4], and reader can find
these programs in the appendix. The well-known numerical methods such as Runge-Kutta,
Rosenbrock, Classical method, Taylor series, Adams-Bashforth are used to solve IVPs using
our MATLAB-linked solver [4, 5].

The main aim of the present research is to give a MATLAB-linked solver to solve first-
order coupled differential equation which is used in many subjects of the nuclear engineering.
Therefore, in the present study, some dynamical problems (which mathematically are
coupled first-order IVPs) are studied as examples of the present solver ability. First we explain
Muon Catalyzed Fusion (μCF) and find the fusion cycling rate. Then, we focus on the poisons,
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including xenon135 and samarium-149, burnups in a suggested 1000 MWe PWR as well as its
plutonium isotopes build up. Their solutions are given using our “MATLAB-linked solver.”

Basically, consider a first-order coupled IVPs such as

dx1(t)
dt

= x′1 = p11(t)x1 + · · · + p1n(t)xn,

dx2(t)
dt

= x′2 = p21(t)x1 + · · · + p2n(t)xn

. . .

...

dxn(t)
dt

= x′n = pn1(t)x1 + · · · + pnn(t)xn,

(1.1)

where initial values of the dependent variables are:

xi(t0) = αi, αi = const., (i = 1, 2, . . . , n). (1.2)

Here, t is used for the independent variable and may refer to time in a dynamical problems,
and xi(t) stands for dependent variables.

Coupled IVPs with constant coefficients. First, we consider the IVPs with constant
coefficients, or in other words constant pij , and we illustrate our package procedures to solve
and plot the calculated dependent variables. Three programs were written and connected to
the MATLAB, software where these programs will be run in the MATLAB’s editorial page,
by running DEPLET.m M-file. Some questionnaires should be answered by the user such as
the following:

(i) Entering the number of differential equations (unknowns).

(ii) Inserting initial values of xi (dependent variables).

(iii) Inserting start and end points of the computations, or in another words
independent variables interval.

(iv) The type of coupled differential equation should be specified. The answer includes
“Stiff” or “Nonstiff” cases.

(v) The next question is the method in which user wants for executing. Answers
includes “ode45 method”, “ode23 method”, “ode113 method” for the nonstiff case,
and also “ode15s method”, “ode23s method”, “ode23t method”, “ode23tb method”
for stiff case so that for more information about these MATLAB commands, refer
to the MATLAB help [5]. By clicking on each solvers, a short review on the
specified numerical method will be given. Finally, user should insert pijs and
execution would be begun. After execution, dependent variables (xi(t))s will be
computed according to the desired numerical method, and user can plot xi(t)s in
the computational interval. For plotting x1(t) as an example, user should write
“1” and then a new window will be opened and x1(t) will be plotted versus the
computed interval.
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Coupled IVPs with variable coefficients. The so-called package (called DEPLET m-file) can
be extended to the IVPs with variable coefficients or in another words pij(t). In this case, the
computational interval [ab] should be divided into many step-size intervals so that variations
of pijs are ignored in each step-size (each step-size is equal to h = (b − a)/N, where N is a
desired grid interval and therefore tk = a+ hk, where k = 0, 1, 2, . . . ,N), and therefore we can
assume average of pijs in eachstep-size:

pij(tk) = pij , where pij =
pij(tk) + pij(tk+1)

2
. (1.3)

In this case again we return into the coupled differential equations with constant coefficients
which can be solved by the DEPLET.m. Calculated x(tk), in each interval, will be used as an
initial conditions for the next step, and therefore by combining given solutions the full-solutions
would be obtained.

2. Some Dynamical Problems Related to Coupled IVPs

2.1. Muon Catalyzed Fusion System

The basic process of the muon catalyzed fusion in a D-T mixture as depicted in the upper
part of Figure 1, can be summarized as follows [6]. After high-energy μ injection and
then stopping and decreasing its energy in a D-T mixture, either (dμ) or a (tμ) atom is
formed, with a probability more or less, proportional to the relative concentration of D
(cd) and T (ct). Because of the difference between (dμ) and (tμ) in the binding energies
of their atomic states, μ− in (dμ) undergoes a transfer reaction to tritium yielding (tμ)
during a collision with the surrounding tritium in either D-T or T2 molecules. Thus the
formed (tμ) reacts with D2, DT , or T2 to form a muonic-molecule dtμ at a rate of λdtμ
followed by a fusion reaction occurring from a molecular state of the (dtμ). The fusion
takes place and a 14-Mev neutron and a 3.6-Mev α-particle are emitted. After the fusion
reaction inside the (dtμ) molecule, most of the μ− are liberated to participate in a second
μCF cycle. There is however some small fraction of the μ− which are captured by the
recoiling positively charged α. The probability of forming an (αμ)+ ion is called the
initial sticking probability ω0

s . Once the (αμ)+ is formed, the μ− can be stripped from the
(αμ)+ ion where it is stuck and liberated again. This process is called regeneration, with a
corresponding fraction R. Thus, μ− in the form of either a nonstuck μ− or one regenerated
from (αμ)+ can participate in a second μCF cycle, leading to an effective sticking parameter
ωs = (1 − R)ω0

s .
Now, consider a homogeneous media in which the μCF is carried out [7–9]. The ion

density of the media (ρ), in another words tritium and deuterium concentrations, atomic
and molecular formation rates (λa, and λdtμ), and fusion decay rates (λf

dtμ
) are known

as the constants due to a fixed temperature of the media and therefore are assumed to be
independent of time. Therefore, according to the physical model and also Figure 1, the first-
order linear coupled dynamical equations for the Muon Catalyzed Fusion system (μCF)
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are given by

dNμ(t)
dt

= −λ0Nμ(t) − λacdφmNμ(t) − λactφmNμ(t) + (1 −ωs)λμdtNdtμ(t),

dNμd(t)
dt

= −
(
λ0 +

1
τ

)
Nμd(t) + λacdφmNμ(t) − λdtctφmNμd(t),

dNμt(t)
dt

= −
(
λ0 +

1
τ

)
Nμt(t) + λactφmNμ(t) + λdtctφmNμd(t) − λdtμcdφmNμt(t),

dNdtμ(t)
dt

= λdtμcdφmNμt(t) − λ
f

dtμ
Ndtμ(t) − λ0Ndtμ(t),

dNn(t)
dt

= λf
dtμ
Ndtμ(t),

(2.1)

where cp and ct are the relative concentration of deuterium and tritium, respectively. The
muonic-atoms formation rates are given by λi (i = μd, μt), and the muonic-molecule
formation rate of dtμ is given by λdtμ. The dtμ fusion rate is shown by λ

f

dtμ
. The possible

leakage rate of muonic-atoms is proportional to Nμd/τ and Nμt/τ , and also λ0 is the muon
decay constant. In (2.1), φm is the dimensionless ion density of the media and is proportional
to liquid hydrogen density (close to 0.07). As said before, ωs is the muon effective sticking
coefficient. Table 1 gives values of the constants for solving (2.1).

We have solved these coupled dynamics equations in time range of [0 to 2.2×10−6 sec],
the muon life-time, using our MATLAB-linked solver with the following initial conditions:

Nμ(t = 0) = 1, Nk(t = 0) = 0, k = μd, μt, dtμ, n. (2.2)

According to the coupled dynamical equation (2.1) and also Figure 1, the calculated neutrons,
Nn(t = 2.2 × 10−6 s) for each one inserted muon, corresponds to the muon cycling rate of the
explained cold fusion (μCF), or which are proportional to the number of fusion (i.e., each
neutron corresponds to one fusion: d + t ⇀ α + n).

At the end of running, neutron concentration is plotted in our calculated time interval
and is given in Figure 2. According to Figure 2, Nn(t = 2.2μs) � 110 is the muon cycling
rate of the mentioned Muon Catalyzed Fusion system. Each fusion gives 17.6Me 5 energy
so that total obtained energy is about 110 × 17.6 = 1.94 GeV. For producing one muon, due
to an accelerator, we must expense about 4 GeV energy so that the above cold fusion is not
commercial. Increasing temperature as well as more ion density concentration together with
decreasing muon sticking coefficient ωs has been some ideas for obtaining commercial cold
fusion which is under research. Another comments are taken into account which are beyond
the scope of present research.

2.2. Plutonium Build Up in a Nuclear Pressurized Water Reactor

Consider a PWR which has been operating in a suggested time interval. In a PWR reactors,
nuclear fuel is UO2 pellets, and uranium consist of 235U and 238U isotopes (neglecting 234U
isotope). The most important isotopes of interest that have been produced as a result of
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Figure 1: Reaction cycle of the Muon Catalyzed Fusion, μCF.

uranium fuel depletion, are two isotopes of plutonium element, that is, Pu-239 and Pu-241.
Because they can also be employed as fuel, like as U-235 atom. The process at which U-
238 fresh fuel is converted into plutonium isotopes is shown in Figure 3. The appropriate
magnitude of each neutron capture cross-section for corresponded nuclear (n,γ) reaction
is given on each arrow in terms of barns [10]. According to the foregoing chain, a set
of coupled first-order ordinary differential equation can be established to give the time-
dependent concentration of some of interesting isotopes. This is done via the conservation of
mass principle, that is, production rate minus consumption rate equals the net rate of change
of isotope concentration. The 238U concentration is represented by N28, and 239Pu by N49.
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The other plutonium isotopes such as 240Pu, 241Pu, and 242Pu are denoted by N40, N41, N42,
respectively. All interested materials and isotopes are balanced as follows.

235U depletion = Absorption of thermal neutrons in the 235U cause fission.

238U depletion = Absorption of thermal neutrons in 238U and absorption of
resonance neutron in the 238U to produce 239Pu, and absorption of fast neutrons
in 238U to cause fission.

239Pu production = Absorption of thermal neutrons in the 238U+ Absorption of
resonance neutrons from 235U fission in 238U+Absorption of resonance neutrons
from 239Pu fission in 238U+ Absorption of resonance neutrons from 241Pu fission
in 238U-Absorption of thermal neutrons in 239Pu+ Absorption of fast neutrons from
235U,238U, and 239Pu fissions in 238U.

240Pu production = Neutron absorption in the 239Pu to produce 240Pu minus neutron
absorption in the 240Pu to produce 241Pu.

241Pu production = Neutron absorption in the 240Pu to produce 241Pu minus neutron
absorption in the 241Pu to produce 242Pu.

Fission fragments production = Fission yields of 235U + Fission yields of 238U +
Fission yields of 239Pu+ Fission yields of 241Pu.

Therefore, according to our defined parameters, the coupled first-order differential
equations which describes plutonium and uranium isotopes concentrations are given as:

dN25(t)
dt

= −σ25
a φN

25(t),

dN28(t)
dt

= −σ28
a φN

28(t) − σ28
a εP1φN

28(t) − σ28
a εφN

28(t),

dN49(t)
dt

= σ28
a φN

28(t) + η25εP1
(
1 − p

)
σ25
a φN

25(t) + η49εP1
(
1 − p

)
σ49
a φN

49(t)

+ η41εP1
(
1 − p

)
σ41
a φN

41(t) − σ49
a φN

49(t),

+
α28

1 + α28

ε − 1
η28 − 1

[
η25σ25

a N
25(t) + η49σ49

a N
49(t) + η41σ41

a N
41(t)

]
φ,

dN40(t)
dt

=
α49σ49

a

1 + α49
φN49(t) − σ40

a φ(t)N
40(t),

dN41(t)
dt

= σ40
a φN

40(t) − σ41
a φN

41(t),

(2.3)

where φ(t) is the average thermal neutron flux of the core (we have considered φ(t) is
independent of time and equal to a constant), and σ

αβ
a (α = 2, 4 and β = 0, 5, 8, 9) are the

nuclear thermal microscopic absorption cross section which refer to the desired isotopes.
Also, other parameters are described in Table 3. As it is seen, the set of (2.3) are IVP, so it is
apparent that we must know the values of atom densities at the initiation of fuel irradiation.
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Figure 2: : dNn(t)/dt is plotted versus time using MATLAB-linked solver. In our real physical conditions
and our suggested model here Nn(t = 2.2μs) � 110, is the muon cycling rate of the mentioned μCF.
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Figure 3: U-238 is converted to plutonium isotopes through the above chains.

But, it was stated that the core is initially loaded with fresh UO2 fuel and there are, in fact, no
plutonium isotopes at starting time. Thus the only ones should be determined are N28 and
N25 at the time of reactor startup. On the other hand uranium element is composed of two
isotopes of U-235 and U-238, in which in a typical PWR type the fuel is enriched to about
averaged value of 3.5 percent where the initial values are given in Table 2.

To solve the set of above IVP, (2.3), we make some simplifying assumptions in the first
iteration such as the following.

(i) Effective cross sections remain constant throughout the core and during fuel
lifetime.

(ii) Average neutron flux within the core is constant and is considered to be equal to
3.5 × 1013 neutrons/cm2 · s.

(iii) The time duration at which reactor fuel has to be replaced with the fresh fuel, due
to neutronic and/or thermal hydraulic reasons, is about 7300 hours.
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Table 1: Constant values for solving (2.1) in 500◦C temperature and media with one liquid hydrogen
density. Also, it is supposed that there are equal concentrations of deuterium and tritium in the media.

Process Parameter Value
Relative concentration of deuterium cd 0.5
Relative concentration of tritium ct 0.5
Muon decay constant μ0 0.455 × 106 s−1

Muonic-atom formation rate λa 1 × 1010 s−1

Media ion density φm Liquid hydrogen density
Sticking coefficient ωs 0.008
Fusion rate of dtμ molecule λ

f

μdt
1.1 × 1012 s−1

Formation rate of dtμ molecule λμdt 2.8 × 108 s−1

Time of leakage τ 7.08 × 10−7 s
Muon exchange rate between dμ and tμ atoms λdt 1 × 1010 s−1

Table 2: Masses and atom densities of each fuel isotopes at the time of reactor startup.

Material Mass, kg Concentration, N(×1024), atoms/cm3

UO2 93246 0.0217391
235U 3058.043 0.0007700
238U 84314.620 0.0209645

Using data given in Table 3, the set of (2.3) are solved using our presented MATLAB-
linked solver. The solver was run and gave our desired results. Beginning of cycle (BOC)
masses of U-235, U-238, important plutonium isotopes, fission fragments burnup/or buildup
and also End of Cycle (EOC) masses are illustrated in Table 4.

2.3. Samarium-149 Build Up in a Nuclear Pressurized Water Reactor

The fission fragments are highly radioactive which undergo β and γ emissions. Some of
the fission fragments are highly neutron absorber materials and strongly affect neutronic
balance within the core as if they act as a neutron poison. They tend to capture a neutron
and form a nucleus which contains a neutron more. So as will be seen, as time goes on, fission
fragments would be converted to some other atoms and it is necessary to make an estimation
of about their atom density (number of atoms per unit volume within the fuel), with respect
to irradiation time. According to the foregoing discussion, it is expected to have a completely
different fuel at the end of fuel life with that originally loaded within the core. In most cases
of interest, such as study of fission products poisoning, involved isotopes form a radioactive
and neutron reacting chain in which its members are linked together via β decay and (n, γ)
reactions. Also some members of the chain are produced directly from U-235 fission; that
is, they have a finite yield from fission. Consider, for example, that U-235 fission rate is
Nfσfφ(t), in which Nf is U-235 atom density, σf is the effective U-235 microscopic fission
cross section, and φ(t) is the time dependent neutron flux within the core. So as a result, this
amount of U-235 atoms are undergoing fission per unit volume of the fuel per unit time. We
define here fission yield of i-th species, yi, as the ratio of i-th atoms produced to U-235 atoms
undergoing fission. Consequently, constant formation rate of the i-th nuclide per unit volume
could be written as Pi = yiNfσfφ(t).
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As shown in Figure 4, some members of the chain will have two different probable
modes of disappearance, depending on whether the β decay or neutron capture is more
probable, they tend to make two completely different nuclei. This state of affair is taken
into account in writing the rate equations for some nuclei. Using the so-called chain, we can
develop appropriate ”rate equation” for individual nuclide per unit volume. Before this, we
show some characteristics of the involved isotopes of the Sm-149 chain in Table 5.

According to Figure 4, a set of 12 coupled ordinary first-order differential equations
that describe the rate of change of each of the 11 nuclei in the Sm-149 fission-product chain as
well as U-235 are written as follows:

147
60 Nd :

dN1

dt
= y1Nfσfφ −

(
σ1φ + λ1

)
N1, (2.4)

147
61 Pm :

dN2

dt
= y2Nfσfφ + λ1N1 −

(
σ2φ + λ2

)
N2, (2.5)

147
62 Sm :

dN3

dt
= y3Nfσfφ + λ2N2 −

(
σ3φ

)
N3, (2.6)

148m
61 Pm :

dN4

dt
= σ24φN2 −

(
σ4φ + λ4

)
N4, (2.7)

148
61 Pm :

dN5

dt
= λ45N4 + σ25φN2 −

(
σ5φ + λ5

)
N5, (2.8)

149
61 Pm :

dN6

dt
= y6Nfσfφ + σ4φN4 + σ5φN5 −

(
σ6φ + λ6

)
N6, (2.9)

149
62 Sm :

dN7

dt
= y7Nfσfφ + λ6N6 − σ7φN7, (2.10)

150
61 Pm :

dN8

dt
= σ6φN6 −

(
σ8φ + λ8

)
N8, (2.11)

150
62 Sm :

dN9

dt
= σ7φN7 + λ8N8 − σ9φN9, (2.12)

151
62 Sm :

dN10

dt
= y10Nfσfφ + σ9φN9 −

(
σ10φ + λ10

)
N10, (2.13)

152
62 Sm :

dN11

dt
= y11Nfσfφ + σ10φN10 − σ11φN11, (2.14)

235
92 U :

dNf

dt
= −σfφNf, (2.15)

where in (2.7), σ24 is radiative capture cross section for 147Pm(n, γ)148mPm reaction and in a
similar manner, in (2.8) σ25 is for 147Pm(n, γ)148Pm reaction. Also in (2.8) λ45 is a radioactive
decay constant that 148mPm, as a result of a β decay, disintegrates to 148Pm. Moreover, yi
indicates direct fission yield for i-th species from U-235 thermal fission, and finally, (2.15) is a
rate equation for U-235 atom density in which σf is U-235 effective fission cross section. This
equation implies that U-235 atom density decreases as an exponential function as time goes
on. Nf is time-dependent U-235 atom density.
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Figure 4: The fission-product chain leading to Sm-149.

Table 3: Effective properties of nuclide for thermal neutron in 1000 MWe PWR (3000 MW thermal power).

Nuclide Subscript σa(barn) η α
235U 25 556 1.96 0.2398
238U 28 2.2342 2.3432 0.1907
239Pu 49 1618.2 1.86 0.5430
240Pu 40 2616.8
241Pu 41 1567.3 2.223 0.3765
ε is fast fission factor = 1.0476.
p is resonance scape probability = 0.7725.
P1 is fast to 238U resonance probability = 0.9889.
η is neutrons produced per neutrons absorbed.
α is ratio of capture to fission cross section.

Table 4: Fuel composition in a PWR after 1 year irradiation. All values are in terms of kg.

Material BOC EOC
235U 3058 2632
238U 84314 83604
Pu 0 210
Fission fragments 0 926

The set of equations of (2.4) through (2.15) should be solved simultaneously to give
desired result and when the matrix of coefficient is established and further investigated, it
turns out that this set of equations is a nonstiff one and here, is then solved using the Runge-
Kuta method [11]. Using our MATLAB-linked solver as well as data given in Table 5, our
calculated results are shown in Figure 5.

2.4. Xenon135 Build Up in a Nuclear Pressurized Water Reactor

Another poison of our interest, as the greatest fission product in a nuclear reactor, is xenon135
isotope. It is the most important neutron absorber (poison) in a typical PWR type such that it
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Figure 5: (a) Uranium-235 depletion. (b) Samarium-149 atom density variation as a function of irradiation
time. (c) Atom density variation of other important members of the samarium chain.

is produced directly from U-235 nucleus fission and indirectly from decay of Te-135 chain. Its
decay chain is in the form

Fission ⇀135
52 Te ⇀135

53 I ⇀135
54 Xe ⇀135

55 Cs ⇀135
56 Ba. (2.16)

In addition, 135
54 Xe is a great neutron absorber and under the neutron flux within the reactor

will be changed into 136
54 Xe. Similar to the previous samarium poisoning subsection and

according to the so-called neutron absorbing and radioactive decay chain, we develop a set
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Table 5: Nuclear properties for Sm decay chain.

Nuclide Nuclide
indication Half-life Absorption cross

section (b)
Direct yield from

U-235
147Nd N1 11.1 d 0 0.0236

147Pm N2 2.62 y 845.72 to 148mPm,
448.23 to 148Pm 0

147Sm N3 ∞ 274.2 0

147mPm N4
42 d (7% to 148Pm,

93% to 148Sm ) 31964 0

148Pm N5 5.4 d 13858 0
149Pm N6 53.1 h 1105.6 0.0113
149Sm N7 ∞ 73635 0
150Pm N8 2.7 h 0 0
150Sm N9 ∞ 158.38 0
151Sm N10 87 y 9734.5 0.0044
152Sm N11 ∞ 813.01 0.00281

of six coupled first-order differential equations that describe the rate of change of each of the
five nuclei in the fission-product chain as well as again U-235 atom. They are as follows:

135Te :
dT

dt
= yTNfσfφ − λTT (2.17)

135I :
dI

dt
= λTT − λII (2.18)

135Xe :
dX

dt
= yXNfσfφ + λII − σXXφ − λXX (2.19)

135Cs :
dC

dt
= λXX − σCCφ − λCC (2.20)

135Ba :
dB

dt
= λCC (2.21)

235U :
dU
dt

= −σaNfφ (2.22)

in which yT and yX stand for fission yields of 135Te and 135Xe, respectively. Also, λ
are associated radioactive decay constants; σ are associated absorption cross-section, and
explicitly σf and σa are fission and absorption cross-sections for U-235 nucleus, respectively.
Constant values that were appeared in the set of equations of (2.17) through (2.22) are given
in Table 6. Equations (2.17) through (2.22) are again coupled IVPs and are stiff case [12, 13].
These equations are solved simultaneously to give desired results; which we have focused
on the Xe-135 concentration in the case of reactor power variation and results are given in
Figure 6. In the first period, reactor operates at full power and xenon concentration increases
toward to a constant value after about 40 hours. In the second period, reactor is shut down
and therefore, xenon peaks after about 11 hours and then decreases. In the third period,
reactor operates at full power and a same manner as like as period 1 for xenon behavior
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Figure 6: Xenon135 atom density as well as power variations in the four-time interval is given.

Table 6: Nuclear properties of fission products of mass 135.

Nuclide Nuclide
indication Half life

Radioactive
decay

constant s−1

Absorption
cross-section

(b)

Direct yield
from U-235

135Te T 29 s 0.0239 0 0.0609
135I I 6.7 h 2.87 × 10−5 0 0
135Xe X 9.2 h 2.09 × 10−5 2.64 × 106 0.0032
135Cs C 3 × 106 yr 7.3 × 10−15 17.2 0
135Ba B stable 0 0 0

are obtained. In the fourth period, reactor operates at half of nominal power (50%) and
therefore a xenon peak occurs after 11 hours, but xenon steady-state concentration is more
than previous period as we expected.

3. Conclusion

We have presented a computer package to solve first-order IVPs with constant and variable
coefficients using MATLAB software, in which the solution of a given stiff or nonstiff coupled
differential equations with known initial values were found and plotted. In the present paper,
some well-known nuclear engineering dynamical problems, related to the IVPs, were given.
A major application of IVPs to a real problem is the fuel depletion in a suggested PWR,
where it is computed by the present MATLAB-linked “solver”. We used matrices form such
as (d/dt)[X]j = [P]ij[X]j with known initial values in each case. But we have focused on
the constant [P]ij matrix, where its elements are multiplication of neutronic flux and material
cross sections. Our results are good compared with the well-known texts [10, 14]. Obviously,
our approach should be extended to a variable [P]ij or coupled IVPs with variable coefficients
for more accuracy, for instance, cross section is not fixed during fuel depletion [15, 16].

Our aim here is to bring out a MATLAB-linked solver for researchers to solve coupled
IVPs numerically where it is appeared frequently in many cases of nuclear engineering
problems. Reader may refer to the appendix to find our written MATLAB-linked solver
program.
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Appendix

Three programs which are named COUPLED, COEFFICIENT, and DEPLET must be written
as an M-file and then saved in the work directory of the MATLAB software. The first program
is

function dy = coupled(t,y) format(’long’,’e’) global Di
dy = zeros(Di,1); % a column vector
%disired variable
load moham if O==1 run coefficient
end
load H
dy=H∗y
O=O+1;
save moham O

The second program is

function coeficent
disp(’∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗’)
disp(’Coupled Differential Equations is computed in the form of
Dy=H∗y.’) disp(’ You should ENTER the H(n,m) array.’)
disp(’∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗’) load Di
for n=1:Di
for m=1:Di
disp(’In the following, you can find desired (n,m) to RUN:’)
disp([n m])
H(n,m)=input(’Please ENTER value of H(n,m) for the above given
(n,m):’);
end end save H H

The 3rd program is:

This program compute and plot set of Coupled Differential
Equations and Inintial Values(IVP) Using MATLAB commands. To
start computation one must enetr number of unknowns and equations,
constants and choose desired numerical method. function deplet

disp(’∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗’)
Di=input(’∗∗Please ENTER the Number of Differential
Equations(Unknowns): ’) save Di Di O=1; save moham O
%-----------------------------------------------
% xi’s are initial conditions for unknowns.
B=zeros(1,Di); for w=1:Di;

disp(’Insert initial values of Yi where i is:’);
disp([w])

B(1,w)=input(’Enter Yi: ’);

end
%--------------------------------------------

% t0 and t1 are the start and end points of time interval
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disp(’∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗’)
T0=input(’Insert Start-point of the computations: ’);
disp(’∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗’)
T1=input(’Insert End-point of the computations: ’);
disp(’∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗’)

%------------------------------------------------
P=menu(’What is the type of your coupled differential equation?
’,’NonStiff Equations’,’Stiff Equation’);

if P==1;
A=menu(’Which method you want for executing?’,
’ode45 method’,’ode23 method’,’ ode113 method’);

if A==1;
disp(’This methos is Based on an explicit Runge-Kutta (4,5)
formula, the Dormand-Prince pair...’)
disp(’It is a one-step solver - in computing, it needs only ’)
disp(’the solution at the immediately preceding time point,.’)
disp(’In general, ode45 is the best function to
apply as "first try" for most problems.’)
disp(’###############################’)
disp(’∗∗press any key to continue computations∗∗’)
disp(’###############################’)
pause

[t,y]=ode45(@coupled,[T0:1:T1],B);
J=input(’Which variables you want for plotting? ’);

plot(t,y(:,J))
%------------------------------------------------------

elseif A==2
disp(’This method is Based on an explicit Runge-Kutta (2,3) pair ’)
disp(’of Bogacki and Shampine. It may be more efficient’)
disp(’than ode45 at crude tolerances and in the ’)
disp(’presence of mild stiffness.’)

disp(’Like ode45, ode23 is a one-step solver.’)
disp(’###############################’)
disp(’∗∗press any key to continue computations∗∗’)
disp(’###############################’)
pause
[t,y]=ode23(@coupled,[T0 T1],B)
J=input(’Which variables you want for plotting? ’);
plot(t,y(:,J))
elseif A==3
disp(’Software will use variable order Adams-Bashforth-Moulton PECE
solver.’)
disp(’It may be more efficient than ode45 at stringent’)
disp(’tolerances and when the ODE function is particularly ’)
disp(’expensive to evaluate. ode113 is a multistep’)
disp(’solver - it normally needs the solutions’)
disp(’at several preceding time points ’)
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disp(’###############################’)
disp(’∗∗press any key to continue computations∗∗’)
disp(’###############################’)
pause
[t,y]=ode113(@coupled,[T0 T1],B)
J=input(’which variables you want for plotting? ’);
plot(t,y(:,J))

end
elseif P==2

G=menu(’Which method you want for executing’,
’ode15s method’,’ode23s’,’ode23t’,’ode23tb’)

if G==1
disp(’Software will use Variable-order solver based on the ’)
disp(’numerical differentiation formulas (NDFs).’)
disp(’Optionally it uses the backward differentiation formulas’)
disp(’BDFs, (also known as Gear method).’)
disp(’Like ode113, ode15s is a multistep solver.’)
disp(’If you suspect that a problem is stiff ’)
disp(’or if ode45 failed or was very inefficient, try ode15s’)
disp(’###############################’)
disp(’∗∗press any key to continue computations∗∗’)
disp(’###############################’)

pause
[t,y]=ode15s(@coupled,[T0 T1],B)

J=input(’Which variables you want for plotting? ’);
plot(t,y(:,J))

elseif G==2
disp(’This method is Based on a modified Rosenbrock formula of
order 2.’)
disp(’Because it is a one-step solver, ’)
disp(’it may be more efficient than ode15s ’)
disp(’at crude tolerances. It can solve some’)
disp(’kinds of stiff problems for which ode15s is not effective.’)
disp(’###############################’)
disp(’∗∗press any key to continue computations∗∗’)
disp(’###############################’)
pause
[t,y]=ode23s(@coupled,[T0 T1],B)
J=input(’Which variables you want for plotting? ’);

plot(t,y(:,J))

elseif G==3
disp(’software wil use an implementation of the trapezoidal rule ’)
disp(’using a "free" interpolant.’)
disp(’Use this solver if the problem’)
disp(’is only moderately stiff and you’)
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disp(’need a solution without numerical damping.’)
disp(’###############################’)

disp(’∗∗press any key to continue computations∗∗’)
disp(’###############################’)

pause
[t,y]=ode23t(@coupled,[T0 T1],B)

J=input(’Which variables you want for plotting? ’);
plot(t,y(:,J))

elseif G==4
disp(’software will use an implementation of TR-BDF2,’)
disp(’an implicit Runge-Kutta formula with ’)
disp(’a first stage that is a trapezoidal ’)
disp(’rule step and a second stage that is a’)
disp(’backward differentiation formula of ’)
disp(’order 2. Like ode23s, this solver may ’)
disp(’be more efficient than ode15s at crude tolerances.’)
disp(’###############################’)
disp(’∗∗press any key to continue computations∗∗’)
disp(’###############################’)
pause

[t,y]=ode23tb(@coupled,[T0 T1],B)
J=input(’Which variables you want for plotting? ’);

plot(t,y(:,J)) end disp(’If you want to RUN this code again, you
must rewrite (re-Enter) options.’) disp(’TO start again, RUN
deplet.m’) end
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