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1. Introduction

In this paper, we consider the multipoint boundary value problems for the impulsive
functional differential equation:

−u′′(t) = f(t, u(t), u(θ(t))), t ∈ J = [0, 1], t /= tk,

Δu′(tk) = Ik(u(tk)), k = 1, . . . , m,

u(0) − au′(0) = cu
(
η
)
, u(1) + bu′(1) = du(ξ),

(1.1)

where f ∈ C(J × R2,R), 0 ≤ θ(t) ≤ t, t ∈ J, θ ∈ C(J), a ≥ 0, b ≥ 0, 0 ≤ c ≤ 1, 0 ≤ d ≤ 1,
0 < η, ξ < 1. 0 < t1 < t2 < · · · < tm < 1, f is continuous everywhere except at {tk} × R2;
f(t+k, ·, ·), and f(t−k, ·, ·) exist with f(t−k, ·, ·) = f(tk, ·, ·); Ik ∈ C(R,R),Δu′(tk) = u′(t+k) − u′(t−k).
Denote J− = J \{ti, i = 1, 2, . . . , m}. Let PC(J, R) = {u : J → R;u(t)|J− is continuous, u(t+k) and
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u(t−k) exist with u(t−k) = u(tk), k = 1, 2, . . . , m}; PC1(J, R) = {u : J → R; u(t)|J− is continuous
differentiable, u′(t+

k
) and u′(t−

k
) exist with u′(t−

k
) = u′(tk), k = 1, 2, . . . , m}. Let E = PC1(J, R) ∩

C2(J, R). A function u ∈ E is called a solution of BVP(1.1) if it satisfies (1.1).
The method of upper and lower solutions combining monotone iterative technique

offers an approach for obtaining approximate solutions of nonlinear differential equations
[1–3]. There exist much literature devoted to the applications of this technique to general
boundary value problems and periodic boundary value problems, for example, see [1, 4–6]
for ordinary differential equations, [7–11] for functional differential equations, and [12] for
differential equations with piecewise constant arguments. For the studies about some special
boundary value problems, for example, Lidston boundary value problems and antiperiodic
boundary value problems, one may see [13, 14] and the references cited therein.

Here, we hope to mention some papers where existence results of solutions of certain
boundary value problems of impulsive differential equations were studied [11, 15] and
certain multipoint boundary value problems also were studied [6, 16–21]. These works
motivate that we study the multipoint boundary value problems for the impulsive functional
differential equation (1.1).

We also note that when Ik = 0 and θ(t) = t, the boundary value problem (1.1) reduces
to multi-point boundary value problems for ordinary differential equations which have been
studied in many papers, see, for example, [6, 16–18] and the references cited therein. To our
knowledge, only a few papers paid attention to multi-point boundary value problems for
impulsive functional differential equations.

In this paper, we are concerned with the existence of extreme solutions for the
boundary value problem (1.1). The paper is organized as follows. In Section 2, we establish
two comparison principles. In Section 3, we consider a linear problem associated to (1.1) and
then give a proof for the existence theorem. In Section 4, we first introduce a new concept
of lower and upper solutions. By using the method of upper and lower solutions with a
monotone iterative technique, we obtain the existence of extreme solutions for the boundary
value problem (1.1).

2. Comparison Principles

In the following, we always assume that the following condition (H) is satisfied:

(H) a ≥ 0, b ≥ 0, 0 ≤ c ≤ 1, 0 ≤ d ≤ 1, 0 < η, ξ < 1, a + c > 0, b + d > 0.

For any given function g ∈ E, we denote

Ag = max

{
g(0) − ag ′(0) − cg

(
η
)

aπ + c sinπη
,
g(1) + bg ′(1) − dg(ξ)

bπ + d sinπξ

}

,

Bg = max
{
Ag, 0

}
, cg(t) = Bg sin(πt), r = π2.

(2.1)

We now present main results of this section.
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Theorem 2.1. Assume that u ∈ E satisfies

−u′′(t) +Mu(t) +Nu(θ(t)) ≤ 0, t ∈ J, t /= tk,

Δu′(tk) ≥ Lku(tk), k = 1, . . . , m,

u(0) − au′(0) ≤ cu
(
η
)
, u(1) + bu′(1) ≤ du(ξ),

(2.2)

where a ≥ 0, b ≥ 0, 0 ≤ c ≤ 1, 0 ≤ d ≤ 1, 0 < η, ξ < 1, Lk ≥ 0 and constantsM, N satisfy

M > 0, N ≥ 0,
M +N

2
+

m∑

k=1

Lk ≤ 1. (2.3)

Then u(t) ≤ 0 for t ∈ J .

Proof. Suppose, to the contrary, that u(t) > 0 for some t ∈ J .
If u(1) = maxt∈Ju(t) > 0, then u′(1) ≥ 0, u(1) ≥ u(ξ), and

du(ξ) ≤ u(1) ≤ u(1) + bu′(1) ≤ du(ξ). (2.4)

So d = 1 and u(ξ) is a maximum value.
If u(0) = maxt∈Ju(t) > 0, then u′(0) ≤ 0, u(0) ≥ u(η), and

cu
(
η
) ≤ u(0) ≤ u(0) − bu′(0) ≤ cu

(
η
)
. (2.5)

So c = 1 and u(η) is a maximum value.
Therefore, there is a ρ ∈ (0, 1) such that

u
(
ρ
)
= max

t∈J
u(t) > 0, u′(ρ+

) ≤ 0. (2.6)

Suppose that u(t) ≥ 0 for t ∈ J . From the first inequality of (2.2), we obtain that u′′(t) ≥
0 for t ∈ J . Hence

u(0) = max
t∈J

u(t) or u(1) = max
t∈J

u(t). (2.7)

If u′(0) ≥ 0, then u′′(t) ≥ 0, t ∈ (ti, ti+1], it is easy to obtain that u(t) is nondecreasing.
Since u(1) ≤ du(ξ) ≤ u(1), it follows that u(t) ≡ K (K > 0) for t ∈ [ξ, 1]. From the first
inequality of (2.2), we have that when t ∈ [ξ, 1],

0 < MK ≤ Mu(t) +Nu(θ(t)) ≤ u′′(t) = 0, (2.8)

which is a contradiction.
If u′(0) ≤ 0, then u(0) = maxt∈Ju(t) > 0, or u(1) = maxt∈Ju(t) > 0. If u(0) = maxt∈Ju(t) >

0, then u(t) ≡ K (K > 0) for t ∈ [0, η]. If u(1) = maxt∈Ju(t) > 0, then u(t) ≡ K for t ∈ [ξ, 1].
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From the first inequality of (2.2), we have that when t ∈ [ξ, 1],

0 < MK ≤ Mu(t) +Nu(θ(t)) ≤ u′′(t) = 0, (2.9)

which is a contradiction.
Suppose that there exist t1, t2 ∈ J such that u(t1) > 0 and u(t2) < 0. We consider two

possible cases.

Case 1 (u(0) > 0). Since u(t2) < 0, there is κ > 0, ε > 0 such that u(κ) = 0, u(t) ≥ 0 for t ∈ [0, κ)
and u(t) < 0 for all t ∈ (κ, κ + ε]. It is easy to obtain that u′′(t) ≥ 0 for t ∈ [0, κ]. If t∗ < κ,
then 0 < Mu(t∗) ≤ u′′(t∗) ≤ 0, a contradiction. Hence t∗ > κ + ε. Let t∗ ∈ [0, t∗) such that
u(t∗) = mint∈[0,t∗)u(t), then u(t∗) < 0. From the first inequality of (2.2), we have

u′′(t) ≥ (M +N)u(t∗), t ∈ [0, t∗), t /= tk,

Δu′(tk) ≥ Lku(tk), k = 1, . . . , m.
(2.10)

Integrating the above inequality from s(t∗ ≤ s ≤ t∗) to t∗, we obtain

u′(t∗) − u′(s) ≥ (t∗ − s)(M +N)u(t∗) +
∑

s<tk<t∗
Lku(tk)

≥ (t∗ − s)(M +N)u(t∗) +
m∑

k=1

Lku(t∗).
(2.11)

Hence

−u′(s) ≥ [ (t∗ − s)(M +N) +
m∑

k=1

Lku(t∗), t∗ ≤ s ≤ t∗, (2.12)

and then integrate from t∗ to t∗ to obtain

−u(t∗) < u(t∗) − u(t∗)

≤
∫ t∗

t∗
(s − t∗)(M +N)u(t∗)ds −

m∑

k=1

Lku(t∗)

≤ −
(

M +N

2
(t∗ − t∗)

2 +
m∑

k=1

Lk

)

u(t∗)

≤ −
(

M +N

2
+

m∑

k=1

Lk

)

u(t∗).

(2.13)

From (2.3), we have that u(t∗) > 0. This is a contradiction.
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Case 2 (u(0) ≤ 0). Let t∗ ∈ [0, t∗) such that u(t∗) = mint∈[0,t∗)u(t) ≤ 0. From the first inequality
of (2.2), we have

u′′(t) ≥ (M +N)u(t∗), t ∈ [0, t∗), t /= tk,

Δu′(tk) ≥ Lku(tk), k = 1, . . . , m.
(2.14)

The rest proof is similar to that of Case 1. The proof is complete.

Theorem 2.2. Assume that (H) holds and u ∈ E satisfies

−u′′(t) +Mu(t) +Nu(θ(t)) + [(M + r)cu(t) +Ncu(θ(t))] ≤ 0, t ∈ J, t /= tk,

Δu′(tk) ≥ Lku(tk) + Lkcu(tk), k = 1, . . . , m,
(2.15)

where constantsM, N satisfy (2.3), and Lk ≥ 0, then u(t) ≤ 0 for t ∈ J .

Proof. Assume that u(0)−au′(0) ≤ cu(η), u(1)+bu′(1) ≤ du(ξ), then cu(t) ≡ 0. By Theorem 2.1,
u(t) ≤ 0.

Assume that u(0) − au′(0) ≤ cu(η), u(1) + bu′(1) > du(ξ), then

cu(t) =
sin(πt)

bπ + d sin(πξ)
(
u(1) + bu′(1) − du(ξ)

)
. (2.16)

Put y(t) = u(t) + cu(t), t ∈ J, then y(t) ≥ u(t) for all t ∈ J , and

y′(t) = u′(t) +
π cos(πt)

bπ + d sin(πξ)
(
u(1) + bu′(1) − du(ξ)

)
, t ∈ J,

y′′(t) = u′′(t) − rcu(t), t ∈ J.

(2.17)

Hence

y(0) = u(0), y(1) = u(1),

y(ξ) = u(ξ) +
sin(πξ)

bπ + d sin(πξ)
(
u(1) + bu′(1) − du(ξ)

)
,

y′(0) = u′(0) +
π

bπ + d sin(πξ)
(
u(1) + bu′(1) − du(ξ)

)
,

y′(1) = u′(1) − π

bπ + d sin(πξ)
(
u(1) + bu′(1) − du(ξ)

)
,

− y′′(t) +My(t) +Ny(θ(t)) = −u′′(t) +Mu(t) +Nu(θ(t)) + [(M + r)cu(t) +Ncu(θ(t))] ≤ 0,

y(0) − ay′(0) = u(0) − au′(0) − aπ

bπ + d sin(πξ)
(
u(1) + bu′(1) − du(ξ)

) ≤ cu
(
η
) ≤ cy

(
η
)
,
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y(1) + by′(1) − dy(ξ)

= u(1) + bu′(1) − du(ξ) − bπ

bπ + d sin(πξ)
(
u(1) + bu′(1) − du(ξ)

)

− d sin(πξ)
bπ + d sinπξ

(
u(1) + bu′(1) − du(ξ)

) ≤ 0,

Δy′(tk)= Δu′(tk)Δc′u(tk) ≥ Lku(tk) + Lkcu(tk) = Lky(tk).

(2.18)

By Theorem 2.1, y(t) ≤ 0 for all t ∈ J , which implies that u(t) ≤ 0 for t ∈ J .
Assume that u(0) − au′(0) > cu(η), u(1) + bu′(1) ≤ du(ξ), then

cu(t) =
sinπt

aπ + c sin
(
πη
)
(
u(0) − au′(0) − cu

(
η
))
. (2.19)

Put y(t) = u(t) + cu(t), t ∈ J, then y(t) ≥ u(t) for all t ∈ J , and

y′(t) = u′(t) +
π cos(πt)

aπ + c sin
(
πη
)
(
u(0) − au′(0) − cu

(
η
))
, t ∈ J,

y′′(t) = u′′(t) − rcu(t), t ∈ J.

(2.20)

Hence

y(0) = u(0), y(1) = u(1),

y
(
η
)
= u
(
η
)
+

sin
(
πη
)

aπ + c sin
(
πη
)
(
u(0) − au′(0) − cu

(
η
))
,

y′(0) = u′(0) +
π

aπ + c sin
(
πη
)
(
u(0) − au′(0) − cu

(
η
))
,

y′(1) = u′(1) − π

aπ + c sin
(
πη
)
(
u(0) − au′(0) − cu

(
η
))
,

− y′′(t) +My(t) +Ny(θ(t)) = −u′′(t) +Mu(t) +Nu(θ(t)) + [(M + r)cu(t) +Ncu(θ(t))] ≤ 0,

y(0) − ay′(0) − cy
(
η
)

= u(0) − au′(0) − cu
(
η
) − aπ

aπ + c sin
(
πη
)
(
u(0) − au′(0) − cu

(
η
))

− c sin
(
πη
)

aπ + c sin
(
πη
)
(
u(0) − au′(0) − cu

(
η
)) ≤ 0,

y(1) + by′(1) = u(1) + bu′(1) − bπ

aπ + c sin
(
πη
)
(
u(0) − au′(0) − cu

(
η
)) ≤ du(ξ) ≤ dy(ξ),

Δy′(tk) = Δu′(tk) + Δc′u(tk) ≥ Lku(tk) + Lkcu(tk) = Lky(tk).
(2.21)
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By Theorem 2.1, y(t) ≤ 0 for all t ∈ J , which implies that u(t) ≤ 0 for t ∈ J .
Assume that u(0) − au′(0) > cu(η), u(1) + bu′(1) > du(ξ), then cu(t) = Au sin(πt).
Put y(t) = u(t) + cu(t), t ∈ J, then y(t) ≥ u(t) for all t ∈ J , and

y′(t) = u′(t) +Auπ cos(πt), t ∈ J,

y′′(t) = u′′(t) − rcu(t), t ∈ J.
(2.22)

Hence

y(0) = u(0), y(1) = u(1),

y
(
η
)
= u
(
η
)
+Au sin

(
πη
)
, y(ξ) = u(ξ) +Au sin(πξ),

y′(0) = u′(0) +Auπ, y′(1) = u′(1) −Auπ,

− y′′(t) +My(t) +Ny(θ(t))

= −u′′(t) +Mu(t) +Nu(θ(t)) + [(M + r)cu(t) +Ncu(θ(t))] ≤ 0,

y(0) − ay′(0) − cy
(
η
)
= u(0) − au′(0) − cu

(
η
) − aAuπ − cAu sin

(
πη
) ≤ 0,

y(1) + by′(1) − dy(ξ) = u(1) + bu′(1) − du(ξ) − bAuπ − dAu sin(πξ) ≤ 0,

Δy′(tk)= Δu′(tk) + Δc′u(tk) ≥ Lku(tk) + Lkcu(tk) = Lky(tk).

(2.23)

By Theorem 2.1, y(t) ≤ 0 for all t ∈ J , which implies that u(t) ≤ 0 for t ∈ J . The proof is
complete.

3. Linear Problem

In this section, we consider the linear boundary value problem

−u′′(t) +Mu(t) +Nu(θ(t)) = σ(t), t ∈ J, t /= tk,

Δu′(tk) = Lku(tk) + ek, k = 1, . . . , m,

u(0) − au′(0) = cu
(
η
)
, u(1) + bu′(1) = du(ξ).

(3.1)

Theorem 3.1. Assume that (H) holds, σ ∈ C(J), ek ∈ R, and constants M, N satisfy (2.3) with

μ =

(
a(1 + 2b)

2(a + b + 1)
+
1
8

(
1 + 2b

a + b + 1

)2
)

(M +N) +

(

1 +
(1 + b)2

a + b + 1

)
m∑

k=1

Lk < 1. (3.2)
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Further suppose that there exist α, β ∈ E such that

(h1) α ≤ β on J ,

(h2)

−α′′(t) +Mα(t) +Nα(θ(t)) + [(M + r)cα(t) +Ncα(θ(t))] ≤ σ(t), t ∈ J, t /= tk,

Δα′(tk) ≥ Lkα(tk) + Lkcα(tk) + ek, k = 1, . . . , m,
(3.3)

(h3)

−β′′(t) +Mβ(t) +Nβ(θ(t)) − [(M + r)c−β(t) +Nc−β(θ(t))
] ≥ σ(t), t ∈ J, t /= tk,

Δβ′(tk) ≤ Lkβ(tk) − Lkc−β(tk) + ek, k = 1, . . . , m.
(3.4)

Then the boundary value problem (3.1) has one unique solution u(t) and α ≤ u ≤ β for t ∈ J .

Proof. We first show that the solution of (3.1) is unique. Let u1, u2 be the solution of (3.1) and
set v = u1 − u2. Thus,

−v′′(t) +Mv(t) +Nv(θ(t)) = 0, t ∈ J, t /= tk,

Δv′(tk) = Lkv(tk), k = 1, . . . , m,

v(0) − av′(0) = cv
(
η
)
, v(1) + bv′(1) = dv(ξ).

(3.5)

By Theorem 2.1, we have that v ≤ 0 for t ∈ J , that is, u1 ≤ u2 on J . Similarly, one can obtain
that u2 ≤ u1 on J . Hence u1 = u2.

Next, we prove that if u is a solution of (3.1), then α ≤ u ≤ β. Let p = α − u. From
boundary conditions, we have that cα(t) = cp(t) for all t ∈ J . From (h2) and (3.1), we have

−p′′(t) +Mp(t) +Np(θ(t)) +
[
(M + r)cp(t) +Ncp(θ(t))

] ≤ 0, t ∈ J, t /= tk,

Δp′(tk) ≥ Lkp(tk) + Lkcp(tk), k = 1, . . . , m.
(3.6)

By Theorem 2.1, we have that p = α − u ≤ 0 on J . Analogously, u ≤ β on J .
Finally, we show that the boundary value problem (3.1) has a solution by five steps as

follows.
Step 1. Let α(t) = α(t) + cα(t), β(t) = β(t) − c−β(t). We claim that

(1)

−α′′(t) +Mα(t) +Nα(θ(t)) + [(M + r)cα(t) +Ncα(θ(t))] ≤ σ(t) for t ∈ J, t /= tk,

Δα′(tk) ≥ Lkα(tk) + ek, k = 1, . . . , m,
(3.7)
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(2)

−β′′(t) +Mβ(t) +Nβ(θ(t)) −
[
(M + r)c−β(t) +Nc−β(θ(t))

]
≥ σ(t) for t ∈ J, t /= tk,

Δβ
′
(tk) ≤ Lkβ(tk) + ek, k = 1, . . . , m,

(3.8)

(3) α(t) ≤ α(t) ≤ β(t) ≤ β(t) for t ∈ J.

From (h2) and (h3), we have

−α′′(t) +Mα(t) +Nα(θ(t)) ≤ σ(t), t ∈ J, t /= tk,

Δα′(tk) ≥ Lkα(tk) + ek, k = 1, . . . , m.
(3.9)

−β′′(t) +Mβ(t) +Nβ(θ(t)) ≥ σ(t), t ∈ J, t /= tk,

Δβ
′
(tk) ≤ Lkβ(tk) + ek, k = 1, . . . , m,

(3.10)

α(0) − aα′(0) − cα
(
η
)

= α(0) − aα′(0) − cα
(
η
) − (aπ + c sin

(
πη
))
Bα ≤ 0, (3.11)

α(1) + bα′(1) − dα(ξ) = α(1) + bα′(0) − dα(ξ) − (bπ + d sin(πξ))Bα ≤ 0, (3.12)

−
[
β(0) − aβ

′
(0) − cβ

(
η
)]

= −β(0) + aβ′(0) + cβ
(
η
) − (aπ + c sin

(
πη
))
B−β ≤ 0, (3.13)

−
[
β(1) + bβ

′
(1) − dβ(ξ)

]
= −β(1) − bβ′(0) + dβ(ξ) − (bπ + d sin(πξ))B−β ≤ 0. (3.14)

From (3.9)–(3.14), we obtain that cα(t) = c−β(t) ≡ 0, t ∈ J. Combining (3.9) and (3.10), we
obtain that (1) and (2) hold.

It is easy to see that α ≤ α, β ≤ β on J . We show that α ≤ β on J . Let p = α − β, then
p(t) = α(t) − β(t) + cα(t) + c−β(t). From (3.9)–(3.14), we have

− p′′(t) +Mp(t) +Np(θ(t)) ≤ 0, t ∈ J, t /= tk,

Δp′(tk) ≥ Lkp(tk), k = 1, . . . , m,

p(0) − ap′(0) − cp
(
η
)
= α(0) − aα′(0) − cα

(
η
) − (aπ + c sin I

(
πη
))
Bα

− β(0) + aβ′(0) + cβ
(
η
) − (aπ + c sin

(
πη
))
B−β ≤ 0,

p(1) + bp′(1) − dp(ξ) = α(1) + bα′(1) − dα(ξ) − (bπ + d sin(πξ))Bα

− β(1) − bβ′(1) + dβ
(
η
) − (bπ + d sin(πξ))B−β ≤ 0,

Δp′(tk)= Δα′(tk) −Δβ′(tk) + Δc′a(tk) + Δc′−β(tk) ≥ Lk

(
α(tk) − β(tk)

)

+ Lk

(
cα(tk) + c−β(tk)

)
= Lkp(tk).

(3.15)

By Theorem 2.1, we have that p ≤ 0 on J , that is, α ≤ β on J . So (3) holds.
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Step 2. Consider the boundary value problem

−u′′(t) +Mu(t) +Nu(θ(t)) = σ(t), t ∈ J, t /= tk,

Δu′(tk) = Lku(tk) + ek, k = 1, . . . , m,

u(0) − au′(0) = λ, u(1) + bu′(1) = δ,

(3.16)

where λ ∈ R, δ ∈ R. We show that the boundary value problem (3.16) has one unique
solution u(t, λ, δ).

It is easy to check that the boundary value problem (3.16) is equivalent to the integral
equation:

u(t) =
δt + (1 − t)λ + bλ + aδ

a + b + 1
+
∫1

0
G(t, s)[σ(s) −Mu(s) −Nu(θ(s))]ds

+
∑

0<tk<t
(t − tk)[Lku(tk) + ek] − 1

a + b + 1
(t + b)

m∑

k=1

[(1 − tk) + b][Lku(tk) + ek],

(3.17)

where

G(t, s) =
1

a + b + 1

⎧
⎨

⎩

(a + t)(1 + b − s), 0 ≤ t ≤ s ≤ 1,

(a + s)(1 + b − t), 0 ≤ s ≤ t ≤ 1.
(3.18)

It is easy to see that PC(J, R) with norm ‖u‖ = maxt∈J |u(t)| is a Banach space. Define a
mapping Φ : PC(J, R) → PC(J, R) by

(Φu)(t) =
δt + (1 − t)λ + bλ + aδ

a + b + 1
+
∫1

0
G(t, s)[σ(s) −Mu(s) −Nu(θ(s))]ds

+
∑

0<tk<t
(t − tk)[Lku(tk) + ek] − 1

a + b + 1
(t + b)

m∑

k=1

[(1 − tk) + b][Lku(tk) + ek].

(3.19)

For any x, y ∈ PC(J, R), we have

∣∣(Φx)(t) − (Φy
)
(t)
∣∣

≤
∫1

0
G(t, s)

[
M
(
y(s) − x(s)

)
+N

(
y(θ(s)) − x(θ(s))

)]
ds +

(

1 +
(1 + b)2

a + b + 1

)
m∑

k=1

Lk‖x − y‖

≤
∫1

0
G(t, s)ds‖x − y‖(M +N) +

(

1 +
(1 + b)2

a + b + 1

)
m∑

k=1

Lk‖x − y‖.

(3.20)
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Since

max
t∈J

∫1

0
G(t, s)ds =

a(1 + 2b)
2(a + b + 1)

+
1
8

(
1 + 2b

a + b + 1

)2

, (3.21)

the inequality (3.2) implies that Φ : PC(J) → PC(J) is a contraction mapping. Thus there
exists a unique u ∈ PC(J) such thatΦu = u. The boundary value problem (3.16) has a unique
solution.
Step 3. We show that for any t ∈ J , the unique solution u(t, λ, δ) of the boundary value
problem (3.16) is continuous in λ and δ. Let u(t, λi, δi), i = 1, 2, be the solution of

−u′′(t) +Mu(t) +Nu(θ(t)) = σ(t), t ∈ J, t /= tk,

Δu′(tk) = Lku(tk) + ek, k = 1, . . . , m,

u(0) − au′(0) = λi, u(1) + bu′(1) = δi, i = 1, 2.

(3.22)

Then

u(t, λi, δi) =
δit + (1 − t)λi + bλi + aδi

a + b + 1
+
∫1

0
G(t, s)[σ(s) −Mu(s, λi, δi) −Nu(θ(s), λi, δi)]ds

+
∑

0<tk<t
(t − tk)[Lku(tk) + ek] − 1

a + b + 1
(t + b)

×
m∑

k=1

[(1 − tk) + b][Lku(tk) + ek], i = 1, 2.

(3.23)

From (3.23), we have that

‖u(t, λ1, δ1) − u(t, λ2, δ2)‖ ≤ |λ1 − λ2| + |δ1 − δ2|

+ (M +N)‖u(t, λ1, δ1) − u(t, λ2, δ2)‖max
t∈J

∫1

0
G(t, s)ds

+ ‖u(t, λ1, δ1) − u(t, λ2, δ2)‖
(

1 +
(1 + b)2

a + b + 1

)
m∑

k=1

Lk‖x − y‖

≤ |λ1 − λ2| + |δ1 − δ2| + μ‖u(t, λ1, δ1) − u(t, λ2, δ2)‖.
(3.24)

Hence

‖u(t, λ1, δ1) − u(t, λ2, δ2)‖0 ≤
1

1 − μ
(|λ1 − λ2| + |δ1 − δ2|). (3.25)
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Step 4. We show that

α(t) ≤ u(t, λ, δ) ≤ β(t) (3.26)

for any t ∈ J , λ ∈ [cα(η), cβ(η)], and δ ∈ [dα(ξ), dβ(ξ)], where u(t, λ, δ) is unique solution
of the boundary value problem (3.16).

Let m(t) = α(t) − u(t, λ, δ). From (3.9), (3.11), (3.12), and (3.16), we have that m(0) −
am′(0) ≤ cm(η), m(1) + bm′(1) ≤ dm(ξ), and

−m′′(t) +Mm(t) +Nm(θ(t))

= −α′′(t) +Mα(t) +Nα(θ(t)) + u′′(t, λ) −Mu(t, λ, δ) −Nu(θ(t), λ, δ) ≤ σ(t) − σ(t) ≤ 0,

Δm′(tk) ≥ Lku(tk).
(3.27)

By Theorem 2.1, we obtain that m ≤ 0 on J , that is, α(t) ≤ u(t, λ, δ) on J . Similarly, u(t, λ, δ) ≤
β(t) on J .
Step 5. Let D = [cα(η), cβ(η)] × [dα(ξ), dβ(ξ)]. Define a mapping F : D → R2 by

F(λ, δ) =
(
u
(
η, λ, δ

)
, u(ξ, λ, δ)

)
, (3.28)

where u(t, λ, δ) is unique solution of the boundary value problem (3.16). From Step 4, we
have

F(D) ⊂ D. (3.29)

Since D is a compact convex set and F is continuous, it follows by Schauder’s fixed point
theorem that F has a fixed point (λ0, δ0) ∈ D such that

u
(
η, λ0, δ0

)
= λ0, u(ξ, λ0, δ0) = δ0. (3.30)

Obviously, u(t, λ0, δ0) is unique solution of the boundary value problem (3.1). This completes
the proof.

4. Main Results

Let M ∈ R, N ∈ R. We first give the following definition.

Definition 4.1. A function α ∈ E is called a lower solution of the boundary value problem (1.2)
if

−α′′(t) + (M + r)cα(t) +Ncα(θ(t)) ≤ f(t, α(t), α(θ(t))), t ∈ J, t /= tk,

Δα′(tk) ≥ Ik(α(tk)) + Lkcα(tk), k = 1, . . . , m.
(4.1)
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Definition 4.2. A function β ∈ E is called an upper solution of the boundary value problem
(1.2) if

−β′′(t) − (M + r)c−β(t) −Nc−β(θ(t)) ≥ f
(
t, β(t), β(θ(t))

)
t ∈ J, t ∈ J, t /= tk,

Δβ′(tk) ≤ Ikβ(tk) − Lkc−β(tk), k = 1, . . . , m.
(4.2)

Our main result is the following theorem.

Theorem 4.3. Assume that (H) holds. If the following conditions are satisfied:

(H1) α, β are lower and upper solutions for boundary value problem (1.2) respectively, and
α(t) ≤ β(t) on J ,

(H2) the constants M, N in definition of upper and lower solutions satisfy (2.3), (3.2), and

f
(
t, x, y

) − f
(
t, x, y

) ≥ −M(x − x) −N
(
y − y

)
,

Ik(x) − Ik
(
y
) ≥ Lk

(
x − y

)
, x ≤ y,

(4.3)

for α(t) ≤ x ≤ x ≤ β(t), α(θ(t)) ≤ y ≤ y ≤ β(θ(t)), t ∈ J .

Then, there exist monotone sequences {αn}, {βn} with α0 = α, β0 = β such that
limn→∞αn(t) = ρ(t), limn→∞βn(t) = �(t) uniformly on J , and ρ, � are the minimal and the maximal
solutions of (1.2), respectively, such that

α0 ≤ α1 ≤ α2 ≤ · · ·αn ≤ ρ ≤ x ≤ � ≤ βn ≤ · · · ≤ β2 ≤ β1 ≤ β0 (4.4)

on J , where x is any solution of (1.1) such that α(t) ≤ x(t) ≤ β(t) on J .

Proof. Let [α, β] = {u ∈ E : α(t) ≤ u(t) ≤ β(t), t ∈ J}. For any γ ∈ [α, β], we consider the
boundary value problem

−u′′(t) +Mu(t) +Nu(θ(t)) = f
(
t, γ(t), γ(θ(t))

)
+Mγ(t) +Nγ(θ(t)), t ∈ J,

Δu′(tk) = Ik
(
γ(tk)

) − Lk

(
u(tk) − γ(tk)

)
, k = 1, . . . , m.

u(0) − ax′(0) = cu
(
η
)
, u(1) + bu′(1) = du(ξ).

(4.5)

Since α is a lower solution of (1.2), from (H2), we have that

− α′′(t) +Mα(t) +Nα(θ(t))

≤ f(t, α(t), α(θ(t))) +Mα(t) +Nα(θ(t)) − (M + r)cα(t) −Ncα(θ(t))

≤ f
(
t, γ(t), γ(θ(t))

)
+Mγ(t) +Nγ(θ(t)) − (M + r)cα(t) −Ncα(θ(t)),

Δα′(tk) ≥ Ik(α(tk)) + Lkcα(tk) ≥ Ik
(
γ(tk)

)
+ Lkα(tk) − Lkγ(tk) + Lkcα(tk).

(4.6)
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Similarly, we have that

− β′′(t) +Mβ(t) +Nβ(θ(t))

≥ f
(
t, γ(t), γ(θ(t))

)
+Mγ(t) +Nγ(θ(t)) + (M + r)c−β(t) +Nc−β(θ(t)),

Δβ′(tk) ≤ Ik
(
β(tk)

) − Lkc−β(tk) ≤ Ik
(
γ(tk)

)
+ Lkβ(tk) − Lkγ(tk) − Lkc−β(tk).

(4.7)

By Theorem 3.1, the boundary value problem (4.5) has a unique solution u ∈ [α, β].
We define an operator Ψ by u = Ψγ , then Ψ is an operator from [α, β] to [α, β].

We will show that

(a) α ≤ Ψα, Ψβ ≤ β,

(b) Ψ is nondecreasing in [α, β].

From Ψα ∈ [α, β] and Ψβ ∈ [α, β], we have that (a) holds. To prove (b), we show that
Ψν1 ≤ Ψν2 if α ≤ ν1 ≤ ν2 ≤ β.

Let ν∗1 = Ψν1, ν
∗
2 = Ψν2 ,and p = ν∗1 − ν∗2, then by (H2) and boundary conditions, we

have that

− p′′(t) +Mp(t) +Np(θ(t))

= f(t, ν1(t), ν1(θ(t))) +Mν1(t) +Nν1(θ(t))

− f(t, ν2(t), ν2(θ(t))) −Mν2(t) −Nν2(θ(t)) ≤ 0,

Δp′(tk) ≥ Lkp(tk),

p(0) − ap′(0) = cp
(
η
)
, p(1) + pu′(1) = dp(ξ).

(4.8)

By Theorem 2.1, p(t) ≤ 0 on J , which implies that Ψν1 ≤ Ψν2.
Define the sequences {αn}, {βn} with α0 = α, β0 = β such that αn+1 = Ψαn, βn+1 = Ψβn

for n = 0, 1, 2, . . . From (a) and (b), we have

α0 ≤ α1 ≤ α2 ≤ · · · ≤ αn ≤ βn ≤ · · · ≤ β2 ≤ β1 ≤ β0 (4.9)

on t ∈ J , and each αn, βn ∈ E satisfies

−α′′
n(t) +Mαn(t) +Nαn(θ(t)) = f(t, αn−1(t), αn−1(θ(t))) +Mαn−1(t) +Nαn−1(θ(t)), t ∈ J, t /= tk,

Δα′
n(tk) = Ik(αn−1(tk)) + Lk(αn(tk) − αn−1(tk)), k = 1, 2, . . . , m,

αn(0) − aα′
n(0) = cαn

(
η
)
, αn(1) + bα′

n(1) = dαn(ξ),

−β′′n(t) +Mβn(t) +Nβn(θ(t)) = f
(
t, βn−1(t), βn−1(θ(t))

)
+Mβn−1(t) +Nβn−1(θ(t)), t ∈ J, t /= tk,

Δβn(tk) = Ik
(
βn−1(tk)

)
+ Lk

(
βn(tk) − βn−1(tk)

)
, k = 1, 2, . . . , m,

βn(0) − aβ′n(0) = cβn
(
η
)
, βn(1) + bβ′n(1) = dβn(ξ).

(4.10)
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Therefore, there exist ρ, � such that such that limn→∞αn(t) = ρ(t), limn→∞βn(t) = �(t)
uniformly on J . Clearly, ρ, � are solutions of (1.1).

Finally, we prove that if x ∈ [α0, β0] is any solution of (1.1), then ρ(t) ≤ x(t) ≤ �(t)
on J . To this end, we assume, without loss of generality, that αn(t) ≤ x(t) ≤ βn(t) for some n.
Since α0(t) ≤ x(t) ≤ β0(t), from property (b), we can obtain

αn+1(t) ≤ x(t) ≤ βn+1(t), t ∈ J. (4.11)

Hence, we can conclude that

αn(t) ≤ x(t) ≤ βn(t), ∀n. (4.12)

Passing to the limit as n → ∞, we obtain

ρ(t) ≤ x(t) ≤ �(t), t ∈ J. (4.13)

This completes the proof.
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