
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2009, Article ID 267964, 33 pages
doi:10.1155/2009/267964

Research Article
Pressure Drop Equations for a Partially
Penetrating Vertical Well in a Circular Cylinder
Drainage Volume

Jalal Farhan Owayed1 and Jing Lu2

1 College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
2 Department of Petroleum Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi,
United Arab Emirates

Correspondence should be addressed to Jing Lu, jilu2@yahoo.com

Received 8 October 2008; Accepted 2 January 2009

Recommended by Saad A. Ragab

Taking a partially penetrating vertical well as a uniform line sink in three-dimensional space,
by developing necessary mathematical analysis, this paper presents unsteady-state pressure drop
equations for an off-center partially penetrating vertical well in a circular cylinder drainage volume
with constant pressure at outer boundary. First, the point sink solution to the diffusivity equation
is derived, then using superposition principle, pressure drop equations for a uniform line sink
model are obtained. This paper also gives an equation to calculate pseudoskin factor due to partial
penetration. The proposed equations provide fast analytical tools to evaluate the performance of
a vertical well which is located arbitrarily in a circular cylinder drainage volume. It is concluded
that the well off-center distance has significant effect on well pressure drop behavior, but it does
not have any effect on pseudoskin factor due to partial penetration. Because the outer boundary is
at constant pressure, when producing time is sufficiently long, steady-state is definitely reached.
When well producing length is equal to payzone thickness, the pressure drop equations for a fully
penetrating well are obtained.
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1. Introduction

For both fully and partially penetrating vertical wells, steady-state and unsteady-state
pressure-transient testings are useful tools for evaluating in situ reservoir and wellbore
parameters that describe the production characteristics of a well. The use of transient well
testing for determining reservoir parameters and well productivity has become common, in
the past years, analytic solutions have been presented for the pressure behavior of partially
penetrating vertical wells.
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Figure 1: Partially penetrating vertical well in circular cylinder drainage volume.

The problem of fluid flow into wells with partial penetration has received much
attention in the past years in petroleum engineering [1–7].

In many oil and gas reservoirs the producing wells are completed as partially
penetrating wells; that is, only a portion of the pay zone is perforated. This may be done
for a variety of reasons, but the most common one is to prevent or delay the unwanted
fluids into the wellbore. The exact solution of the partial penetration problem presents
great analytical problems because the boundary conditions that the solutions of the partial
differential equations must satisfy are mixed; that is, on one of the boundaries the pressure
is specified on one portion and the flux on the other. This difficult occurs at the wellbore, for
the flux over the nonproductive section of the well is zero, the potential over the perforated
interval must be constant.

This problem may be overcome in the case of constant rate production by making the
assumption that the flux into the well is uniform over the entire perforated interval, so that
on the wellbore the flux is specified over the total formation thickness. This approximation
naturally leads to an error in the solution since the potential (pressure) will not be uniform
over the perforated interval, but it has been shown that this occurrence is not too significant.

Many different techniques have been used for solving the partial penetration problem,
namely, finite difference method [2], Fourier, Hankel and Laplace transforms [3–5], Green’s
functions [6]. The analytical expressions and the numerical results obtained for reservoir
pressures by different methods were essentially identical, however, there are some differences
between the values of wellbore pressures computed from numerical models and those
obtained from analytical solutions [7].

The primary goal of this study is to present unsteady state pressure drop equations
for an off-center partially penetrating vertical well in a circular cylinder drainage volume.
Analytical solutions are derived by making the assumption of uniform fluid withdrawal
along the portion of the wellbore open to flow. Taking the producing portion of a partially
penetrating well as a uniform line sink, using principle of potential superposition, pressure
drop equations for a partially penetrating well are obtained.

2. Partially Penetrating Vertical Well Model

Figure 1 is a schematic of an off-center partially penetrating vertical well. A partially
penetrating well of drilled length L drains a circular cylinder porous volume with height
H and radius Re.
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The following assumptions are made.

(1) The porous media volume is circular cylinder which has constant Kx,Ky,Kz

permeabilities, thickness H, porosity φ. And the porous volume is bounded by top
and bottom impermeable boundaries.

(2) The pressure is initially constant in the cylindrical body, during production the
pressure remains constant and equal to the initial pressure Pi at the lateral surface.

(3) The production occurs through a partially penetrating vertical well of radius Rw,
represented in the model by a uniform line sink which is located at R0 away from
the axis of symmetry of the cylindrical body. The drilled well length is L, the
producing well length is Lpr .

(4) A single-phase fluid, of small and constant compressibility Cf , constant viscosity
μ, and formation volume factor B, flows from the porous media to the well. Fluids
properties are independent of pressure. Gravity forces are neglected.

The porous media domain is

Ω =
{
(x, y, z) | x2 + y2 < R2

e, 0 < z < H
}
, (2.1)

where Re is cylinder radius, Ω is the cylindrical body.
Located at R0 away from the center of the cylindrical body, the coordinates of the

top and bottom points of the well line are (R0, 0, 0) and (R0, 0, L), respectively, while point
(R0, 0, L1) and point (R0, 0, L2) are the beginning point and end point of the producing portion
of the well, respectively. The well is a uniform line sink between (R0, 0, L1) and (R0, 0, L2), and
there holds

Lpr = L2 − L1, Lpr ≤ L ≤ H. (2.2)

We assume

Kx = Ky = Kh, Kz = Kv (2.3)

and define average permeability

Ka = (KxKyKz)
1/3 = K2/3

h
K1/3
v . (2.4)

Suppose point (R0, 0, z′) is on the producing portion, and its point convergence
intensity is q, in order to obtain the pressure at point (x, y, z) caused by the point (R0, 0, z′),
according to mass conservation law and Darcy’s law, we have to obtain the basic solution of
the diffusivity equation in Ω [8]:

Kh
∂2P

∂x2
+Kh

∂2P

∂y2
+Kv

∂2P

∂z2
= φμCt

∂P

∂t
+ μqBδ(x − R0)δ(y)δ(z − z′), in Ω, (2.5)



4 Mathematical Problems in Engineering

where Ct is total compressibility coefficient of porous media, δ(x − R0), δ(y), δ(z − z′) are
Dirac functions.

The initial condition is

P(t, x, y, z)|t=0 = Pi, in Ω. (2.6)

The lateral boundary condition is

P(t, x, y, z) = Pi, on Γ, (2.7)

where Γ is the cylindrical lateral surface:

Γ =
{
(x, y, z) | x2 + y2 = R2

e, 0 < z < H
}
. (2.8)

The porous media domain is bounded by top and bottom impermeable boundaries, so

∂P

∂z

∣∣∣∣
z=0

= 0;
∂P

∂z

∣∣∣∣
z=H

= 0. (2.9)

In order to simplify the above equations, we take the following dimensionless trans-
forms:

xD =
2x
L
, yD =

2y
L
, zD =

(
2z
L

)(
Kh

Kv

)1/2

, (2.10)

LD = 2
(
Kh

Kv

)1/2

, HD =
(

2H
L

)(
Kh

Kv

)1/2

, (2.11)

LprD = L2D − L1D =
[

2(L2 − L1)
L

](
Kh

Kv

)1/2

, (2.12)

R0D =
2R0

L
, ReD =

2Re

L
, RwD =

2Rw

L
, (2.13)

tD =
4Kht

φμCtL2
. (2.14)

Assuming q is the point convergence intensity at the point sink (R0, 0, z′), the partially
penetrating well is a uniform line sink, the total flow rate of the well is Q, and there holds

q =
Q

LprD
. (2.15)
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Define dimensionless pressures

PD =
4πL(KhKv)

1/2(Pi − P)
(μqB)

, (2.16)

PwD =
4πL(KhKv)

1/2(Pi − Pw)
(μqB)

. (2.17)

Note that if c is a positive constant, there holds [9]

δ(cx) =
δ(x)
c

, (2.18)

consequently, (2.5) becomes [8, 9]

∂2PD

∂xD2
+
∂2PD

∂yD2
+
∂2PD

∂zD2
=
∂PD
∂tD

− 8πδ(xD − R0D)δ(yD)δ(zD − z′D), in ΩD, (2.19)

where

ΩD =
{
(xD, yD, zD) | x2

D + y2
D < R2

eD, 0 < zD < HD

}
. (2.20)

If point r0 and point r are with distances ρ0 and ρ, respectively, from the circular center,
then the dimensionless off-center distances are

ρ0D =
2ρ0

L
, ρD =

2ρ
L
, (2.21)

There holds

(
π

HD

)
(
2ReD − ρ0D − ρD −

√
ρ0DρD

)
=
(
Kv

Kh

)1/2(πL

2H

)(
4Re

L
−

2ρ0

L
−

2ρ
L
−

2√ρ0ρ

L

)

=
(
Kv

Kh

)1/2(πRe

H

)(
2 −

ρ0

Re
−
ρ

Re
−
√
ρ0ρ

Re

)

=
(
Kv

Kh

)1/2(πRe

H

)(
2 − ϑ0 − ϑ −

√
ϑ0ϑ

)
,

(2.22)

where

ϑ0 =
ρ0

Re
, ϑ =

ρ

Re
. (2.23)
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Since the reservoir is with constant pressure outer boundary (edge water), in order to
delay water encroachment, a producing well must keep a sufficient distance from the outer
boundary. Thus in this paper, it is reasonable to assume

ϑ0 ≤ 0.6, ϑ ≤ 0.6. (2.24)

If

ϑ0 = ϑ = 0.6,
Kv

Kh
= 0.25,

Re

H
= 15 (2.25)

then

(
Kv

Kh

)1/2(πRe

H

)
(
2 − ϑ0 − ϑ −

√
ϑ0ϑ

)
= 0.251/2 × (π × 15) × (2.0 − 0.6 − 0.6 −

√
0.6 × 0.6),

exp(−4.7124) = 8.983 × 10−3;
(2.26)

and if

ϑ0 = ϑ = 0.5,
Kv

Kh
= 0.5,

Re

H
= 10, (2.27)

then

(
Kv

Kh

)1/2(πRe

H

)
(
2−ϑ0−ϑ−

√
ϑ0ϑ

)
= 0.51/2×(π×10)×(2.0 − 0.5 − 0.5 −

√
0.5×0.5) = 11.107,

exp(−11.107) = 1.501 × 10−5.

(2.28)

Recall (2.22), according to the above calculations, without losing generality, there holds

exp
[
−
(

π

HD

)
(
2ReD − ρ0D − ρD −

√
ρ0DρD

)
]
≈ 0. (2.29)

In the same manner, we have

exp
[
−
(

π

HD

)
(
2ReD − ρ0D − ρD

)
]
≈ 0. (2.30)

3. Point Sink Solution

For convenience in the following reference, we use dimensionless transforms given by (2.10)
through (2.17), every variable, domain, initial and boundary conditions below should be
taken as dimensionless, but we drop the subscript D.
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Thus, if the point sink is at (x′, 0, z′), (2.19) can be written as

∂P

∂t
−ΔP = 8πδ(x − x′)δ(y)δ(z − z′), in Ω, (3.1)

where

Ω =
{
(x, y, z) | x2 + y2 < R2

e, 0 < z < H
}
,

ΔP =
∂2P

∂x2
+
∂2P

∂y2
+
∂2P

∂z2
.

(3.2)

The equation of initial condition is changed to

P(t, x, y, z)|t=0 = 0, in Ω. (3.3)

The equation of lateral boundary condition is changed to

P(t, x, y, z) = 0, on Γ, (3.4)

where

Γ =
{
(x, y, z) | x2 + y2 = R2

e, 0 < z < H
}
. (3.5)

The problem under consideration is that of fluid flow toward a point sink from an off-
center position within a circular of radius Re. We want to determine the pressure change at
an observation point with a distance ρ from the center of circle.

Figure 2 is a geometric representation of the system. In Figure 2, the point sink r0 and
the observation point r, are with distances ρ0 and ρ, respectively, from the circular center; and
the two points are separated at the center by an angle θ. The inverse point of the point sink
r0 with respect to the circle is point r∗. Point r∗ with a distance ρ∗ from the center, and ρ1 from
the observation point. The inverse point is the point outside the circle, on the extension of the
line connecting the center and the point sink, and such that

ρ∗ =
R2
e

ρ0
. (3.6)

Assume R′ is the distance between point r and point r0, then [9, 10]

R′ =
√
ρ2 + ρ2

0 − 2ρρ0 cos θ. (3.7)

If the observation point r is on the drainage circle, ρ = Re, then

R′ =
√
R2
e + ρ2

0 − 2Reρ0 cos θ, Re > ρ0 > 0. (3.8)
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Figure 2: Geometric representation of a circular system.

If the observation point r is on the wellbore, then

R′ = Rw. (3.9)

Recall (2.9), obviously for impermeable upper and lower boundary conditions, there
holds [9, 10]

δ(z − z′) =
∞∑

k=0

cos
(
kπz′

H

)
cos

kπz

H
/(Hdk), (3.10)

where

dk =

⎧
⎪⎨

⎪⎩

1, if k = 0,

1
2
, if k > 0.

(3.11)

Let

P(t;x, y, z;x′, y′, z′) =
∞∑

k=0

ϕk(t, x, y) cos
(
kπz

H

)
, (3.12)

and substitute (3.12) into (3.1) and compare the coefficients of cos(kπz/H), we obtain

∂ϕk
∂t

+ λ2
kϕk −

(
∂2ϕk

∂x2
+
∂2ϕk

∂y2

)
= 8π cos

(
kπz′

H

)
δ(x − x′)δ(y)/(Hdk) (3.13)

in circular Ω1 = {(x, y) | x2 + y2 < R2
e}, and

ϕk = 0, (3.14)

on circumference Γ1 = {(x, y) | x2 + y2 = R2
e}, and

ϕk|t=0 = 0, (3.15)
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where

λk =
kπ

H
. (3.16)

Taking the Laplace transform at the both sides of (3.13), then

(
∂2ϕ̂k

∂x2
+
∂2ϕ̂k

∂y2

)
−
(
s + λ2

k

)
ϕ̂k =

αkδ(x − x′)δ(y)
s

, in Ω1, (3.17)

ϕ̂k = 0, on Γ1, (3.18)

where

αk =
( −8π
Hdk

)
cos

(
kπz′

H

)
, (3.19)

and s is Laplace transform variable.
Define

βk =
(

1
2π

)
αk =

( −4
Hdk

)
cos

(
kπz′

H

)
. (3.20)

Case 1. If k = 0, then

∂2ψ̂0

∂x2
+
∂2ψ̂0

∂y2
− sψ̂0 =

α0δ(x − x′)δ(y)
s

, in Ω1, (3.21)

where

α0 =
(−8π

H

)
,

ψ̂0 = 0, on Γ1.

(3.22)

Case 2. If k > 0, then ϕ̂k satisfies (3.17).
Define

ζk =
√
λ2
k + s. (3.23)

Recall (3.8), and [−βk/s]K0(ζkR′) is a basic solution of (3.17), since k > 0, we have

αk =
(−16π

H

)
cos

(
kπz′

H

)
,

βk =
(−8
H

)
cos

(
kπz′

H

)
,

(3.24)
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so let

ψ̂k = ϕ̂k + μ̂k, (3.25)

where

μ̂k =
βkK0[ζkR′]

s
, (3.26)

thus

ϕ̂k = ψ̂k − μ̂k, (3.27)

and ψ̂k satisfies homogeneous equation:

∂2ψ̂k

∂x2
+
∂2ψ̂k

∂y2
−
(
s + λ2

k

)
ψ̂k = 0, in Ω1,

ψ̂k =
βkK0

(√
s + λ2

kR
′)

s
, on Γ1,

(3.28)

R′ has the same meaning as in (3.8).

Under polar coordinates representation of Laplace operator and by using methods of
separation of variables, we obtain a general solution [11–13]:

ψ̂k(s, x, y; s, x′, 0) =
[
A0kI0(ζkρ) + B0kK0(ζkρ)

][
a0kθ + b0k

]

+
∞∑

m=1

[
AmkIm(ζkρ) + BmkKm(ζkρ)

][
amk cos(mθ) + bmk sin(mθ)

]
,

(3.29)

where Aik, Bik, aik, bik, i = 0, 1, 2, . . . , are undetermined coefficients.
Because ψ̂k(s, x, y; s, x′, 0) is continuously bounded within Ω1, but Ki(0) = ∞, there

holds

Bik = 0, i = 0, 1, 2, . . . . (3.30)

There hold [9, 10]

Kυ(z) =
(
πi

2

)
eυπi/2H

(1)
υ (zi),

Iυ(z) = e−υπi/2Jυ(zi),

(3.31)

where Kυ(z) is modified Bessel function of second kind and order υ, Iυ(z) is modified Bessel
function of first kind and order υ, Jυ(z) is Bessel function of first kind and order υ,H(1)

υ (z) is
Hankel function of first kind and order υ, and i =

√
−1.
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And there hold (see [14, page 979])

H
(1)
0 (σR′) = J0(σρ0)H

(1)
0 (σRe) + 2

∞∑

m=1

Jm(σρ0)H
(1)
m (σRe) cos(mθ), (3.32)

K0(ζkR′) =
(
πi

2

)
H

(1)
0

(
iζkR

′). (3.33)

Let σ = iζk, (note that i2 = −1), substituting (3.31) into (3.32) and using (3.33), we have
the following Cosine Fourier expansions of K0(ζkR′) (see [14, page 952]):

K0
(
ζkR

′) =
(
πi

2

)[

J0(iζkρ0)H
(1)
0 (iζkRe) + 2

∞∑

m=1

Jm(iζkρ0)H
(1)
m (iζkRe) cos(mθ)

]

= J0(iζkρ0)K0(ζkRe) + 2
∞∑

m=1

e−mπi/2Jm(iζkρ0)Km(ζkRe) cos(mθ)

= I0(ζkρ0)K0(ζkRe) + 2
∞∑

m=1

Im(ζkρ0)Km(ζkRe) cos(mθ).

(3.34)

So, we obtain

βkK0(ζkR′)
s

=
βk
[
I0(ζkρ0)K0(ζkRe) + 2

∑∞
m=1Im(ζkρ0)Km(ζkRe) cos(mθ)

]

s
. (3.35)

Note that ψ̂k = βkK0(ζkR′)/s on Γ1, and comparing coefficients of Cosine Fourier
expansions of K0(ζkR′)/s in (3.35) and (3.29), we obtain

a0k = 0, b0k = 1, bik = 0, i = 1, 2, . . . . (3.36)

Define

Ymk = amkAmk, k = 0, 1, 2, . . . (3.37)

and recall (3.29), then we have

ψ̂k(s, x, y; s, x′, 0) =
∞∑

m=0

YmkIm(ζkρ) cos(mθ), k = 0, 1, 2, . . . , (3.38)

where

Y0k =
βkK0(ζkRe)I0(ζkρ0)

sI0(ζkRe)
, (3.39)

Ymk =
2βkKm(ζkRe)Im(ζkρ0)

sIm(ζkRe)
. (3.40)
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In the appendix, we can prove

∞∑

k=1

∣
∣
∣
∣ψ̂k cos

(
kπz

H

)∣
∣
∣
∣ ≈ 0. (3.41)

Thus we only consider the case k = 0, in (3.38) and (3.40), let k = 0, we have

ψ̂0(s, x, y; s, x′, 0) =
∞∑

m=0

Ym0Im(ζ0ρ) cos(mθ), (3.42)

where

ζ0 =
√
s, (3.43)

Ym0Im(ζ0ρ) =
β0Km

(√
sRe

)
Im

(√
sρ0

)
Im

(√
sρ

)

sIm
(√

sRe

) = f1m(s) × f2m(s), (3.44)

where

f1m(s) =
(
β0R

m
e

21+m

)[21+msm/2Km

(√
sRe

)

Rm
e

]
, m = 0, 1, 2, . . . , (3.45)

f2m(s) =
Im

(√
sρ0

)
Im

(√
sρ

)

sm/2+1Im
(√

sRe

) , m = 0, 1, 2, . . . . (3.46)

And there holds

L−1{f1m(s)
}
=
(
β0R

m
e

21+m

)[exp
(
− (R2

e/4t)
)

tm+1

]
, m = 0, 1, 2, . . . , (3.47)

where L−1 is Inverse Laplace transform operator.
Since s = 0, s = −γmn are simple poles of meromorphic function f2m(s), if using partial

fraction expansion of meromorphic function, there holds [15]

f2m(s) =
Bm0

s
+
∞∑

n=1

Bmn
s + γmn

, (3.48)

where Bm0, Bmn are residues at poles s = 0, s = −γmn, respectively, and

Bm0 =
(ρ0ρ)

m

2mm!Rm
e
,

γmn =
ε2
mn

R2
e

,

(3.49)

εmn is the nth root of equation Jm(x) = 0.



Mathematical Problems in Engineering 13

From (3.48), we have

L−1{f2m(s)
}
= Bm0 +

∞∑

n=1

Bmn exp(−γmnt) =
∞∑

n=0

Bmn exp(−γmnt), (3.50)

where γm0 = 0.
According to the convolution theorem [12], from (3.44), there holds

L−1{f1m(s) × f2m(s)
}
=
(
β0R

m
e

21+m

){
∞∑

n=0

Bmn

∫ t

0

[
exp(−(R2

e/4τ))
τm+1

]

exp
[
− γmn(t − τ)

]
dτ

}

= Cm0 +Dm,

(3.51)

where

Cm0 =
(
β0R

m
e Bm0

21+m

)∫ t

0

[exp
(
−
(
R2
e/4τ

))

τm+1

]
dτ

=
[
β0(ρ0ρ)

m

m! × 21+2m

]∫ t

0

[exp
(
−
(
R2
e/4τ

))

τm+1

]
dτ,

Dm =
(
β0R

m
e

21+m

){
∞∑

n=1

Bmn

∫ t

0

[exp
(
−
(
R2
e/4τ

))

τm+1

]
exp

[
− γmn(t − τ)

]
dτ

}

.

(3.52)

Recall (3.38), (3.44), and (3.51), there holds

ψ0(t, x, y;x′, 0) = L−1{ψ̂0(s, x, y;x′, 0)
}

=
∞∑

m=0

L−1{f1m(s) × f2m(s)
}

cos(mθ)

=
∞∑

m=0

(
Cm0 +Dm

)
cos(mθ).

(3.53)

Using Laplace asymptotic integration (see [16, page 221]), when γmn is sufficiently
large, then

∫ t

0

[exp
(
−
(
R2
e/4τ

))

τm+1

]
exp

[
− γmn(t − τ)

]
dτ ≈

exp
(
−
(
R2
e/4τ

))

γmntm+1
, (3.54)

therefore,

Dm =
[
β0R

m
e exp

(
−
(
R2
e/4t

))

21+mtm+1

] ∞∑

n=1

Bmn
γmn

. (3.55)
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There holds [9]

Im(x) =
∞∑

k=0

1
k!(m + k)!

(
x

2

)m+2k

=
[(

1
m!

)(
x

2

)m]{
1 +

m!
(m + 1)!

(
x

2

)2

+
[

m!
2!(m + 2)!

](
x

2

)4

+ · · ·
}
.

(3.56)

Using (3.48) and (3.56), and note that

1
1 + x

= 1 − x + x2 − x3 +O(x3), (3.57)

so (3.46) can be written as

f2m(s)

=

{
(1/m!)

(√
sρ0/2

)m[1 +A
(√

sρ0/2
)2 + · · ·

]}{
(1/m!)

(√
sρ/2

)m[1 +A
(√

sρ/2
)2 + · · ·

]}

s1+m/2{(1/m!)
(√

sRe/2
)m[1 + (1/(m + 1))

(√
sRe/2

)2 + · · · ]}

=
Bm0

s

[
1 +

ρ2
0s

4(m + 1)
+ · · ·

][
1 +

ρ2s

4(m + 1)
+ · · ·

][
1 −

R2
es

4(m + 1)
+ · · ·

]

=
Bm0

s
+
(

1
m!

)(
ρ0ρ

2Re

)m[ 1
4(m + 1)

(
ρ2

0 + ρ
2 − R2

e

)
+O(s)

]
,

(3.58)

whereA denotes (m!/(m + 1)!), thus from (3.48), we obtain

∞∑

n=1

Bmn
γmn

= lim
s→ 0

[
f2m(s) −

Bm0

s

]

=
[

1
4(m + 1)!

](
ρ0ρ

2Re

)m(
ρ2

0 + ρ
2 − R2

e

)
,

(3.59)

therefore,

Dm =
[
β0R

m
e exp

(
−
(
R2
e/4t

))

21+mtm+1

][(
ρ2

0 + ρ
2 − R2

e

)

4(m + 1)!

](
ρ0ρ

2Re

)m

=
[
β0 exp

(
−
(
R2
e/4t

))

8t(m + 1)!

]
(
ρ2

0 + ρ
2 − R2

e

)
(
ρ0ρ

4t

)m

.

(3.60)

RP is defined as real part operator, for example, RP(eimθ) means real part of eimθ,

RP(eimθ) = cos(mθ). (3.61)
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There holds

exp
(
ρ0ρe

iθ

4τ

)
=
∞∑

m=0

(
1
m!

)(
ρ0ρe

iθ

4τ

)m

, (3.62)

and define

η =
R2
e

4
−
(
ρ0ρe

iθ

4

)
, (3.63)

η is a complex number.
Note that β0 = −4/H, recall (3.53), define

Λ1 =
∞∑

m=0

Cm0 cos(mθ)

=
(
β0

2

){∫ t

0

[
exp(−(R2

e/4τ))
τ

] ∞∑

m=0

[
cos(mθ)

m!

(
ρ0ρ

4τ

)m]
dτ

}

=
(
β0

2

)
× RP

{∫ t

0

[
exp(−(R2

e/4τ))
τ

]
exp

(
ρ0ρe

iθ

4τ

)
dτ

}

=
(
β0

2

)
× RP

{∫ t

0

[
exp(−(η/τ))

τ

]
dτ

}

= −
(
β0

2

)
× RP

{
Ei

(
−
η

t

)}

=
(

2
H

)
× RP

{
Ei

(
−
η

t

)}
.

(3.64)

In (3.60), let

χ =
ρ0ρ

4t
, (3.65)

and define

Λ2 =
∞∑

m=0

Dm cos(mθ)

=
[
β0 exp(−(R2

e/4t))
8t

]
(
ρ2

0 + ρ
2 − R2

e

) ∞∑

m=0

[
cos(mθ)
(m + 1)!

(
ρ0ρ

4t

)m]

=
[
β0 exp(−(R2

e/4t))
8t

]
(
ρ2

0 + ρ
2 − R2

e

) ∞∑

m=0

RP

{
1

(m + 1)!

(
ρ0ρe

iθ

4t

)m}

= −
[

exp(−(R2
e/4t))

2tH

]
(
ρ2

0 + ρ
2 − R2

e

)
× RP

{(
1

χeiθ

)
[

exp
(
χeiθ

)
− 1

]
}
,

(3.66)
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thus we obtain

ψ0 = L−1{ψ̂0
}
= Λ1 + Λ2, (3.67)

and there holds [9, 10]

L−1
{
K0(a

√
s)

s

}
= −1

2
Ei

(
− a

2

4t

)
, (3.68)

thus if we recall (3.26) and define

Λ3 = −μ0 = −L−1{μ̂0
}
, (3.69)

then

Λ3 = −L−1
[
β0K0(

√
sR′)

s

]
= −

(
2
H

)
Ei

(
− R

′2

4t

)
(3.70)

and R′ has the same meaning as in (3.7).
In the above equations, Ei(−x) is exponential integral function,

Ei(−x) =
∫−x

−∞

exp(u)
u

du, (0 < x <∞). (3.71)

Recall (3.27), there holds

ϕ0(t, x, y;x′, 0) = ψ0 − μ0 = Λ1 + Λ2 + Λ3. (3.72)

Combining (3.12), (3.26), (3.27), and (3.41), we obtain

P(t;x, y, z;x′, y′, z′) = ϕ0 +L−1

{
∞∑

k=1

ϕ̂k cos
(
kπz

H

)}

= ϕ0 +L−1

{
∞∑

k=1

(ψ̂k − μ̂k) cos
(
kπz

H

)}

= ϕ0 −
∞∑

k=1

cos
(
kπz

H

)
L−1

{βkK0
(√

s + λ2
kR
′)

s

}
.

(3.73)

Equation (3.73) is the pressure distribution equation of an off-center point sink in the
cylindrical body. If the point sink r0 and the observation point r are not on a radius of the
drainage circle, θ /= 0, recall (3.7), R′ cannot be simplified, we cannot obtain exact inverse
Laplace transform of (3.73), but if necessary, we may obtain numerical inverse Laplace
transform results.
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If the point sink is at the center of the drainage circle, then

ρ0 = 0, η =
R2
e

4
,

ϕ0 =
(

2
H

)[
Ei

(
−
R2
e

4t

)
− Ei

(
−
ρ2

4t

)]
+
[

exp(−(R2
e/4t))

2tH

]
(
R2
e − ρ2).

(3.74)

In Figure 2, if the point sink r0 and the observation point r are on a radius, then

θ = 0, η =
R2
e

4
−
(
ρ0ρ

4

)
, (3.75)

ϕ0 =
(

2
H

){
Ei

[
−
(
R2
e − ρρ0

4t

)]
− Ei

[
−
(ρ − ρ0)

2

4t

]

−
(
ρ2

0 + ρ
2 − R2

e

ρρ0

)[
exp

(
ρρ0 − R2

e

4t

)
− exp

(
−
R2
e

4t

)]}
.

(3.76)

4. Uniform Line Sink Solution

Although the off-center partially penetrating vertical well is represented in the model by a
line sink, we only concern in the pressures at the wellbore face.

For convenience, in the following reference, every variable below is dimensionless but
we drop the subscript D.

The well line sink is located along the line {(x′, 0, z) : L1 ≤ z ≤ L2}. If the observation
point r is on the wellbore, R′ = Rw, note that R0 	 Rw, and there hold

θ = 0, ρ = ρ0 + Rw = R0 + Rw,

ρ0 = R0, ρ − ρ0 = Rw,

ρ0ρ ≈ R2
0, ρ + ρ0 ≈ 2ρ0 = 2R0,

(4.1)

then

η =
R2
e

4
−
R2

0

4
,

χ =
ρρ0

4t
≈
R2

0

4t
,

(4.2)

and recall (3.64), then

Λ1(t;R0, 0) = −
(
β0

2

)
Ei

[
−
(
R2
e − R2

0

4t

)]
. (4.3)
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Recall (3.66), then

Λ2(t;R0, 0) = −
[2 exp

(
−
(
R2
e/4t

))

HR2
0

]
(
2R2

0 − R
2
e

)
[

exp
(
R2

0

4t

)
− 1

]
, (4.4)

and recall (3.70), then

Λ3(t;R0, 0) =
(
β0

2

)
Ei

[
−
(ρ − ρ0)

2

4t

]
=
(
β0

2

)
Ei

(
− R

2
w

4t

)
. (4.5)

Define

Γ1 =
∫L2

L1

Λ1(t;R0, 0)dz′

=
∫L2

L1

[
−
(
β0

2

)]
Ei

[
−
(
R2
e − R2

0

4t

)]
dz′

= −
(
β0

2

)
(L2 − L1)Ei

[
−
(
R2
e − R2

0

4t

)]

=
(2Lpr

H

)
Ei

[
−
(
R2
e − R2

0

4t

)]
,

Γ2 =
∫L2

L1

Λ2(t;R0, 0)dz′

=
∫L2

L1

−
[

2 exp(−(R2
e/4t))

HR2
0

]
(
2R2

0 − R
2
e

)
[

exp
(
R2

0

4t

)
− 1

]
dz′

= −
[2Lp exp

(
−
(
R2
e/4t

))

HR2
0

]
(
2R2

0 − R
2
e

)
[

exp
(
R2

0

4t

)
− 1

]

= −
( 2Lpr
HR2

0

)
(
2R2

0 − R
2
e

)
[

exp
(
R2

0 − R2
e

4t

)
− exp

(
−
R2
e

4t

)]
,

Γ3 =
∫L2

L1

Λ3(t;R0, 0)dz′

=
(
β0

2

)∫L2

L1

Ei

(
− R

2
w

4t

)
dz′

= −
(2Lpr

H

)
Ei

(
− R

2
w

4t

)
.

(4.6)
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In order to calculate the pressure at the wellbore, using principle of potential super-
position, integrating z′ at both sides of (3.72) from L1 to L2, then

Ψ0(t) =
∫L2

L1

ϕ0(t;R0, 0)dz′

= Γ1 + Γ2 + Γ3

=
(2Lpr

H

)
Ei

[
−
(
R2
e − R2

0

4t

)]

−
( 2Lpr
HR2

0

)
(
2R2

0 − R
2
e

)
[

exp
(
R2

0 − R2
e

4t

)
− exp

(
−
R2
e

4t

)]

−
(2Lpr

H

)
Ei

(
− R

2
w

4t

)

=
(2Lpr

H

){
Ei

[
−
(
R2
e − R2

0

4t

)]
− Ei

(
− R

2
w

4t

)

−
(

1
R2

0

)
(
2R2

0 − R
2
e

)
[

exp
(
R2

0 − R2
e

4t

)
− exp

(
−
R2
e

4t

)]}
.

(4.7)

Recall (3.26), and note that ρ − ρ0 = Rw, we have

μ̂k =
βkK0

(
Rw

√
s + λ2

k

)

s
, (4.8)

and define

σ̂k =
∫L2

L1

μ̂kdz
′

= βk
(

1
s

)∫L2

L1

K0
(
Rw

√
s + λ2

k

)
dz′

= −
(

8
Hs

)
K0

(
Rw

√
s + λ2

k

)
∫L2

L1

cos
(
kπz′

H

)
dz′

= −
(

8
kπs

)
K0

(
Rw

√
s + λ2

k

)
[

sin
(
kπL2

H

)
− sin

(
kπL1

H

)]
,

(4.9)

because when s is very small, (time t is sufficiently long), there holds

K0
(
Rw

√
s + λ2

k

)
= K0

(
Rwλk

√
1 + s/λ2

k

)
≈ K0(Rwλk), (4.10)
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so when time is sufficiently long,

σk = L−1{σ̂k
}
= −

(
8
kπ

)
K0(Rwλk)

[
sin

(
kπL2

H

)
− sin

(
kπL1

H

)]
. (4.11)

Recall (3.12), (3.24), (3.27), and (3.41), when time t is sufficiently long, define

U =
∞∑

k=1

σk cos
(
kπz

H

)

=
∞∑

k=1

−
(

8
kπ

)
K0(Rwλk)

[
sin

(
kπL2

H

)
− sin

(
kπL1

H

)]
cos

(
kπz

H

)

= −
(

8
π

) ∞∑

n=1

K0(nπRw/H)
n

[
sin

(
nπL2

H

)
− sin

(
nπL1

H

)]
cos

(
nπz

H

)
.

(4.12)

Therefore, the wellbore pressure at point (R0 + Rw, z) is

P(Rw, z) =
∫L2

L1

P(R0 + Rw, 0, z, t;R0, 0, z′)dz′

≈ Ψ0(t) −U.
(4.13)

Considering the bottom point of the well line sink, then z = Lpr, L1 = 0, thus L2 = Lpr ,
in this case, (4.12) reduces to

U = −
(

8
π

) ∞∑

n=1

K0(nπRw/H)
n

sin
(
nπLpr

H

)
cos

(
nπz

H

)

= −
(

4
π

) ∞∑

n=1

K0(nπRw/H)
n

sin
(2nπLpr

H

)

= I1 + I2,

(4.14)

where

I1 = −
(

4
π

) N∑

n=1

K0(nπRw/H)
n

sin
(2nπLpr

H

)
,

I2 = −
(

4
π

) ∞∑

n=N+1

K0(nπRw/H)
n

sin
(2nπLpr

H

)
,

N = 4
[
H

πRw

]
,

(4.15)

where [H/πRw] is the integer part of H/πRw.
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For I2 it holds the following estimate:

|I2| =
∣
∣
∣
∣
∣

∞∑

n=N+1

(
4
π

)
K0(nπRw/H)

n
sin

(2nπLpr
H

)∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∞∑

n=N+1

(
4
π

)
K0(nπRw/H)

n

∣
∣
∣
∣
∣

≤
∫∞

N

(
4
π

)
K0(4x/N)

x
dx

=
(

4
π

)∫∞

4

K0(y)
y

dy

= 2.7 × 10−3

≈ 0.

(4.16)

So, (4.14) reduces to

U ≈ I1 = −
(

4
π

) N∑

n=1

K0(nπRw/H)
n

sin
(2nπLpr

H

)
. (4.17)

Combining (4.7), (4.13), and (4.17), pressure at the bottom point of the producing
portion is

P(Rw, Lpr) = Ψ0(t) +
(

4
π

) N∑

n=1

K0(nπRw/H)
n

sin
(2nπLpr

H

)
. (4.18)

In order to obtain average wellbore pressure, recall (4.12) and (4.17), integrate both
sides of (4.13) with respect to z from L1 to L2, then divided by Lpr , average wellbore pressure
is obtained:

Pa,w =
1
Lpr

∫L2

L1

P(Rw, z)dz

≈ Ψ0(t)+
(

8
π

) N∑

n=1

K0(nπRw/H)
n

[

sin
(
nπL2

H

)
−sin

(
nπL1

H

)][
1
Lpr

∫L2

L1

cos
(
nπz

H

)
dz

]

= Ψ0(t) +
(

8H
π2Lpr

) N∑

n=1

K0(nπRw/H)
n2

[

sin
(
nπL2

H

)
− sin

(
nπL1

H

)]2

= Ψ0(t) +
(

32H
π2Lpr

) N∑

n=1

K0(nπRw/H)
n2

sin2
(
nπLpr

2H

)
cos2

[
nπ(L2 + L1)

2H

]
,

(4.19)
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where we use

1
Lpr

∫L2

L1

cos
(
nπz

H

)
dz =

(
H

nπLpr

)[
sin

(
nπL2

H

)
− sin

(
nπL1

H

)]
. (4.20)

5. Dimensionless Wellbore Pressure Equations

Combining (4.7) and (4.19), the dimensionless average wellbore pressure of an off-center
partially penetrating vertical well in a circular cylinder drainage volume is

PwD =
(2LprD

HD

){
Ei

[
−
(
R2
eD − R

2
0D

4tD

)]
− Ei

(
−
R2
wD

4tD

)

−
(

1
R2

0D

)
(
2R2

0D − R
2
eD

)
[

exp
(
R2

0D − R
2
eD

4tD

)
− exp

(
−
R2
eD

4tD

)]}
+ Sp,

(5.1)

where

Sp =
(

32HD

π2LprD

) N∑

n=1

K0(nπRwD/HD)
n2

sin2
(
nπLprD

2HD

)
cos2

[
nπ(L2D + L1D)

2HD

]
, (5.2)

N = 4
[
HD

πRwD

]
, (5.3)

[HD/πRwD] is the integer part of HD/πRwD.
Equation (5.1) is applicable to impermeable upper and lower boundaries and long

after the time when pressure transient reaches the upper and lower boundaries. And Sp
denotes pseudo-skin factor due to partial penetration.

If Lpr = L = H, the drilled well length is equal to formation thickness, for a fully
penetrating well, Sp = 0, (5.1) reduces to

PwD = 2
{
Ei

[
−
(
R2
eD − R

2
0D

4tD

)]
− Ei

(
−
R2
wD

4tD

)

−
(

1
R2

0D

)
(
2R2

0D − R
2
eD

)
[

exp
(
R2

0D − R
2
eD

4tD

)
− exp

(
−
R2
eD

4tD

)]}
.

(5.4)

If the well is located at the center of the cylindrical body, then x′ = R0 = 0, there holds

lim
R0D→ 0

[(2R2
0D − R

2
eD

)

R2
0D

][
exp

(
R2

0D − R
2
eD

4tD

)
− exp

(
−
R2
eD

4tD

)]
= −

(
R2
eD

4tD

)
exp

(−R2
eD

4tD

)
.

(5.5)
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Thus, (5.1) reduces to

PwD =
(2LprD

HD

){
Ei

[
−
(
R2
eD

4tD

)]
− Ei

(
−
R2
wD

4tD

)
+
(
R2
eD

4tD

)
exp

[
−
(
R2
eD

4tD

)]}
+ Sp, (5.6)

where Sp has the same meaning as in (5.2).
If the well is a fully penetrating well in an infinite reservoir, Re =∞, there holds

Ei

(
−
R2
eD

4tD

)
= 0,

(
R2
eD

4tD

)
exp

(
−
R2
eD

4tD

)
= 0. (5.7)

Thus, (5.6) reduces to

PwD = −2Ei
(
−
R2
wD

4tD

)
. (5.8)

Substitute (2.12) and (2.15) into (2.17), then simplify and rearrange the resulting
equation, we obtain

Pi − Pw =
(

μQB

8πKhLpr

)
PwD, (5.9)

whereQ is total flow rate of the well, and PwD can be calculated by (5.1), (5.4), (5.6), and (5.8)
for different cases.

During production, the unsteady state pressure drop of an off-center partially
penetrating vertical well in a circular cylinder drainage volume can be calculated by (5.9).

6. Examples and Discussions

Recall (5.2), pseudo-skin factor due to partial penetration Sp is a function of L1, L2 and H is
not a function of well off-center distance R0 or drainage radius Re.

For an isotropic reservoir, (5.2) reduces to

Sp =
(

32H
π2Lpr

) N∑

n=1

K0(nπRw/H)
n2

sin2
(
nπLpr

2H

)
cos2

[
nπ(L1 + L2)

2H

]
, (6.1)

and (5.3) reduces to

N = 4
[
H

πRw

]
, (6.2)

[H/πRw] is the integer part of H/πRw.
If we define

f1 =
L1

H
, f2 =

L2

H
, f3 =

Rw

H
, (6.3)
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Figure 3: Pseudo-skin factor versus Rw/H plot.

then (6.1) can be written as

Sp =
[

32
π2(f2 − f1)

] N∑

n=1

K0(nπf3)
n2

sin2
[
nπ

2
(f2 − f1)

]
cos2

[
nπ

2
(f2 + f1)

]
. (6.4)

Example 6.1. Equation (6.4) shows that pseudo-skin factor Sp is a function of the three
parameters f1, f2, f3, fix two parameters, and generate plots that show the trend of Sp with
the third parameter.

Solution

Case 1. Figure 3 shows the trend of Sp with f3 when f1 = 0.2, f2 = 0.8, it can be found that Sp
is a weak decreasing function of f3.

Case 2. Figure 4 shows the trend of Sp with f1 when f2 = 0.9, f3 = 0.002, it can be found that
Sp is an increasing function of f1. When f2 is a constant, we may assume H is a constant,
then L2 is also a constant; when f1 increases, L1 also increases, thus the well producing length
Lpr = L2 − L1 decreases, and pseudo-skin factor due to partial penetration increases.

Case 3. Figure 5 shows the trend of Sp with f2 when f1 = 0.1, f3 = 0.002, it can be found
that Sp is a decreasing function of f2. When f1 is a constant, we may assume H is a constant,
then L1 is also a constant; when f2 increases, L2 also increases, thus the well producing length
Lpr = L2 − L1 increases, and pseudo-skin factor due to partial penetration decreases.

Example 6.2. A fully penetrating off-center vertical well, if

ReD = 20, RwD = 0.01, (6.5)

compare the wellbore pressure responses when RoD = 5, 10, 15.
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Solution

Equation (5.4) is used to calculate PwD, the results are shown in Figure 6.
Figure 6 shows that at early times, the well is in infinite acting period. When producing

time is long, the influence from outer boundary appears. Because the outer boundary is at
constant pressure, when the producing time is sufficiently long, steady state will be reached,
PwD becomes a constant.

At a given time tD, if drainage radius ReD is a constant, when well off-center
distanceRoD increases, PwD decreases, which indicates the effect from constant pressure outer
boundary is more pronounced.

Example 6.3. A fully penetrating off-center vertical well, if

RoD = 10, RwD = 0.01, (6.6)

compare the wellbore pressure responses when ReD = 20, 30, 40.
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Solution

Equation (5.4) is used to calculate PwD, the results are shown in Figure 7.
Figure 7 shows that at a given time tD, if well off-center distance RoD is a constant,

when drainage radius ReD increases, PwD also increases, which indicates the effect from
constant pressure outer boundary is more pronounced.

7. Conclusions

The following conclusions are reached.

(1) The proposed equations provide fast analytical tools to evaluate the performance
of a vertical well which is located arbitrarily in a circular drainage volume with
constant pressure outer boundary.

(2) The well off-center distance has significant effect on well pressure drop behavior,
but it does not have any effect on pseudo-skin factor due to partial penetration.

(3) Because the outer boundary is at constant pressure, when producing time is
sufficiently long, steady-state is definitely reached.

(4) At a given time in a given drainage volume, if the well off-center distance increases,
the pressure drop at wellbore decreases.

(5) When well producing length is equal to payzone thickness, the pressure drop
equations for a fully penetrating well are obtained.

Appendix

In this appendix, we want to prove (3.41).
For convenience, in the following reference, every variable below is dimensionless but

we drop the subscript D.
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Figure 7: The effect of drainage radius on wellbore pressure.

There hold [14]

Im(x) 

exp(x)

(2πx)1/2
, Km(x) 


[π/(2x)]1/2

exp(x)
, x 	 1, ∀m ≥ 0. (A.1)

Since

ζk =
√
λ2
k
+ s > λk =

kπ

H
> 0, ∀k ≥ 1, (A.2)

and note thatH is in dimensionless form in the above equation, recall (2.11), (2.13) and (2.21),
for dimensionless H,Re, ρ0, ρ, there hold

ζkRe 	 1, ζkρ0 	 1, ζkρ 	 1, (A.3)

thus, we obtain

Km(ζkRe)
Im(ζkRe)

≈ π exp(−2ζkRe), (A.4)

Im(ζkρ0)Im(ζkρ) ≈
[

exp(ζkρ0)

(2πζkρ0)
1/2

][
exp(ζkρ)

(2πζkρ)
1/2

]

=
exp[ζk(ρ + ρ0)]

(2πζk)(ρρ0)
1/2

, (A.5)
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YmkIm(ζkρ) =
2βkKm(ζkRe)Im(ζkρ0)Im(ζkρ)

sIm(ζkRe)

≈
(

2βk
s

)
[
π exp(−2ζkRe)

]
{

exp[ζk(ρ + ρ0)]

(2πζk)(ρρ0)
1/2

}

=
(

2βk
s

)[
π

(2πζk)(ρρ0)
1/2

]
exp

[
− ζk(2Re − ρ0 − ρ)

]

=
[

βk

sζk(ρρ0)
1/2

]
exp

[
− ζk(2Re − ρ0 − ρ)

]
.

(A.6)

There holds

|ψ̂k| =
∞∑

m=0

∣∣YmkIm(ζkρ) cos(mθ)
∣∣

<
∞∑

m=0

∣∣YmkIm(ζkρ)
∣∣

=
∞∑

m=0

∣∣∣∣
2βkKm(ζkRe)Im(ζkρ0)Im(ζkρ)

sIm(ζkRe)

∣∣∣∣.

(A.7)

Combining (2.21), (3.20), (A.6), and (A.7), we obtain

∞∑

k=1

∣∣∣∣ψ̂k cos
(
kπz

H

)∣∣∣∣ ≤
∞∑

k=1

|ψ̂k|

=
∞∑

k=1

∞∑

m=0

∣∣∣
∣

2βkKm(ζkRe)Im(ζkρ0)Im(ζkρ)
sIm(ζkRe)

∣∣∣
∣

=
∞∑

k=1

[∣∣∣∣
2βkK0(ζkRe)I0(ζkρ0)I0(ζkρ)

sI0(ζkRe)

∣∣∣∣

+
∞∑

m=1

∣∣∣∣
2βkKm(ζkRe)Im(ζkρ0)Im(ζkρ)

sIm(ζkRe)

∣∣∣∣

]

=
∞∑

k=1

∣∣∣∣
2βkK0(ζkRe)I0(ζkρ0)I0(ζkρ)

sI0(ζkRe)

∣∣∣∣

+
∞∑

k=1

∞∑

m=1

∣∣∣∣
2βkKm(ζkRe)Im(ζkρ0)Im(ζkρ)

sIm(ζkRe)

∣∣∣∣

= Ξ1 + Ξ2,

(A.8)
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where

Ξ1 =
∞∑

k=1

∣∣
∣
∣

2βkK0(ζkRe)I0(ζkρ0)I0(ζkρ)
sI0(ζkRe)

∣∣
∣
∣, (A.9)

Ξ2 =
∞∑

k=1

∞∑

m=1

∣
∣
∣
∣

2βkKm(ζkRe)Im(ζkρ0)Im(ζkρ)
sIm(ζkRe)

∣
∣
∣
∣. (A.10)

It is easy to prove if

x > y > 0, a > 0, (A.11)

then

exp(−ax)
x

<
exp(−ay)

y
, (A.12)

since ζk > λk, thus

(
1
ζk

)
exp

[
− ζk(2Re − ρ0 − ρ)

]
<

(
1
λk

)
exp

[
− λk(2Re − ρ0 − ρ)

]
. (A.13)

Thus, there holds

Ξ1 =
∞∑

k=1

∣∣∣∣
2βkK0(ζkRe)I0(ζkρ0)I0(ζkρ)

sI0(ζkRe)

∣∣∣∣

≈
∞∑

k=1

[ |βk|
sζk(ρρ0)

1/2

]
exp

[
− ζk(2Re − ρ0 − ρ)

]

<
∞∑

k=1

[ |βk|
sλk(ρρ0)

1/2

]
exp

[
− λk(2Re − ρ0 − ρ)

]

=
∞∑

k=1

[
8

sπk(ρρ0)
1/2

]
exp

[
−
(
kπ

H

)
(2Re − ρ0 − ρ)

]

<
∞∑

k=1

[
8

sπ(ρρ0)
1/2

]
exp

[
−
(
kπ

H

)
(2Re − ρ0 − ρ)

]

≈
[

8

sπ(ρρ0)
1/2

]{
exp[−(π/H)(2Re − ρ0 − ρ)]

1 − exp[−(π/H)(2Re − ρ0 − ρ)]

}
,

≈ 0,

(A.14)
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where we use (2.30),

exp
[
−
(
π

H

)
(2Re − ρ0 − ρ)

]
≈ 0, (A.15)

x + x2 + x3 + x4 + x5 + · · · = x

1 − x , 0 < x < 1. (A.16)

If m > −1/2, there holds [14]

Im(z) =
[

(z/2)m

Γ(m + 1/2)Γ(1/2)

]∫1

−1
(1 − t2)m−1/2

cosh(zt)dt, (A.17)

thus for m ≥ 1,

Im(ζkρ) ≤
[

(ζkρ/2)m

Γ(m + 1/2)Γ(1/2)

]∫1

−1
cosh(ζkρt)dt

=
[

2(ζkρ/2)m

(ζkρ)Γ(m + 1/2)Γ(1/2)

]
sinh(ζkρ)

=
[

(ζkρ/2)m−1

Γ(m + 1/2)Γ(1/2)

]
sinh(ζkρ)

<

[
(ζkρ/2)m−1

2Γ(m + 1/2)Γ(1/2)

]
exp(ζkρ),

(A.18)

where we use

∫1

−1
cosh(ζkρt)dt =

2 sinh(ζkρ)
ζkρ

,

sinh(ζkρ) <
exp(ζkρ)

2
,

(A.19)

and if −1 < t < 1, m ≥ 1, then

(1 − t2)m−1/2 ≤ 1. (A.20)
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Substituting (A.18) into (A.10), we obtain

Ξ2 =
∞∑

k=1

∞∑

m=1

∣
∣
∣
∣

2βkKm(ζkRe)Im(ζkρ0)Im(ζkρ)
sIm(ζkRe)

∣
∣
∣
∣

<
∞∑

k=1

∞∑

m=1

(
2π |βk|
s

)
exp

[
− ζk(2Re − ρ0 − ρ)

]
[

(ζkρ/2)m−1

2Γ(m + 1/2)Γ(1/2)

][
(ζkρ0/2)m−1

2Γ(m + 1/2)Γ(1/2)

]

=
∞∑

k=1

∞∑

m=1

(
16π
sH

) (ζ2
k
ρρ0/4)m−1

[2Γ(m + 1/2)Γ(1/2)]2
exp

[
− ζk(2Re − ρ0 − ρ)

]

=
∞∑

k=1

(
16π
sH

)
exp

[
− ζk(2Re − ρ0 − ρ)

] ∞∑

m=1

(ζ2
k
ρρ0/4)m−1

[2Γ(m + 1/2)Γ(1/2)]2
.

(A.21)

Note that [14]

Γ(m + 1/2) =
1 × 3 × 5 × · · · × (2m − 1)

√
π

2m

>
1 × 2 × 6 × · · · × (2m − 2)

√
π

2m

=
2m−1(m − 1)!

√
π

2m

=
(m − 1)!

√
π

2
.

(A.22)

Then we obtain

Ξ2 <
∞∑

k=1

(
16π
sH

)
exp

[
− ζk(2Re − ρ0 − ρ)

] ∞∑

m=1

(
ζ2
k
ρρ0/4

)m−1

[2Γ(m + 1/2)Γ(1/2)]2

<
∞∑

k=1

(
16π
sH

)
exp

[
− ζk(2Re − ρ0 − ρ)

] ∞∑

m=1

(
ζ2
k
ρρ0/4

)m−1

[(m − 1)!π]2

=
∞∑

k=1

(
16π
sH

)
exp

[
− ζk(2Re − ρ0 − ρ)

] ∞∑

n=0

(
ζk
√
ρρ0/2

)2n

(n!π)2

=
∞∑

k=1

(
16π
π2sH

)
exp

[
− ζk(2Re − ρ0 − ρ)

]
I0
(
ζk
√
ρρ0

)

=
∞∑

k=1

(
16
sπH

)
exp

[
− ζk(2Re − ρ0 − ρ)

]
I0
(
ζk
√
ρρ0

)
,

(A.23)
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where we use [14]

I0(z) =
∞∑

n=0

(z/2)2n

(n!)2
, Γ

(
1
2

)
=
√
π. (A.24)

It is easy to prove if a > 0, x > y > 0, there holds

e−ax√
x
<
e−ay
√
y
, (A.25)

since

ζk > λk, 2Re − ρ0 − ρ −
√
ρρ0 > 0, (A.26)

then

exp
[
− ζk

(
2Re − ρ0 − ρ −

√
ρρ0

)]

ζ1/2
k

<
exp

[
− λk

(
2Re − ρ0 − ρ −

√
ρρ0

)]

λ1/2
k

. (A.27)

Note that ζk
√
ρρ0 	 1, and we have

I0
(
ζk
√
ρρ0

)
≈

exp
(
ζk
√
ρρ0

)

(
2πζk

√
ρρ0

)1/2
(A.28)

thus (A.23) can be simplified as follows:

Ξ2 <
∞∑

k=1

(
16
sπH

)
exp

[
− ζk(2Re − ρ0 − ρ)

]
[ exp

(
ζk
√
ρρ0

)

(2πζk
√
ρρ0

)1/2

]

=
∞∑

k=1

[
16

sπH(2π)1/2(ρρ0)
1/4

]exp
[
− ζk

(
2Re − ρ0 − ρ −

√
ρρ0

)]

ζ1/2
k

<
∞∑

k=1

[
16

sπH(2π)1/2(ρρ0)
1/4

]exp
[
− λk

(
2Re − ρ0 − ρ −

√
ρρ0

)]

λ1/2
k

=
∞∑

k=1

[
16

sπ2(2kH)1/2(ρρ0)
1/4

]
exp

[
−
(
kπ

H

)
(
2Re − ρ0 − ρ −

√
ρρ0

)
]

<
∞∑

k=1

[
16

sπ2(2H)1/2(ρρ0)
1/4

]
exp

[
−
(
kπ

H

)
(
2Re − ρ0 − ρ −

√
ρρ0

)
]

=
[

16

sπ2(2H)1/2(ρρ0)
1/4

]{ exp
[
− (π/H)

(
2Re − ρ0 − ρ −

√
ρρ0

)]

1 − exp
[
− (π/H)

(
2Re − ρ0 − ρ −

√
ρρ0

)]
}

≈ 0,

(A.29)
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where we use (A.16) and (2.29)

exp
[
−
(
π

H

)
(
2Re − ρ0 − ρ −

√
ρρ0

)
]
≈ 0. (A.30)

Combining (A.8), (A.14), and (A.29), we prove (3.41).
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