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1. Introduction

In many scientific and engineer applications, for example, simulation of laser propagation in
a plasma [1] and study of transport in highly heterogeneous porous media [2], we have to
numerically solve certain partial differential equations in 2D or 3D. The discretization of these
PDEs by finite difference or finite volume schemes usually leads to large block-tridiagonal
linear system:

Ax = b, (1.1)

with

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

D1 U1

L1 D2
. . .

. . . . . . Um−1

Lm−1 Dm

⎞
⎟⎟⎟⎟⎟⎟⎠
∈ Rn×n, b ∈ Rn. (1.2)
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Due to the size of the problem, preconditioned Krylov iterative methods have
become one of the most popular choices. It is generally recognized that the efficiency
of the linear systems solver heavily depends on the property of the preconditioners.
Therefore, the construction of robust and efficient preconditioners has become an interesting
research topic. Several incomplete block factorization preconditioners have been proposed by
many researchers, see, for example, Axelsson [3–5] and Meurant [6–8]. Frequency filtering
preconditioners [9–16] advocated by G. Wittum and his successor are a special kind of
incomplete block factorization preconditioner. This class of preconditioning techniques has
been illustrated particularly efficient for linear systems arising from the discretization of
partial differential equations with discontinuous coefficients.

With the development of techniques of parallel computing, developing high-
performance preconditioners that are suitable for parallel computing environment is
becoming an important topic. In this paper, we propose a tangential filtering preconditioner
constructed by the framework of twisted block factorization. Firstly, the constructed
preconditioner has a filtering property. Secondly, the construction and solving procedures of
the twisted factorization preconditioner are carried out from two sides, which can be done in
parallel. The performance of the newly built preconditioner is compared with the tangential
filtering preconditioner proposed in [10]. For practical applications, Achdou and Nataf [10]
propose to combine the tangential filtering preconditioner with the ILU(0) preconditioner. In
this paper, we also consider to combine the twisted tangential filtering preconditioner with
the ILU(0) preconditioner in the following way:

MITF = (M−1
ILU +M−1

TBTD −M
−1
ILUAM

−1
TBTD)

−1
. (1.3)

The performance of several different preconditioners is compared on some linear sys-
tems generated from the discretization of boundary value problems with discontinuous
coefficients. The results show that the twisted block factorization preconditioner and its
corresponding preconditioner output other preconditioners on some problems.

In Section 2, we give a brief introduction of twisted block tangential filtering decompo-
sition and then introduce the twisted block tangential filtering decomposition preconditioner.
In Section 3, we analyze the properties of the preconditioner. In Section 4, we give numerical
experiments to compare the performances of different types of preconditioners.

2. A Twisted Block Tangential Filtering Decomposition

The block LDU factorization of A is

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

T1

L1 T2

. . . . . .

Lm−1 Tm

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

T−1
1

T−1
2

. . .

T−1
m

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T1 U1

T2
. . .

. . . Um−1

Tm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (2.1)
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where Ti, (i = 1, . . . , m) are square invertible ni × ni matrices. Matrices Li−1 (resp. Ui−1) are
ni × ni−1 (resp. ni−1 × ni ) matrices. The matrices Ti satisfy the induction formula

Ti =

⎧
⎨
⎩
D1, i = 1;

Di − Li−1T
−1
i−1Ui−1, 2 ≤ i ≤ m.

(2.2)

The block LDU factorization can be written as

A = (L + T)T−1(U + T). (2.3)

Similar to the block LDU factorization, the block UDL factorization of A has the form

A =
(
U + T̂

)
T̂ −1

(
L + T̂

)
, (2.4)

where T̂ = Blockdiag (T̂1, T̂2 · · · T̂m) with T̂i satisfies

T̂i =

⎧
⎨
⎩
Di −UiT̂

−1
i+1Li, 1 ≤ i ≤ m − 1,

Dm, i = m.
(2.5)

Then the twisted block factorization can be written as

A =
(
E + T̃

)
T̃ −1

(
F + T̃

)
, (2.6)

where

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

L1 0

. . . . . .

Lj−1 0 Uj

. . . . . .

0 Um−1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 U1

0
. . .

. . . Uj−1

0

Lj
. . .

. . . 0

Lm−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.7)
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The index j satisfies 1 < j < m, the matrix T̃ = Blockdiag(T̃1, T̃2 · · · T̃m) with the diagonal block
T̃i satisfies the following relationship:

T̃i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1, i = 1

Di − Li−1T̃
−1
i−1Ui−1, 2 ≤ i ≤ j − 1,

Dj − Li−1T̃
−1
i−1Ui−1 −UiT̃

−1
i+1Li, i = j,

Di −UiT̃
−1
i+1Li, j + 1 ≤ i ≤ m − 1

Dm, i = m.

(2.8)

Different from diagonal block matrix Di of A, the matrices T̃i becomes dense quickly.
Therefore, factorization (2.6) cannot be used for large problems in practice. However, the
framework can be used to build an incomplete twisted block-factorization preconditioner
for A. Precisely, we can replace the blocks T̃i by suitably chosen sparse or block-sparse
approximations Ti, (i = 1, 2, . . . , m). Then an incomplete factorization preconditioner M is
constructed, which has the following form:

M =
(
E + T

)
T
−1(

F + T
)
, (2.9)

with T = Blockdiag (T1, T2 · · · Tm).
From (2.9) it is easy to see that solving linear system Mx = f is equivalent to solving

the following two linear systems

(
E + T

)
y = f,

(
T
−1
F + I

)
x = y. (2.10)

By exploiting the structure, both of the linear systems can be solved by the forward
and backward sweeps. Suppose y = (yT1 , y

T
2 , . . . , y

T
m)

T , f = (fT1 , f
T
2 , . . . , f

T
m)

T , and x =
(xT1 , x

T
2 , . . . , x

T
m)

T according to the block structure of T . Then the process of solving Mx = f
can be described in Algorithm 1.

Remarks 2.1. Each of the solvers for (E + T)y = f and (T
−1
F + I)x = y described

in Algorithm 1 involves forward and backward sweeps, and the two sweeps have no
relationship with each other, so the forward and backward sweeps can be run in parallel.The
procedure of constructing of T is consistent with the idea presented in [10]. Suppose we have

approximation βi−1 of T
−1
i−1 which satisfies

‖Ti−1βi−1 − I‖ ≤ α < 1 (2.11)

then

‖(Ti−1βi−1 − I)
2
‖ ≤ ‖(Ti−1βi−1 − I)‖

2
≤ α2, (2.12)
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(1) Solving (E + T)y = f

y1 = T
−1
1 f1, ym = T

−1
m fm.

for i = 2 : j − 1

yi = T
−1
i (fi − Li−1yi−1),

end.
for i = m − 1 : −1 : j + 1

yi = T
−1
i (fi −Uiyi+1),

end.

yj = T
−1
j (fj −Ujyj+1 − Lj−1yj−1).

(2) Solving (T
−1
F + I)x = y

xj = yj ,
for i = j − 1 : −1 : 1

xi = yi − T
−1
i Uiyi+1,

end
for i = j + 1 : m

xi = yi − T
−1
i Li−1yi−1,

end.

Algorithm 1: Solving Mx = f.

which implies

‖Ti−1

(
2βi−1 − βi−1Ti−1βi−1

)
‖ ≤ α2. (2.13)

It means that 2βi−1 −βi−1Ti−1βi−1 is a better approximation of T
−1
i−1 than βi−1. According to (2.8),

we have the following formula for T

Ti =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1, i = 1 ,

Di − Li−1

(
2βi−1 − βi−1Ti−1βi−1

)
Ui−1, 2 ≤ i ≤ j − 1,

Dj − Li−1

(
2βi−1 − βi−1Ti−1βi−1

)
Ui−1 −Ui

(
2βi+1 − βi+1Ti+1βi+1

)
Li, i = j,

Di −Ui

(
2βi+1 − βi+1Ti+1βi+1

)
Li, j + 1 ≤ i ≤ m − 1,

Dm, i = m.
(2.14)

Then the new block factorization preconditioner M based on the twisted factorization can be
constructed by choosing βi−1 properly. Following the tangential filtering condition proposed
in [10], a diagonal approximation βi−1 can be determined such that

(M −A)t = 0, (2.15)

where t is a filtering vector.
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Lemma 2.2. If the matrices Ti−1(1 ≤ i − 1 ≤ m) are invertible, then one has

M −A = Blockdiag (N1,N2, . . . ,Nm) (2.16)

with

Ni =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, i = 1,

Li−1

(
βi−1Ti−1 − I

)
T
−1
i−1

(
Ti−1βi−1 − I

)
Ui−1, 2 ≤ i ≤ j − 1,

Li−1

(
βi−1Ti−1 − I

)
T
−1
i−1

(
Ti−1βi−1 − I

)
Ui−1

+Ui

(
βi+1Ti+1 − I

)
T
−1
i+1

(
Ti+1βi+1 − I

)
Li, i = j,

Ui

(
βi+1Ti+1 − I

)
T
−1
i+1

(
Ti+1βi+1 − I

)
Li, j + 1 ≤ i ≤ m − 1,

0, i = m.

(2.17)

Proof. Consider the matrix M −A and observe that

2βi−1 − βi−1Ti−1βi−1 − T
−1
i−1 = −

(
βi−1Ti−1 − I

)
T
−1
i−1

(
Ti−1βi−1 − I

)
, (2.18)

thus (2.17) holds.

Now we consider how to form a diagonal matrix βi−1. Let t = (tT1 , t
T
2 , · · ·, tTm)

T be a given
vector. If there are no zero entries in the vectors Ui−1ti(2 ≤ i ≤ j) and Liti(j ≤ i ≤ m−1), then it
is possible to find diagonal matrices βi−1 such that M produces the same effect with A when
operating on the filtering vector t, that is,

(M −A)t = 0. (2.19)

From (2.17), we can see that it is sufficient to make

(
Ti−1βi−1 − I

)
Ui−1ti = 0, 2 ≤ i ≤ j, (2.20)

(
Ti+1βi+1 − I

)
Liti = 0, j ≤ i ≤ m − 1. (2.21)

These requirements can be satisfied by setting βi−1 as follows:

βi−1 = Diag
(
T
−1
i−1Ui−1fi./Ui−1ti

)
, 2 ≤ i ≤ j , (2.22)

βi+1 = Diag
(
T
−1
i+1Liti./Liti

)
, j ≤ i ≤ m − 1, (2.23)

where ./ designs the pointwise vector division, and Diag(v) is the diagonal matrix
constructed from the vector v. We refer to the preconditioner constructed by the above
procedure as twisted block tangential filtering decomposition preconditioner.
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3. Analysis of the Twisted Tangential Filtering Preconditioner

In this section, we restrict A to be symmetric positive definite, and use A � B (A � B)
to denote that A − B is symmetric positive definite (semidefinite). Consider the twisted
tangential filtering preconditioner M formed by (2.9), which ensures the filtering property
(2.19). Furthermore, the following lemma holds and it has been established in [10].

Lemma 3.1. If A � 0, then matrices Ti � T̃i, 1 ≤ i ≤ m. Moreover,M � 0 andM −A � 0 hold. The
proof is similar to the proof of Lemma 2.1 of [10], so it is omitted here. From Lemma 3.1, one has the
following result. The proof can be found in [17, 18].

Theorem 3.2. Let

A =M −N, (3.1)

be the splitting of coefficient matrix A induced by the twisted tangential filtering decomposition
preconditionerM, then ρ(M −1N) < 1.

4. Numerical Expriments

In this section, we present some numerical results to test the performance of preconditioners
discussed in this paper. The performance of composite preconditioners is compared
with MILU. Two kinds of approaches of constructing the filtering preconditioner M are
considered. The combination approach (1.3) is used for all the composite preconditioners.

Consider the boundary value problem used in [10]

η(x)u + div(a(x)u) − div(κ(x)∇u) = f in Ω,

u = 0 on ∂ΩD,

∂u

∂n
= 0 on ∂ΩN,

(4.1)

where Ω = [0, 1]n (n = 2, or 3), ∂ΩN = ∂Ω \ ∂ΩD. The function η, the vector field a, and the
tensor κ are the given coefficients of the partial differential operator. In 2D case, we have
∂ΩD = [0, 1] × {0, 1}, and in 3D case, we have ∂ΩD = [0, 1] × {0, 1} × [0, 1]. Due to the
discontinuous coefficients in the PDE equation and the size of A, an efficient preconditioner
plays an important role in solving (4.1) by preconditioned iterative methods.

Several types of preconditioners tested in our numerical experiments, we outline the
notations as follows,

MILU: the ILU(0) preconditioner;
MTFFD: the tangential frequency filtering decomposition preconditioner;
MTBTD: the twisted block tangential filtering decomposition preconditioner;
MITF : the composite preconditioner generated by MILU and MTFFD;
MITB: the composite preconditioner generated by MILU and MTBTD.
Two filtering vectors are tested, the Ritz vector of A used in [10], and [1, 1, . . . , 1]T

which is used as a filtering vector in [19]. The index j is set to be j = m/2, where α denotes
the largest integer not exceeding α.
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Table 1: Results for Case 1: the advection-diffusion problem with a rotating velocity in two dimensions.
Top resuls are using t = (1, 1, . . . , 1)T, bottom resuls are using Ritz vector corresponding to the smallest
eigenvalue of A.

MILU MTFFD MTBTD MITF MITB

1/h iters error iters error iters error iters error iters error
50 60 1.31e − 10 43 6.50e − 12 44 1.10e − 11 18 4.18e − 11 16 2.94e − 11
100 108 5.40e − 10 63 8.00e − 12 64 1.69e − 11 26 1.57e − 10 23 7.52e − 11
200 186 1.15e − 9 90 1.10e − 11 91 2.81e − 11 37 5.67e − 10 32 3.44e − 10
300 × × 110 1.50e − 11 111 2.72e − 11 45 6.88e − 10 39 8.56e − 10
50 60 1.31e − 10 43 5.50e − 12 44 1.26e − 11 18 5.22e − 11 16 3.43e − 11
100 108 5.40e − 10 62 9.30e − 12 64 1.49e − 11 26 1.82e − 10 23 6.79e − 11
200 186 1.15e − 9 90 1.02e − 11 91 3.05e − 11 37 5.72e − 10 33 1.57e − 10
300 × × 110 1.83e − 11 111 3.00e − 11 45 6.70e − 10 39 7.10e − 10

The linear systems are solved by FGMRES [20] method preconditioned by the
previously mentioned preconditioners. The algorithm is unrestarted and the maximum
Krylov subspace is set to be 200. For comparison reasons, the number of iterations of the
ILU(0) preconditioned FGMRES method for constructing the filtering test-vector has been
chosen to be 20. The algorithm is stopped whenever the relative norm ‖b − Axk‖/‖b‖ is less
than 10−12. The exact solution is generated randomly. In the following tables, iters denotes
the number of iterations, error denotes the infinite norm of the difference between the
final approximate solution and the exact solution. We use “×” to denote that the method
fails to converge within 200 iterations. For preconditioners MILU, MTFFD, and MTBTD,
every iteration requires only one preconditioner solve, so the total preconditioner solves are
equal to the iteration number. For the composite preconditioners, assuming that the ILU(0)
preconditioner has the same cost with the filtering preconditioner, so the costs for composite
preconditioner is twice of the iteration. All the experiments are performed in MATLAB [21].
The codes have not been optimized for the highest efficiency and therefore we do not report
the time, but we outline the number of iterations.

The considered boundary value problems (4.1) are discretized on a regular Cartesian
grid with a cell-centred finite volume scheme. Full up-winding is used for the convective
term in the partial differential equation. The following five different cases are considered.

Case 1. The advection-diffusion problem with a rotating velocity in two dimensions.

The tensor κ is the identity, and the velocity is a = (2π(x2 − 0.5), 2π(x1 − 0.5))T .
The function η is zero. The uniform grid with n × n nodes (n = 50, 100, 200, 300) are
tested respectively. Table 1 displays the results obtained by using different preconditioners.
The ILU(0) preconditioner needs the most iterations to converges. The preconditioners
MTFFD and MTBTD have better performances compared with ILU(0). The composite
preconditioners are more efficient and MITB works a little better than MITF . When changing
the filtering vector, the iteration numbers have a small change, but the Ritz vector needs
additional 20 steps to calculate. Figure 1 depicts the convergence curves of FGMRES method
preconditioned by several different preconditioners. The filtering vector is set to be t =
(1, 1, . . . , 1)T . We can see that the composite preconditioners are efficient, the FGMRES method
preconditioned by MTFFD and MTBTD produces nearly the same convergence curve.
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Figure 1: Convergence history for FGMRES when 1/h = 100 for the advection-diffusion problem with a
rotating velocity in two dimensions.

Case 2. Nonhomogenous problems with large jumps in the coefficients in two dimensions.

The coefficients η and a are both zero. The tensor κ is isotropic and discontinuous. It
jumps from the constant value 103 in the ring 1/2

√
2 ≤ |x − c| ≤ 1/2, c = (1/2, 1/2)T , to 1

outside. We tested uniform grids with n × n nodes, n = 100, 200, 300, 400. Table 2 displays the
results obtained by using different preconditioners.

Case 3. Skyscraper problems.

The tensor κ is isotropic and discontinuous. The domain contains many zones of high
permeability which are isolated from each other. Let [x] denote the integer value of x. In 2D,
we have

κ(x) =

⎧
⎨
⎩

103 ∗ ([10 ∗ x2] + 1), if [10 ∗ xi] = 0 mod (2), i = 1, 2,

1, otherwise,
(4.2)

and in 3D

κ(x) =

⎧
⎨
⎩

103 ∗ ([10 ∗ x2] + 1), if [10 ∗ xi] = 0 mod (2), i = 1, 2, 3,

1, otherwise.
(4.3)

The coefficients η and a are both zero. Tables 3 and 4 display the results obtained by using
different preconditioners for 2D and 3D problems.
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Table 2: Results for Case 2: Nonhomogenous problems with large jumps in the coefficients in two
dimensions. Top results are using t = (1, 1, . . . , 1)T as filtering vector, bottom results are using Ritz vector
corresponding to the smallest eigenvalue of A.

MILU MTFFD MTBTD MITF MITB

1/h iters error iters error iters error iters error iters error
50 61 6.62e − 11 43 5.67e − 12 44 1.07e − 11 18 2.27e − 11 16 9.90e − 11
100 108 4.71e − 10 62 6.91e − 12 64 2.23e − 11 26 1.43e − 10 23 1.01e − 10
200 187 1.54e − 9 89 9.23e − 12 92 2.14e − 11 37 3.10e − 10 33 1.92e − 10
300 × × 109 1.81e − 11 112 3.33e − 11 45 6.06e − 10 40 7.31e − 10
50 61 6.62e − 11 43 5.44e − 12 45 8.40e − 12 18 3.14e − 11 16 3.29e − 11
100 108 4.71e − 10 62 9.16e − 12 64 1.85e − 11 26 1.07e − 10 23 1.08e − 10
200 187 1.54e − 9 89 1.03e − 11 92 1.75e − 11 37 2.73e − 10 33 1.76e − 10
300 × × 109 1.41e − 11 112 3.28e − 11 45 5.94e − 10 40 4.80e − 10

Table 3: Results for Case 3: skyscraper problems. Top results are in 2D and bottom results are in 3D,
t = (1, 1, . . . , 1)T.

MILU MTFFD MTBTD MITF MITB

1/h iters error iters error iters error iters error iters error
50 152 2.01e − 7 × × × × 16 4.20e − 8 15 3.93e − 8
100 × × × × × × 26 2.63e − 7 24 4.86e − 7
200 × × × × × × 39 9.50e − 7 37 1.90e − 6
300 × × × × × × 47 2.77e − 6 44 2.64e − 6
10 19 4.57e − 12 16 2.40e − 12 17 1.86e − 12 8 7.08e − 13 7 1.66e − 11
15 190 1.07e − 8 × × × × 13 9.91e − 9 25 8.92e − 9
20 132 2.57e − 8 × × × × 11 5.13e − 9 20 6.21e − 9
30 × × × × × × 14 6.91e − 8 13 8.84e − 8

Table 4: Results for Case 3: skyscraper problems. Top results are in 2D and bottom results are in 3D, t is set
to be the Ritz vector corresponding to the smallest eigenvalue of A.

MILU MTFFD MTBTD MITF MITB

1/h i ters error iters error iters error iters error iters error
50 152 2.01e − 7 × × × × 16 8.91e − 8 15 1.67e − 7
100 × × × × × × 26 2.29e − 7 25 3.13e − 7
200 × × × × × × 38 1.74e − 6 37 2.48e − 6
300 × × × × × × 47 3.52e − 6 44 3.28e − 6
10 19 4.57e − 12 16 4.77e − 12 17 2.56e − 12 8 1.77e − 012 8 7.86e − 13
15 190 1.07e − 8 × × × × 14 2.16e − 9 24 1.60e − 8
20 132 2.57e − 8 × × × × 11 6.43e − 9 20 3.61e − 9
30 × × × × × × 14 5.60e − 8 14 2.37e − 8

Case 4. Convective skyscraper problems.

The same happens with the Skyscraper problems except that the velocity field is
changed to be a = (1000, 1000, 1000)T . The tested results are displayed in Tables 5 and 6.
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Table 5: Results for Case 4: convective skyscraper problems. Top results are in 2D, bottom results are in
3D, t = (1, 1, . . . , 1)T.

MILU MTFFD MTBTD MITF MITB

1/h iters error iters error iters error iters error iters error
50 95 3.84e − 9 139 3.43e − 9 × × 13 2.96e − 10 13 2.92 − 10
100 173 2.81e − 8 × × × × 18 1.26e − 9 21 5.08e − 9
200 × × × × × × 26 2.31e − 9 28 3.05e − 8
300 × × × × × × 27 3.22e − 8 34 8.32e − 8
10 13 2.80e − 9 12 1.24e − 9 12 1.82e − 9 6 4.65e − 10 5 6.61e − 9
15 92 3.03e − 10 54 4.61e − 10 × × 30 8.45e − 11 17 6.55e − 11
20 71 2.60e − 10 34 7.25e − 10 117 1.67e − 9 9 7.99e − 12 18 9.51e − 10
30 116 1.59e − 9 105 2.15e − 9 × × 33 1.0e − 10 14 1.30e − 9

Table 6: Results for Case 4: convective skyscraper problems. Top results are in 2D, bottom results are in
3D, t is set to be the ritz vector corresponding to the smallest eigenvalue of A.

MILU MTFFD MTBTD MITF MITB

1/h iters error iters error iters error iters error iters error
50 95 3.84e − 9 139 3.43e − 9 × × 13 5.13e − 10 13 4.99e − 10
100 173 2.81e − 8 × × × × 18 1.67e − 9 21 7.82e − 9
200 × × × × × × 25 4.41e − 9 28 2.13e − 8
300 × × × × × × 28 1.85e − 8 34 5.74e − 8
10 13 2.80e − 9 12 2.39e − 9 12 3.83e − 9 6 2.31e − 10 5 4.56e − 9
15 92 3.03e − 10 56 3.17e − 10 × × 29 4.51e − 10 17 4.83e − 11
20 71 2.60e − 10 34 6.41e − 10 121 8.30e − 10 9 2.78e − 11 18 6.38e − 10
30 116 1.59e − 9 108 1.78e − 9 × × 33 3.19e − 10 15 3.96e − 10

Table 7: Results for Case 5: anisotropic layers. Top results are in 2D, bottom results are in 3D, t =
(1, 1, . . . , 1)T.

MILU MTFFD MTBTD MITF MITB

1/h iters error iters error iters error iters error iters error
50 99 5.88e − 8 53 9.38e − 9 47 1.61e − 8 11 2.44e − 8 10 3.78e − 8
100 190 6.73e − 7 76 6.22e − 8 72 1.22e − 8 17 6.23e − 7 16 7.38e − 8
200 × × 110 3.30e − 8 103 3.45e − 8 29 2.30e − 6 27 1.05e − 7
300 × × 136 7.95e − 9 127 2.08e − 8 40 1.04e − 7 37 1.22e − 7
20 27 1.43e − 7 24 2.22e − 8 22 2.66e − 8 10 1.43e − 8 9 1.22e − 8
30 34 2.55e − 7 27 3.31e − 8 26 3.97e − 8 11 4.87e − 8 10 5.98e − 8
40 40 8.14e − 7 28 1.98e − 8 29 4.97e − 8 11 1.75e − 7 11 7.12e − 8

Case 5. Anisotropic layers.

The domain is made of 10 anisotropic layers with jumps of up to four orders of
magnitude and an anisotropy ratio of up to 103 in each layer. For 3D problem, the cube is
divided in to 10 layers parallel to z = 0, of size 0.1, in which the coefficients are constant.
The coefficient κx in the ith layer is given by v(i), the latter being the ith component of the
vector v = [α, β, α, β, α, β, γ, α, α], where α = 1, β = 102 and γ = 104. We have κy = 10κx and
κz = 1000κx. The velocity field is zero. Numerical results are shown in Tables 7 and 8.
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Table 8: Results for Case 5: anisotropic layers. Top results are in 2D, bottom results are in 3D, t is set to be
the Ritz vector corresponding to the smallest eigenvalue of A.

MILU MTFFD MTBTD MITF MITB

1/h iters error iters error iters error iters error iters error
50 99 5.88e − 8 53 4.91e − 9 48 5.58e − 9 11 1.85e − 8 10 3.78e − 8
100 190 6.73e − 7 77 1.26e − 8 72 1.53e − 8 18 2.77e − 7 16 7.84e − 7
200 × × 110 1.13e − 8 103 3.03e − 8 29 3.85e − 8 27 8.38e − 8
300 × × 136 1.69e − 8 126 1.55e − 8 40 1.09e − 7 37 7.40e − 8
20 27 1.43e − 7 25 1.54e − 8 22 1.73e − 8 10 4.75e − 9 9 1.09e − 8
30 34 2.55e − 7 27 2.71e − 8 27 2.65e − 8 11 7.30e − 8 10 5.71e − 8
40 40 8.14e − 7 28 2.48e − 8 29 3.11e − 8 11 2.82e − 7 11 1.15e − 7

From the tests results presented in this paper, we can see that the composite
preconditioners have better performance than using just a single preconditioner. The
FGMRES method preconditioned by MTBTD produces nearly the same results as by
preconditionerMTFFD, and also for the composite preconditionersMITB andMITF . However,
the preconditioner proposed in this paper has the advantage of parallel computation. For
Advection-diffusion and nonhomogeneous problems, there is a little difference between
using ones or Ritz vector as the filtering vector. Considering the additional costs for Ritz
vector, it is reasonable to use the ones as filtering vector.

5. Conclusion

In this paper, we introduce a new variant of tangential filtering decomposite preconditioner
MTBTD, which is based on the twisted factorization of the coefficient matrix A. The new one
is comparable to the preconditioner MTFFD presented in [10]. Considering the process of
preconditioning with MTBTD described in Algorithm 1, the preconditioner MTBTD is superior
to MTFFD for its parallel property. And for the same reason, the composite preconditioner
MITB surpasses MITF .
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