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By exploiting the “correlation of deflections” phenomena, we propose a new bridge diagnosis
method. First, we introduce the notion of deflection correlation (DC) graphs and propose a method
for building a DC graph. Second, we present a new algorithm for locating the abnormal cliques.
Finally, we demonstrate the potential utility of the new method by applying it to the simulated
diagnosis of a real-life bridge.
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1. Introduction

Structural health monitoring (SHM) means the process of monitoring the condition of a
structure and detecting the damages occurring in the structure over the time. SHM is a
highly interdisciplinary area of research. In particular, the detection of damages in structures
involves multiple disciplines such as statistics, pattern recognition, and algorithm design.

In the past three decades, SHM has been applied to the health monitoring of grand
bridges. In such applications, it is desired that the early stage damage in a bridge to be
detected by examining changes in its measured responses. A large number of methods have
been proposed for detecting the abnormal behaviors occurring in bridges. Now, let us make
a survey on the state of the art of this area. Catbas et al. [1] suggested to evaluate bridge
condition using two damage-sensitive features. Catbas et al. [2], Deraemaeker et al. [3], and
Yan et al. [4, 5] studied how to diagnose structural damages under varying environmental
conditions. Koh and Dyke [6] designed a bridge evaluation scheme by making use of the
correlation of modal parameters. Lee et al. [7] presented a bridge detection method under
loading. Lee and Yun [8] and Zhang [9] propose schemes of bridge detection using ambient
vibration data. In addition, some advanced techniques, such as the time-series classification
[10], the fuzzy reasoning [11, 12], the image processing [13], the interval analysis [14], the
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Figure 1: A bridge model, where the beam is horizontal.
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Figure 2: A bridge model, where the beam bends down.

multistage identification [15], and the neural network [16], were employed for the bridge
detection purpose.

A real-life bridge is subject to varying environmental and operational conditions such
as traffic, temperature, humidity, wind, and solar-radiation. These environmental effects also
cause change in any well-defined pattern, which may mask the change caused by structural
damage or by sensor failure [17]. So, the authors believe that the best approach is not to use a
single feature but a suite of validated features depending on the structure and damage type.
In this context, new effective bridge diagnosis methods need to be developed.

Deflections are one of the most important physical quantities characterizing the change
of a bridge. Commonly, a number of deflection checkpoints on the beam of a bridge are
specified and, for each checkpoint, a dedicated sensor is assigned to measure its deflection
values periodically. For our diagnosis purpose, a bridge will be regarded as being composed
of a number of cliques, where each clique is composed of a deflection checkpoint and its
dedicated sensor. This paper addresses the following diagnosis problem.

Starting with a set of measurements of the deflection data, identify those cliques that behave
abnormally.

Once a diagnosis result is achieved, each clique that has been diagnosed as abnormal
will need a separate examination to see whether the checkpoint is damaged or the sensor fails
to work properly.

The diagnosis method to be proposed is inspired by the “correlation of deflections”
phenomenon, which is explained as follows. Some types of bridges, especially cable-stayed
bridges and continuous rigid-frame bridges, have integral beams. Consider such a bridge
model with four deflection checkpoints, P , Q, R, and S on the beam plus an x − y coordinate
system (see Figure 1). Depending on the traffic and environmental conditions, the beam may
bend down or bend up. In the former case, P and Q should assume positive deflection values
simultaneously, while R and S should take on negative deflection values simultaneously (see
Figure 2). In the latter case, the converse is true (see Figure 3).
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Figure 3: A bridge model, where the beam bends up.

We will treat the aforementioned bridge diagnosis problem following the idea of
pattern recognition [18] and exploiting the above mentioned “correlation of deflections”
phenomenon. Our method is composed of two phases.

Phase I. Starting with a set of deflection measurements that were previously acquired
when the bridge was in its healthy status, establish a reference pattern of the bridge.

Phase II. Using a set of recently acquired deflection data, a current pattern of this bridge
is obtained. By comparing the current pattern with the reference pattern, identify a set of
abnormal cliques.

For our purpose, a weighted graph, known as the deflection correlation graph (DC graph,
for short), is defined, which will be taken as the reference pattern. A method is proposed
for building a DC graph of a bridge. On this basis, we present a time-effective diagnosis
algorithm. The proposed method is then applied to the simulated diagnosis of a real-life
bridge, where the cliques with distorted deflection data are identified correctly. This exhibits
the potential utility of this method.

The subsequent materials are organized this way. Section 2 introduces some funda-
mental knowledge. Section 3 defines the DC graph of a bridge, and describes a method of
building a DC graph, which is used to form two DC graphs of a real-life bridge system.
In Section 4, a diagnosis algorithm is presented, which is then applied to identify those
abnormal parts of a real-life bridge provided some deflection data are distorted. Finally,
Section 5 briefly summarizes the work of this paper and indicates some issues that are worth
further study.

2. Fundamentals

A graph is defined as an ordered pair of sets, G = (V, E), where elements in V are referred
as nodes, elements in E are referred to as edges, and every edge is a set of two distinct nodes
[19]. Graphs are a class of mathematical models for characterizing binary relations between
objects.

An edge-labeled graph is a graph with edges being labeled with intervals. An edge-
labeled graph can be represented by an edge-labeled drawing or by a table. For instance,
the edge-labeled graph G = (V, E, label), where

V = {v1, v2, v3, v4, v5}, E = {{v1, v2}, {v1, v5}, {v2, v3}, {v2, v4}, {v4, v5}},

label({v1, v2}) = [0.82, 0.90], label({v1, v5}) = [0.33, 0.36],
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Figure 4: The drawing of an edge-labeled graph.

Table 1: The table of an edge-labeled graph.

v1 v2 v3 v4 v5

v1 .82 .90 .33 .36
v2 .74 .77 −.99 − .95
v3

v4 .69 .78
v5

label({v2, v3}) = [0.74, 0.77],

label({v2, v4}) = [−0.99,−0.95], label({v4, v5}) = [0.69, 0.78]
(2.1)

can be represented by an edge-labeled drawing (Figure 4) or by a table (Table 1).
Consider a pair of random variables, X and Y . Let ρX,Y denote their correlation

coefficient. That is,

ρX,Y � Cov(X,Y )
√

Var(X)Var(Y )
. (2.2)

If we have a series of n measurements of X and Y written as xi and yi where i =
1, 2, . . . , n, then the Pearson product-moment correlation coefficient, which is defined as

rX,Y �
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi
√
n
∑n

i=1 x
2
i −

(∑n
i=1 xi

)2
√
n
∑n

i=1 y
2
i −

(∑n
i=1 yi

)2
, (2.3)

can be used to estimate the correlation coefficient of X and Y . The Pearson correlation
coefficient is also known as the sample correlation coefficient.

3. Deflection Correlation Graph

For clarity, we call the sensor dedicated to deflection checkpoint P as sensor P , and we call
the corresponding clique as clique P .
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3.1. Definition of a Deflection Correlation Graph

For clique P , let XP (n) denote the measured deflection value at checkpoint P at time n. Then,
XP = {XP (n) : n = 1, 2, . . .} forms a time series [20]. Let xP (n) denote the measurement of
XP (n). In this paper, we assume that the following reasonable hypothesis holds.

(H) Suppose clique P is healthy. Then,XP is a weak stationary process [20].

In the case that cliques P and Q are healthy, it follows from hypothesis (H) that the
correlation coefficients ρXP (n),XQ(n) assume a common value for all values of n. In what follows,
we will use the symbol ρXp,XQ to denote this common value. Clearly, ρXp,XQ characterizes an
internal connection between the two checkpoints and, hence, is useful for diagnosis purpose.
Unfortunately, the precise value of ρXp,XQ is not practically available.

Given a collection of historical data H = {xP (i) : P is a checkpoint, s ≤ i ≤ t}.
For every pair of checkpoints, P and Q, we can fetch a number of pieces of the form
H ′ = {xP (i), xQ(i) : s1 ≤ i ≤ t1} and, for each such piece, we can calculate a Pearson correlation
coefficient according to the formula

rXP ,XQ,H ′ �
(t1 − s1 + 1)

∑t1
i=s1

xiyi −
∑t1

i=s1
xi

∑t1
i=s1

yi
√

(t1 − s1 + 1)
∑t1

i=s1
x2
i −

(∑t1
i=s1

xi

)2
√

(t1 − s1 + 1)
∑t1

i=s1
y2
i −

(∑t1
i=s1

yi

)2
.

(3.1)

Thereby, we can get a smallest interval in which at least α × 100 × % Pearson correlation
coefficients fall. This interval can also characterize the internal connection between the two
checkpoints. Now, let us introduce the following definition.

Definition 3.1. Given a collection of historical data H for a bridge. Consider a pair of
checkpoints, P and Q, on a bridge. Let 0 ≤ α ≤ 1.

(1) An H-based α-deflection correlation interval (α-DC interval) of P and Q, denoted
IH,α(P,Q), is defined as an interval in which rXp,XQ,H ′ falls with probability ≥ α.
For diagnosis purpose, it is appropriate to take α ∈ {0.90, 0.95}.

(2) An H-based α-deflection correlation degree (α-DC degree) of P and Q is defined as

dcH,α(P,Q) � 1 − 1
2
× length(IH,α(P,Q)). (3.2)

Clearly, 0 ≤ dcH,α(P,Q) ≤ 1. The nearer to one dcH,α(P,Q) is close, the more strongly
correlated P and Q will be with each other.

Definition 3.2. Given a collection of historical data H for a bridge. Let 0 ≤ α, β ≤ 1. An H-
based(α, β)-deflection correlation graph((α, β)-DC graph) of the bridge is defined as an edge-
labeled graph G = (V, E, label), where V is the set of all cliques of the bridge,

E �
{
{P,Q} : dcH,α(P,Q) ≥ β

}
, label({P,Q}) � IH,α(P,Q). (3.3)
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INPUT: V : the set of all deflection checkpoints on a bridge;
H: a set of deflection data acquired in the infancy of the bridge;
α, β : 0 ≤ α, β < 1,

OUTPUT: G = (V, E, label): an (α, β)-DC graph of the bridge.
{

(1) initially, E is empty;
(2) choose a real number ε, 0 < ε < 1;

/∗ the meaning of ε is clear according to statement 8; ∗/
(3) choose two integers r and l;

/∗ the meanings of r and l are clear according to statements 5-6; ∗/
(4) for every pair of checkpoints, P and Q,

{
/∗ sentences 5-6 calculate r sample correlated coefficients between P and Q; ∗/

(5) randomly select r pairs of length-l sequences from H, one for P , and the other for Q;
(6) for each pair of selected sequences, calculate a sample correlated coefficient;

/∗ sentence 7 gets an initial estimate of IH,α(P,Q); ∗/
(7) find the smallest interval [a, b] so that the r sample correlated coefficients obtained

previously fall in it with frequency ≥ α;
/∗ sentence 8 gets a final estimate of IH,α(P,Q) by eliminating the randomness of the

initial estimate; ∗/
(8) a← a − ε; b ← b + ε;

/∗ sentence 9 adds a legal edge in E; ∗/
(9) if 1 − (1/2)(b − a) ≥ 1 − β, then add in E the edge {P,Q}with label [a, b];

}
}

Algorithm 1: BUILD DC.

For diagnosis purpose, we will take β ∈ {0.90, 0.95}. Figure 1 gives an exemplar
(0.95, 0.95) DC graph.

In its infancy, a bridge can be regarded as healthy. So, the deflection data acquired
during the infancy can be utilized to build a DC graph of a bridge. This DC graph will be
taken as the reference pattern.

3.2. Construction of a Deflection Correlation Graph

Based on the previous discussions, let us describe a method for creating a deflection
correlation graph.

3.3. An Example

The Chongqing MaSangXi Grand Bridge is a cable-suspension bridge across the Yangtze
River, which is about 1.1 kilometers in length, and has an Asia-longest main span of
360 meters (Figure 5). The monitoring system for this bridge holds 22 deflection checkpoints
numbered as n1, . . . , n11, s1, . . . , s11 (Figure 6) and has employed the photoelectronic imaging
technique to enhance the measurement precision.

Since the MaSangXi grand bridge was put into use in 2001, the deflection data on each
checkpoint have been successively acquired at an interval of 30 minutes. For the purpose of
simulated diagnosis, we selected a set H of 24 000 complete deflection records from these
historical data.
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Figure 5: A picture of the Chongqing MaSangXi Grand Bridge.
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Figure 6: Layout of 22 deflection checkpoints.

In our simulation experiments, We tried 1000 combinations of the values of the five
parameters, α, β, ε, r, and l. Below are the reports of two such experiments.

Experiment 3.3. Set (α, β) = (0.90, 0.95) and choose (ε, r, l) = (0.01, 2000, 100), the BUILD DC
algorithm built a (0.90, 0.95)-DC graph, which is shown in Table 2.

Experiment 3.4. Set (α, β) = (0.95, 0.95) and choose (ε, r, l) = (0.01, 2000, 100), the BUILD DC
algorithm created a (0.95, 0.95)-DC graph, which is shown in Table 3.

4. A Bridge Diagnosis Method

In this section, we will propose a bridge diagnosis algorithm based on the reference pattern
previously defined.

4.1. Abnormal Cliques

First, let us describe a kind of abnormal behaviors of cliques.

Definition 4.1. Consider a bridge. Let H be a collection of infancy deflection data. Let G =
(V, E, label) be an H-based (α, β)-DC graph of a bridge. Let H̃ be a collection of recent data.
Let 0 < θ < 1. A clique P is θ-significantly abnormal if there is another clique Q such that
rXP ,XQ,H̃ ′ ∈ IH,α(P,Q) with frequency ≤ α − θ.

It can be seen that the larger θ is, the more seriously abnormal a clique will be.
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INPUT: (V, E, label): a (α, β)-DC graph of a bridge;
H̃: a set of recent data;
θ: a real number, 0 < θ < 1.

{
OUTPUT: F: the collection of all θ-significantly abnormal cliques.
(1) initially, F is empty;
(2) choose two integers r and l;
(3) for every pair of checkpoints, P and Q,

{
/∗ sentences 4-5 calculate r sample correlated coefficients between P and Q; ∗/

(4) randomly select r pairs of length-l sequences from H̃, one for P , and the other for Q;
(5) for each pair of selected sequences, calculate a sample correlated coefficient;

/∗ sentence 6 calculates the frequency at which these r sample correlated coefficients fall in
IH(P,Q); ∗/

(6) num← the number of these r sample correlated coefficients that fall in IH(P,Q);
/∗ sentence 7 performs diagnosis; ∗/

(7) if num/r < α − θ, then add P and Q to F;
}

}.

Algorithm 2: DIAG BRIDGE.

4.2. Description of the Diagnosis Algorithm

We are ready to present a diagnosis algorithm for bridges.

4.3. An Application

By applying the new diagnosis method, we performed simulated diagnosis of the MaSangXi
grand bridge for 1000 times. Below is the three-stage report of one of these 1000 diagnosis
processes.

Stage I. Get a reference pattern. We choose the (0.95, 0.95)-DC graph given in Table 3
as our reference pattern.

Stage II. Create an abnormal pattern. Starting with the data collection H given in
Subsection 3.3, we create a collection H̃ of distorted deflection data according to the following
four rules.

Rule 1. Replace the data on checkpoints n3 with the Gaussian noise with zero mean
and a standard deviation of 0.01.

Rule 2. Replace the deflection data on checkpoints n7 with the Rayleigh noise with
zero mean and a standard deviation of 0.01.

Rule 3. Replace the deflection data on checkpoints s4 with the Rician noise with zero
mean and a standard deviation of 0.01.

Rule 4. Keep intact all of the other deflection data.
Stage III. Perform diagnosis. By setting r = 200, l = 100, and executing algorithm

DIAG BRIDGE on (V, E, label, H̃, 0.05), we get the set of 0.05 significantly abnormal cliques,
F = {n1, n3, n4, n5, n6, n7, s4, s5}, which does contain the three cliques with distorted data.

Among the 1000 experiments, there are up to 967 times for which all of the distorted
cliques were successfully isolated. This justifies the potential utility of the proposed diagnosis
algorithm.
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5. Conclusions

We have proposed a deflection-based bridge diagnosis method, and we have justified the
potential utility of this method by applying it to the simulated diagnosis of a real-life bridge.

Toward this direction, some issues are worth further study. First, the proposed
diagnosis method needs to be improved because it may identify some healthy nodes as being
“abnormal.” Second, it is important to make clear how the diagnosis outcome is affected by
the parameters involved in the algorithm. Finally, it is necessary to incorporate some other
important factors (say, temperature, strain) into the diagnosis scheme.
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