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solution when an exact solution is required.
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1. Introduction

Nonlinear oscillators have been widely considered in physics and engineering. Surveys of
literature with numerous references, and useful bibliographies, have been given by Mickens
[1], Nayfeh and Mook [2], Agarwal et al. [3], and more recently by He [4]. To solve governing
nonlinear equations and because limitation of existing exact solutions is one of the most
time consuming and difficult affairs, many approaches for approximating the solutions to
nonlinear oscillatory systems were excogitated. The most widely studied approximation
methods are perturbation methods [5]. But these methods have a main shortcoming; there
is no small parameter in the equation, and no approximation could be obtained.

Later, new analytical methods without depending on presence of small parameter
in the equation were developed for solving these complicated nonlinear systems. These
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techniques include the Homotopy Perturbation [6–13], Modified Lindstedt-Poincaré [14],
Parameter-Expanding [15–18], Parameterized Perturbation [19], Multiple Scale [20], Har-
monic Balance [20, 21], Linearized Perturbation [22], Energy Balance [23–25], Variational
Iteration [26, 27], Variational Approach [25, 28, 29], Iteration Perturbation [30], Variational
Homotopy Perturbation [31] methods, and more [32]. Among these methods, Parameter
Perturbation Method (PEM) is considered to be one powerful method that capable to handle
strongly nonlinear behaviors. For this sake, we apply PEM to analysis of three practical cases
[2, 33, 34] of nonlinear oscillatory system. Unlike the past investigations, here, it had assumed
that the spring’s property is nonlinear. The TDOF oscillation systems were consist of two
coupled nonhomogeneous ordinary differential equations. So, we attempted to transform the
equations of motion of a mechanical system which associated with the linear and nonlinear
springs into a set of differential algebraic equations by introducing new variables. The
analytical solutions of practical cases based on the cubic oscillation are presented by means of
PEM for two iterations. Comparisons between analytical and exact solutions show that PEM
can converge to an accurate periodic solution for nonlinear systems.

2. The Models of Nonlinear Oscillation Systems

In this section, a practical case of nonlinear oscillation system of SDOF in Case 1 and two
cases of TDOF systems in Cases 2 and 3 are considered.

2.1. Single-Degree-of-Freedom

Case 1 (Model of a Bulking Column). First, we consider the system shown in Figure 1. The
mass m can move in the horizontal direction only. Using this model representing a column,
we demonstrate how one can study its static stability by determining the nature of the
singular point at u = 0 of the dynamic equations. This “dynamic” approach is simpler to
use, and arguments are more satisfying than the “static” approach [2]. Vito [35] analyzed the
stability of vibration of a particle in a plane constrained by identical springs.

Neglecting the weight of springs and columns shows that the governing equation for
the motion of m is [2]

mü +
(
k1 −

2P
l

)
u +

(
k3 −

2P
l3

)
u3 + · · · = 0, (2.1)

where u(0) = A, u̇(0) = 0. The spring force is given by

Fspring = k1u + k3u
3 + · · · . (2.2)

2.2. Two-Degree-of-Freedom

Case 2 (Two-Mass System with Three Springs). The model of two-mass system with three
springs is shown in Figure 2. In this system, two equal masses m are connected with the fixed
supports using spring k1. The connection between two masses makes a compact item which
is a spring with nonlinear properties. The linear coefficient of spring elasticity is k2 and of the
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Figure 1: Model for the bulking of a column [2].
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Figure 2: . Model of the two-mass system with three springs [34].

cubic nonlinearity is k3. The system has two degrees of freedom. The generalized coordinates
are x and y.

The mathematical model of the system is [34]

mẍ + k1x + k2
(
x − y

)
+ k3

(
x − y

)3 = εf1
(
x, ẋ, y, ẏ

)
, x(0) = X0, ẋ(0) = 0,

mÿ + k1y + k2
(
y − x

)
+ k3

(
y − x

)3 = εf2
(
x, ẋ, y, ẏ

)
, y(0) = Y0, ẏ(0) = 0,

(2.3)

where εfi is small nonlinearity (i = 1, 2). Dividing (2.3) by mass m yields

ẍ +
k1

m
x +

k2

m

(
x − y

)
+
k3

m

(
x − y

)3 =
ε

m
f1
(
x, ẋ, y, ẏ

)
,

ÿ +
k1

m
y +

k2

m

(
y − x

)
+
k3

m

(
y − x

)3 =
ε

m
f2
(
x, ẋ, y, ẏ

)
.

(2.4)

Introducing the new variables

x = u,

y − x = v.
(2.5)
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Figure 3: Model of the two-mass system with spring [33].

Transforming (2.4) yields

ü +
k1

m
u − k2

m
v − k3

m
v3 =

ε

m
f1(u, u̇, v + u, v̇ + u̇), (2.6)

v̈ + ü +
k1

m
(v + u) +

k2

m
v +

k3

m
v3 =

ε

m
f2(u, u̇, v + u, v̇ + u̇). (2.7)

From (2.6), we have

ü +
k1

m
u =

ε

m
f1(u, u̇, v + u, v̇ + u̇) +

k2

m
v +

k3

m
v3, (2.8)

Substituting (2.8) into (2.7) gives

v̈ +
[
k1 + 2k2

m

]
v +

[
2k3

m

]
v3 = ζ

(
f2(u, u̇, v + u, v̇ + u̇) − f1(u, u̇, v + u, v̇ + u̇)

)
,

v(0) = y(0) − x(0) = Y0 −X0 = A, v̇(0) = 0.

(2.9)

Setting ε = 0, (2.9) can be written as

v̈ +
[
k1 + 2k2

m

]
v +

[
2k3

m

]
v3 = 0, v(0) = y(0) − x(0) = Y0 −X0 = A, v̇(0) = 0. (2.10)

Note that the case of k3 > 0 corresponds to a hardening spring while k3 < 0 indicates a
softening one.

Case 3 (Two-Mass System with a Connection Spring). Similarly, the model of system with
one spring is shown in Figure 3. Two masses, m1 and m2, are connected with a spring in
which linear coefficient of rigidity is k1, and the nonlinear coefficient is k3. The system has
two degrees of freedom.

The generalized coordinates of the system are x and y. The equation of motion of the
system is described by [33]:

m1ẍ + k1
(
x − y

)
+ k3

(
x − y

)3 = 0, x(0) = X0, ẋ(0) = 0,

m2ÿ + k1
(
y − x

)
+ k3

(
y − x

)3 = 0, y(0) = Y0, ẏ(0) = 0.
(2.11)
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Similar to the previous section, to simplify these equations, we apply the variables that
was introduced in (2.5). Using these variables, (2.11) transformed to

m1ü − k1v − k2v
3 = 0, (2.12)

m2(v̈ + ü) + k1v + k2v
3 = 0. (2.13)

Solving (2.12) for u yields

ü =
k1

m1
v +

k2

m1
v3, (2.14)

Substituting (2.14) into (2.13) gives

v̈ +
[
k1(m1 +m2)

m1m2

]
v +

[
k2(m1 +m2)

m1m2

]
v3 = 0,

v(0) = y(0) − x(0) = Y0 −X0 = A, v̇(0) = 0.

(2.15)

As mentioned, these models can be transformed to a cubic nonlinear differential
equation in general form with different values α and β. The general form of cubic nonlinear
differential is as follows:

v̈ + αv + βv3 = 0, v(0) = A, v̇(0) = 0. (2.16)

3. Basic Idea of PEM

In order to use the PEM, we rewrite the general form of Duffing equation in the following
form [7]:

v̈ + αv + 1 ·N(v, t) = 0, (3.1)

where N(v, t) includes the nonlinear term. Expanding the solution v, α as a coefficient of v,
and 1 as a coefficient of N(v, t), the series of p can be introduced as follows:

v = v0 + pv1 + p2v2 + · · · , (3.2)

α = ω2 + pγ1 + p2γ2 + · · · , (3.3)

1 = pδ1 + p2δ2 + · · · . (3.4)
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Substituting (3.2)–(3.4) into (3.1) and equating the terms with the identical powers of
p, we have

p0 : v̈0 +ω2v0 = 0, (3.5)

p1 : v̈1 +ω2v1 + γ1v0 + δ1N(v0, t) = 0

...
(3.6)

Considering the initial conditions v0(0) = A and v̇0(0) = 0, the solution of (3.5) is
v0 = A cos(ωt). Substituting v0 into (3.6), we obtain

p1 : v̈1 +ω2v1 + γ1A cos(ωt) + δ1N(A cos(ωt), t) = 0. (3.7)

For achieving the secular term, we use Fourier expansion series as follows:

N(A cos(ωt), t) =
∞∑
n=0

b2n+1 cos[(2n + 1)ωt]. (3.8)

Substituting (3.8) into (3.7) yields

p1 : v̈1 +ω2v1 +
(
γ1A + δ1b1

)
cos(ωt) = 0. (3.9)

For avoiding secular term, we have

(
γ1A + δ1b1

)
= 0. (3.10)

Setting p = 1 in (3.3) and (3.4), we have:

γ1 = α −ω2, (3.11)

δ1 = 1. (3.12)

Substituting (3.11) and (3.12) into (3.10), we will achieve the first-order approximation
frequency (2.10). Note that, from (3.4) and (3.12), we can find that δi = 0, for all i = 2, 3, 4, . . . .
In the following section we will describe the second-order of modified PEM solution in details
for solving the cubic nonlinear differential equation.

4. Application of PEM to Cubic Equation

In order to use the PEM, we rewrite (2.16) as follows:

v̈ + αv + 1 ·
(
βv3

)
= 0, v(0) = A, v̇(0) = 0. (4.1)
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Substituting (3.2) and (3.4) into (4.1) and equating the terms with the identical powers
of p, yields

p0 : v̈0 +ω2v0 = 0, (4.2)

p1 : v̈1 +ω2v1 +
(
αδ1 + γ1

)
v0 + βv3

0 = 0, (4.3)

p2 : v̈1 +ω2v1 +
(
δ2α + γ2

)
v0 +

(
γ1 + δ1α

)
v1 + δ2βv

3
0 + 3δ1βv

2
0v1 = 0.

...
(4.4)

Considering the initial conditions v(0) = A and v̇(0) = 0, the solution of (4.2) is v0 =
A cos(ωt). Substituting u0 into (4.3), we obtain

p1 : v̈1 +ω2v1 + γ1A cos(ωt) + δ1βA
3cos3(ωt) = 0. (4.5)

It is possible to perform the following Fourier series expansion:

βA3cos3(ωt) =
∞∑
n=0

b2n+1 cos[(2n + 1)ωt] = b1 cos(ωt) +
∞∑
n=1

a2n+1 cos[(2n + 1)ωt]

=

(
4
π
βA3

∫π/2

0

(
cos4(ϕ))dϕ

)
cos(ωt) +

∞∑
n=1

a2n+1 cos[(2n + 1)ωt]

=
3A3β

4
cos(ωt) +

∞∑
n=1

a2n+1 cos[(2n + 1)ωt].

(4.6)

Substituting (4.6) into (4.5) gives

v̈1 +ω2v1 +

(
γ1A +

3δ1A
3β

4

)
cos(ωt) + δ1

∞∑
n=1

a2n+1 cos[(2n + 1)ωt] = 0. (4.7)

No secular term in v1 requires that

γ1 = −
3δ1A

2β

4
. (4.8)

Setting p = 1 in (3.3) and (3.4) gives

γ1 = α −ω2, (4.9)

δ1 = 1. (4.10)
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Substituting (4.9) and (4.10) into (4.8), we obtain

ω1 =

√
α +

3
4
βA2, (4.11)

T1 =
4π√

4α + 3βA2
. (4.12)

From (4.7) and (4.8), then (4.9) can be rewritten in the following form:

v̈1 +ω2v1 = −
∞∑
n=1

ζ2n+1 cos[(2n + 1)ωt], v1(0) = 0, v̇1(0) = 0. (4.13)

The periodic solution of (4.13) can be written [19]

v1 =
∞∑
n=0

λ2n+1 cos[(2n + 1)ωt]. (4.14)

Substituting (4.14) into (4.13) gives

−ω2
∞∑
n=0

4n(n + 1)λ2n+1 cos[(2n + 1)ωt] = −
∞∑
n=1

ζ2n+1 cos[(2n + 1)ωt]. (4.15)

From (4.15), the coefficients λ2n+1 (for n ≥ 1) can be written as follows:

λ2n+1 =
ζ2n+1

4n(n + 1)
, (4.16)

Taking into account that v1(0) = 0, (4.14) yields

λ1 = −
∞∑
n=1

λ2n+1. (4.17)

To determine the second-order approximate solution, it is necessary to substitute (4.14)
into (4.4). Then secular term is eliminated, and parameter γ2 can be calculated. v1(t) has
an infinite series; however, to simplify the solution procedure, we can truncate the series
expansion of (4.14) and (4.17) and write an approximate equation v1(t) in the following form:

v1(t) = λ3(cos 3ωt − cosωt). (4.18)



Mathematical Problems in Engineering 9

Substituting δ2 = 0 and (4.8) and (4.18) into (4.4) gives

v̈2 +ω2v2 − 3λ3βA
2cos3(ωt)

+ βA2λ3 cos(3ωt)
(

3cos2(ωt) − 3
4

)
+
(

3
4
λ3βA

2 +Aγ2

)
cos(ωt) = 0.

(4.19)

It is possible to do the following Fourier series expansion:

3λ3βA
2cos2(ωt)(cos(3ωt) − cos(ωt)) =

∞∑
n=0

η2n+1 cos[(2n + 1)ωt]

= η1 cos(ωt) +
∞∑
n=1

η2n+1 cos[(2n + 1)ωt]

∼=
(

12β2λ3A
3

π

∫π/2

0

(
cos

(
3ϕ

)
− cos

(
ϕ
))

cos3ϕ dϕ

)

× cos(ωt) +
∞∑
n=1

η2n+1 cos[(2n + 1)ωt]

= −3
4
βA2λ3 cos(ωt) +

∞∑
n=1

η2n+1 cos[(2n + 1)ωt].

(4.20)

Substituting (4.20) into (4.19) and collecting, we have

v̈2 +ω2v2 −
(

3
4
βA2λ3 −Aγ2

)
cos(ωt) − 3

4
λ3βA

2 cos(3ωt) +
∞∑
n=1

η2n+1 cos[(2n + 1)ωt] = 0.

(4.21)

The secular term in the solution for v2(t) can be eliminated if

3
4
βA2λ3 −Aγ2 = 0. (4.22)

Solving (4.22) gives

γ2 =
3
4
βAλ3. (4.23)

On the other hand, From (4.16), the following expression for the coefficient λ3 is
obtained:

λ3 =
ζ3

8ω2
=

(
(4/π)βA3

∫π/2
0 cos3ϕ cos 3ϕ dϕ

)
8ω2

=
βA3

32ω2
. (4.24)
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Figure 4: Comparison of approximate periodic solutions of Bucking of a Column equation (Case 1) with
the exact one for m = 1.0, l = 1.5, P = 5.0, k1 = 5.0, and k3 = 6.0 with u(0) = 3.0.

Then, we can obtain

γ2 =
3β2A4

128ω2
. (4.25)

From (3.3), (3.4), and (4.8), and taking p = 1 and considering δ1 = 1, we have

γ2 = α −ω2 −
3A2β

4
. (4.26)

Comparing the right hands of (4.25) and (4.26), one can easily obtain the following
expression for the second-order approximate frequency and period

ω2 =

√
8α + 6βA2 +

√
64α2 + 96αβA2 + 30β2A4

4
, (4.27)

T2 =
8π√

8α + 6βA2 +
√

64α2 + 96αβA2 + 30β2A4

. (4.28)

5. Analytical Solution of Practical Cases

In this section, we present the first and second approximate frequency and period values of
(2.16) for different values of α and β. Substituting α = (k1 + 2P/l)/m and β = (k3 + 2P/l3)/m
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Figure 5: Comparison of approximate periodic solutions of Bucking of a Column equation (Case 1) with
the exact one for m = l = P = k1 = 10.0, and k3 = 50.0 with u(0) = 10.0.

in (4.10), (4.11), (4.26), and (4.27) gives the following results for first- and second-order
approximations of the model of nonlinear SDOF Bucking Column system in Case 1:

ω1 =
1
2

√
4k1l

3 − 8Pl2 + 3k3A
2l3 − 6PA2

ml3
,

T1 =
4π
√
ml3√

4k1l3 − 8Pl2 + 3k3A2l3 − 6PA2
,

ω2 =
1

4ml3

(
8l3k1 − 16l2P + 6A2k3l

3 − 12A2P

+
(

64l6k2
1 − 256l5k1P + 256l4P 2 + 96A2l6k1k3

− 192A2l3k1P − 192A2l5k3P + 384A2l2P 2

+30A4k2
3l

6 − 120A4Pk3l
3 + 120A4P 2

)1/2
)1/2

,

T2 = 8πml3/
(

8l3k1 − 16l2P + 6A2k3l
3 − 12A2P

+
(

64l6k2
1 − 256l5k1P + 256l4P 2 + 96A2l6k1k3

− 192A2l3k1P − 192A2l5k3P + 384A2l2P 2 + 30A4k2
3l

6

−120A4Pk3l
3 + 120A4P 2

)1/2
)1/2

,

(5.1)
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Table 1: Comparison of approximate and exact periods for Case 1.

Constant parameters Approximate solutions Exact solution |T − Tex|/Tex

m l p k1 k3 A T1 T2 Te T = T1 T = T2

1 1 1 10 5 1 1.96254 1.96451 1.96451 0.101% 0.000%
5 1.5 5 5 6 3 3.23743 3.32518 3.32368 2.664% 0.045%
10 10 10 10 50 10 0.32418 0.33145 0.33143 2.210% 0.031%
50 25 40 30 100 20 0.25640 0.26216 0.26208 2.216% 0.031%
70 20 −30 50 100 10 0.60486 0.61827 0.61809 2.187% 0.030%
100 50 150 70 20 100 0.16221 0.16586 0.16580 2.218% 0.031%
500 150 220 120 500 0.5 9.67637 9.71682 9.71672 0.417% 0.001%
1000 500 1000 500 500 1 6.73241 6.75877 6.75871 0.391% 0.001%

Also, we can obtain the first and second-order approximations solutions for Case 2, by
substituting α = (k1 + 2k2)/m and β = 2k3/m into (4.11), (4.12), (4.27), and (4.28):

ω1 =

√
k1 + 2k2 + 1.5k3A

2

m
,

T1 =
π
√

8m√
2k1 + 4k2 + 3A2k3

,

ω2 =
1
4

√√√√8(k1 + 2k2) + 12k3A
2 +

√
64(k1 + 2k2)

2 + 192(k1 + 2k2)k3A2 + 120k2
3A

4

m
,

T2 =
4π
√
m√

8(k1 + 2k2) + 12k3A2 +
√

64(k1 + 2k2)
2 + 192(k1 + 2k2)k3A2 + 120k2

3A
4

.

(5.2)

Similarly, for α = k1(m1 + m2)/m1m2 and β = k2(m1 + m2)/m1m2, we obtain the
following frequency and period values for Case 3:

ω1 =

√
(m1 +m2)
m1m2

(
k1 +

3
4
A2k2

)
,

T1 =
2π
√
m1m2√

(m1 +m2)(k1 + (3/4)A2k2)
,

ω2 =
1
4

√
(m1 +m2)
m1m2

(
8k1 + 6A2k2 +

√(
64k2

1 + 96A2k1k2 + 30A4k2
2

))
,

T2 =
8π

(1/4)

√
((m1 +m2)/m1m2)

(
8k1 + 6A2k2 +

√(
64k2

1 + 96A2k1k2 + 30A4k2
2

)) .

(5.3)
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Figure 6: Comparison of approximate periodic solutions of Bucking of a Column equation (Case 1) with
the exact one for m = 100.0, l = 50.0, P = 150.0, k1 = 70.0, and k3 = 20.0 with u(0) = 100.0.

6. Results and Discussions

To illustrate and verify accuracy of PEM, comparisons with the exact solution are given
in Tables 1, 2, and 3. According to the appendix, the exact frequency, ωex, of nonlinear
differential equation in the cubic form is

ωex(A) =
π
√
α + βA2

2

(∫π/2

0

dt

1 − δ sin2t

)−1

, δ =
βA2

2
(
α + βA2

) . (6.1)

Substituting α = (k1 + 2P/l)/m and β = (k3 + 2P/l3)/m into (6.1) gives the exact
frequency for Case 1:

ωex(A) =
π

2

√
k1l

3 − 2Pl2 +A2k3l
3 − 2A2P

ml3

(∫π/2

0

dt

1 − δ sin2t

)−1

,

δ =

(
l3k3 − 2P

)
A2

2(k1l3 − 2Pl2 +A2k3l3 − 2A2P)
.

(6.2)

Substituting α = k1(m1 + m2)/m1m2 and β = k2(m1 + m2)/m1m2 into (6.1), the exact
solution of Case 2 is

ωex(A) =
π

2

√
(k1 + 2k2) + 2A2k3

m

(∫π/2

0

dt

1 − δ sin2t

)−1

,

δ =
2k3A

2

2(k1 + 2k2) + 2k3A2
.

(6.3)
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Figure 7: Comparison of the first- and second-order analytical approximate solutions with the exact
solution for m = k1 = k2 = k3 = 1.0 with x(0) = 5.0 and y(0) = 1.0 (Case 2).

Table 2: Comparison of approximate and “Exact” frequencies for case 2.

Constant parameters Approximate solutions Exact solution |ω −ωex|/ωex

m k1 k2 k3 X0 Y0 ω1 ω2 ωex ω = ω1 ω = ω2

1 1 1 1 5 1 5.1962 5.1068 5.1078 1.73% 0.0185%
2 1 3 5 8 10 4.3012 4.2401 4.2406 1.43% 0.0185%
5 10 20 30 −10 10 60.08328 58.7677 58.7856 2.21% 0.0305%
10 50 70 90 20 −40 220.4972 215.6448 215.7113 2.22% 0.0308%
10 25 20 0.5 −10 10 6.0415 5.9533 5.9541 1.47% 0.0132%
100 200 300 400 −50 50 244.9653 239.5715 239.6455 2.22% 0.0309%

Using (2.8) and ε = 0, we can obtain

ü +
k1

m
u =

k2

m
v +

k3

m
v3. (6.4)

The first- and second-order analytical approximation for u(t) is obtained using (6.4)
and therefore, the first and second-order analytically approximates displacements x(t) and
y(t) obtained using (2.5).

Similarly, substituting α = k1(m1 +m2)/m1m2 and β = k2(m1 +m2)/m1m2 into (6.1),
the exact solution of Case 3 is:

ωex(A) =
π

2

√
(m1 +m2)
m1m2

(k1 + k2A2)

(∫π/2

0

dt

1 − δ sin2t

)−1

,

δ =
k2(m1 +m2)A2

2(k1(m1 +m2) + k2(m1 +m2)A2)
.

(6.5)
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Figure 8: Comparison of the first- and second-order analytical approximate solutions with the exact
solution for m = 2.0, k1 = 1.0, k2 = 3.0, k3 = 5.0 with x(0) = 8.0 and y(0) = 10.0 (Case 2).
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Figure 9: Comparison of the first- and second-order analytical approximate solutions with the exact
solution for m1 = 1.0, m2 = 2.0, k1 = 5.0, k2 = 1.0 with x(0) = −4.0 and y(0) = 1.0 (Case 3).

After obtaining u(t)from (2.14), the first- and second-order analytically approximates
displacements x(t) and y(t) obtained using (2.5).

It should be noted that ωex contains an integral which could only be solved
numerically in general. The limitation of amplitude, A, in the cubic oscillation equation
satisfies βA2+α > 0; the Duffing equation has a heteroclinic orbit with period +∞ [36]. Hence,
in order to avoid the heteroclinic orbit with period +∞ for the Duffing equation in (2.16), the
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Figure 10: Comparison of the first- and second-order analytical approximate solutions with the exact
solution for m1 = 3.0, m2 = 5.0, k1 = 2.0, k2 = 5.0 with x(0) = 5.0 and y(0) = −5.0 (Case 3).

value of k3 in the first two cases and k2 for the third case should, respectively, satisfy in (6.4),
(6.5), and (6.6)

k3 >
−k1

A2
+

2P
l

(
1
A2

+
1
l2

)
, (6.6)

k3 > −
k1 + 2k2

2A2
, (6.7)

k2 > −
k1

A2
, (6.8)

where k1, k2, k3, l ∈ R+ and A,P ∈ R.
To illustrate and verify accuracy of this analytical approach, comparisons of analytical

and exact results for the practical cases are presented in Tables 1–3 and Figures 4–10. For this
reason, we use the following specific parameter and initial values: Case 1: m, P , l, k1, k3, A,
Case 2: m, k1, k2, k3, X0, Y0, and Case 3: m1, m2, k1, k2, X0, Y0.

Figures 4–6, which are correspond to Case 1, indicate the comparison of this analytical
method for different parameter with initial values m = 1.0, l = 1.5, P = 5.0, k1 = 5.0 and
k3 = 6.0, A = 3.0 and m = l = P = k1 = 10.0, and k3 = 50.0, A = 10.0 and m = 100.0, l = 50.0,
P = 150.0, k1 = 70.0, k3 = 20.0 and A = 100.0 which are in an excellent agreement with exact
solutions.

Figures 7 and 8 represent the x-t and y-t diagrams which obtained analytically and
exactly solving of Case 2 with different parameter and initial values m = k1 = k2 = k3 = 1.0
with X0 = 5.0, Y0 = 1.0 and m = 2.0, k1 = 1.0, k2 = 3.0, k3 = 5.0, X0 = 8.0, Y0 = 10.0. Also,
the corresponding diagrams (x-t, y-t) of Case 3 are plotted in Figures 9 and 10. The different
parameters and initial values that used in plotting diagrams of Case 3 are: m1 = 1.0, m2 = 2.0,
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Table 3: Comparison of approximate and “Exact” frequencies for Case 3.

Constant parameters Approximate solutions Exact solution |ω −ωex|/ωex

m1 m2 k1 k2 X0 Y0 ω1 ω2 ωex ω = ω1 ω = ω2

1 2 5 1 −4 1 5.9687 5.8885 5.8892 1.35% 0.011%
3 5 2 5 5 −5 14.1798 13.8710 13.8752 2.20% 0.011%
1 5 5 1 5 −5 9.7980 9.6096 9.6119 1.94% 0.023%
10 5 10 10 20 30 15.0997 14.7763 14.7806 2.16% 0.029%
5 10 50 −0.01 −20 40 2.6268 2.5452 2.5468 3.14% 0.064%
100 1 10 5 20 25 10.2366 10.0545 10.0564 1.79% 0.020%
50 100 50 100 100 25 112.5067 110.0293 110.0633 2.22% 0.031%
1000 100 200 300 400 200 314.6461 307.7164 307.8115 2.17% 0.031%

k1 = 5.0, k2 = 1.0, X0 = −4.0, Y0 = 1.0 and m1 = 3.0, m2 = 5.0, k1 = 2.0, k2 = 5.0, X0 = 5.0,
Y0 = −5.0.

According to these tables and figures, the difference between analytical and exact
solutions is negligible. In other words, the first-order approximate results of PEM are
accurate, but we significantly improve the percentage error from lower-order to second-
order analytical approximations. We did it using modified PEM in second iteration for
different parameters and initial amplitudes. Hence, it is concluded and provides an excellent
agreement with the exact solutions.

7. Conclusions

The parameter expansion method (PEM) has been used to obtain the first- and second-
order approximate frequencies and periods for Single- and Two-Degrees-Of-Freedom (SDOF
and TDOF) systems. Excellent agreements between approximate frequencies and the exact
one have been demonstrated and discussed, and the discrepancy of the second-order
approximate frequency ω2 with respect to the exact one is as low as 0.064%. In general,
we conclude that this method is efficient for calculating periodic solutions for nonlinear
oscillatory systems, and we think that the method has a great potential and could be applied
to other strongly nonlinear oscillators.

Appendix

The exact solution of cubic nonlinear differential equation can be obtained by integrating the
governing differential equation as follows:

1
2
u̇2 +

α

2
u2 +

β

2
u4 = C, ∀t, (A.1)

where C is a constant. Imposing initial conditions u(0) = A, u̇(0) = 0 yields

C =
α

2
A2 +

β

4
A4, (A.2)
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Equating (A.1) and (A.2) yields

1
2
v̇2 +

α

2
v2 +

β

4
v4 =

α

2
A2 +

β

4
A4, (A.3)

or equivalently

dt =
dv√

α(A2 − v2) +
(
β/2

)(
A4 − v4

) . (A.4)

Integrating (A.4), the period of oscillation Te is

T(A) = 4
∫A

0

dv√
α(A2 − v2) +

(
β/2

) (
A4 − v4

) . (A.5)

Substituting v = A cos t into (A.5) and integrating

T(A) =
4√

α + βA2

∫π/2

0

dt√
1 − δ sin2t

, (A.6)

where

δ =
βA2

2
(
α + βA2

) . (A.7)

The exact frequency ωex is also a function of A and can be obtained from the period of
the oscillation as

ωex(A) =
π
√
α + βA2

2

(∫π/2

0

dt

1 − δ sin2t

)−1

. (A.8)
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[14] J.-H. He, “Modified Lindstedt-Poincaré methods for some strongly non-linear oscillations—II: a new
transformation,” International Journal of Nonlinear Mechanics, vol. 37, no. 2, pp. 315–320, 2002.

[15] D.-H. Shou and J.-H. He, “Application of parameter-expanding method to strongly nonlinear
oscillators,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, no. 1, pp. 121–
124, 2007.

[16] N. H. Sweilam and R. F. Al-Bar, “Implementation of the parameter-expansion method for the coupled
van der pol oscillators,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, no.
2, pp. 259–264, 2009.

[17] L.-N. Zhang and L. Xu, “Determination of the limit cycle by He’s parameter-expansion for oscillators
in a u3/(1 + u2) potential,” Zeitschrift für Naturforschung A, vol. 62, no. 7-8, pp. 396–398, 2007.

[18] L. Xu, “Application of He’s parameter-expansion method to an oscillation of a mass attached to a
stretched elastic wire,” Physics Letters A, vol. 368, no. 3-4, pp. 259–262, 2007.

[19] J.-H. He, “A review on some new recently developed nonlinear analytical techniques,” International
Journal of Nonlinear Sciences and Numerical Simulation, vol. 1, no. 1, pp. 51–70, 2000.

[20] A. Marathe and A. Chatterjee, “Wave attenuation in nonlinear periodic structures using harmonic
balance and multiple scales,” Journal of Sound and Vibration, vol. 289, no. 4-5, pp. 871–888, 2006.

[21] H. P. W. Gottlieb, “Harmonic balance approach to limit cycles for nonlinear jerk equations,” Journal of
Sound and Vibration, vol. 297, no. 1-2, pp. 243–250, 2006.

[22] J.-H. He, “Linearized perturbation technique and its applications to strongly nonlinear oscillators,”
Computers & Mathematics with Applications, vol. 45, no. 1–3, pp. 1–8, 2003.

[23] J.-H. He, “Preliminary report on the energy balance for nonlinear oscillations,” Mechanics Research
Communications, vol. 29, no. 2-3, pp. 107–111, 2002.

[24] S. S. Ganji, D. D. Ganji, Z. Z. Ganji, and S. Karimpour, “Periodic solution for strongly nonlinear
vibration systems by He’s energy balance method,” Acta Applicandae Mathematicae, vol. 106, no. 1,
pp. 79–92, 2009.

[25] S. S. Ganji, D. D. Ganji, and S. Karimpour, “He’s energy balance and He’s variational methods for
nonlinear oscillations in engineering,” International Journal of Modern Physics B, vol. 23, no. 3, pp. 461–
471, 2009.

[26] M. Rafei, D. D. Ganji, H. Daniali, and H. Pashaei, “The variational iteration method for nonlinear
oscillators with discontinuities,” Journal of Sound and Vibration, vol. 305, no. 4-5, pp. 614–620, 2007.

[27] J.-H. He and X.-H. Wu, “Construction of solitary solution and compacton-like solution by variational
iteration method,” Chaos, Solitons & Fractals, vol. 29, no. 1, pp. 108–113, 2006.

[28] J.-H. He, “Variational approach for nonlinear oscillators,” Chaos, Solitons & Fractals, vol. 34, no. 5, pp.
1430–1439, 2007.

[29] L. Xu, “Variational approach to solitons of nonlinear dispersive K(m,n) equations,” Chaos, Solitons &
Fractals, vol. 37, no. 1, pp. 137–143, 2008.

[30] J.-H. He, “Iteration perturbation method for strongly nonlinear oscillations,” Journal of Vibration and
Control, vol. 7, no. 5, pp. 631–642, 2001.



20 Mathematical Problems in Engineering

[31] M. A. Noor and S. T. Mohyud-Din, “Variational homotopy perturbation method for solving higher
dimensional initial boundary value problems,” Mathematical Problems in Engineering, vol. 2008, Article
ID 696734, 11 pages, 2008.

[32] D. D. Ganji, M. Rafei, A. Sadighi, and Z. Z. Ganji, “A comparative comparison of He’s method
with perturbation and numerical methods for nonlinear vibrations equations,” International Journal
of Nonlinear Dynamics in Engineering and Sciences, vol. 1, no. 1, pp. 1–20, 2009.

[33] L. Cveticanin, “Vibrations of a coupled two-degree-of-freedom system,” Journal of Sound and Vibration,
vol. 247, no. 2, pp. 279–292, 2001.

[34] L. Cveticanin, “The motion of a two-mass system with non-linear connection,” Journal of Sound and
Vibration, vol. 252, no. 2, pp. 361–369, 2002.

[35] R. Vito, “On the stability of vibrations of particle in a plane constrained by identifical non-linear
springs,” International Journal of Nonlinear Mechanics, vol. 9, no. 84, p. 325, 1974.

[36] E. A. Jackson, Perspectives of Nonlinear Dynamics. Vol. 1, Cambridge University Press, Cambridge, UK,
1989.


