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A theoretical procedure for the creation of a stable drop-like static meniscus, appropriate for the
growth of a single crystal tube, with a priori specified inner and outer radius, is presented. The
method locates the controllable part p of the pressure difference across the free surface. It consists
in a set of calculus, which leads to the determination of the melt column height (between the
horizontal crucible melt level and the shaper top level) in function of the pressure of the gas
flow (introduced in the furnace for release the heat) in order to obtain the desired meniscus. The
procedure is presented in general and is numerically illustrated for InSb tubes. The novelty is
the algorithm for the exact determination of p, which has to be used, the determination of the
melt column height, and the evaluation of the effect of shaper radii. The setting of the thermal
conditions, which assure that for the obtained static meniscus the solidification conditions are
satisfied at the “right” places, is not considered here.
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1. Introduction

The conventional melt growth techniques, as Bridgman growth [1–3] or Czochralski pulling
[4–6] of single crystals, typically produce ingots of circular or square cross-sections which
need to be cut in hundreds of slices to produce wafers. Using these processes, it is difficult to
produce thin wafers from an ingot without wasting 40%–50% of material as kerfs during the
cutting process. For this reason the E.F.G. technology can be more appropriate to produce
single crystals with prescribed shapes and sizes which can be used without additional
machining.
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The growth of silicon tubes by E.F.G. process was first reported by Erris et al. [7]. In [7]
a theory of tube growth by E.F.G. process is developed to show the dependence of tube wall
thickness on the growth variables. The theory uses approximation reported in [8, 9], and it has
been shown to be a useful tool understanding the feasible limits of the wall thickness control.
A more accurate predictive model would require an increase of the acceptable tolerance range
introduced by approximation.

Later, the heat flow in a tube growth system was analyzed in [10–19].
The state of the arts at the time 1993-1994, concerning the calculation of the meniscus

shape in general in the case of the growth by E.F.G. method is summarized in [20].
According to [20], for the general differential equation describing the free surface of a
liquid meniscus, possessing axial symmetry, there are no complete analysis and solution.
For the general equation only numerical integrations were carried out for a number
of process parameter values that were of practical interest at the moment. The authors
of [21, 22] consider automated crystal growth processes based on weight sensors and
computers. They give an expression for the weight of the meniscus, contacted with crystal
and shaper of arbitrary shape, in which there are two terms related to the hydrodynamic
factor.

In [23] it is shown that the hydrodynamic factor is too small to be considered in the
automated crystal growth. In [24] a theoretical and numerical study of meniscus dynamics,
under symmetric and asymmetric configurations, is presented. A meniscus dynamics model
is developed to consider meniscus shape and its dynamics, heat and mass transfer around
the die top and meniscus. Analysis reveals the correlations among tube thickness, effective
melt height, pull rate, die top temperature, and crystal environmental temperature.

In [25] the effect of the controllable part of the pressure difference on the free surface
shape of the static meniscus is analyzed for the tube growth by E.F.G. method for materials
for which 0 < αc < π/2; 0 < αg < π/2; αc > π/2 − αg .

The present paper concerns also the shape and the stability of the free surface of a
static meniscus (pulling rate equal to zero). More precisely, it is shown in which kind the
explicit formulas reported in [25] can be combined in order to create a stable static meniscus
having a free surface with prescribed size and shape, which is appropriate for the growth
of a single crystal tube having a priori specified inner and outer radii. The free surface of a
static meniscus is appropriate for the growth of a single crystal tube of constant inner radius
ri and constant outer radius re if the angle between the tangent lines to the free surface at the
points (ri, zi(ri)), (re, ze(re)) (Figure 1 where the solidification conditions have to be assured)

and the vertical is equal to the growth angle αg . Moreover, the function describing the free
surface has to minimize the energy functional of the melt column (i.e., the meniscus has
to be stable). In this paper we give a procedure for the choice of the melt column height,
between the horizontal crucible melt level and shaper top level and of the pressure of the gas
flow introduced in the furnace (for release the heat), in order to create a static meniscus of
which free surface is appropriate for the growth of a single crystal tube of constant inner
radius ri and outer radius re.The thermal problem concerning the setting of the thermal
conditions, which assure that for the obtained static meniscus at the level zi(ri), ze(re) the
solidification conditions are satisfied is not considered in this paper. The novelty consists
in the fact that the free surface is not approximated by an arc with constant curvature, the
computation takes into account the pressure of the gas flow, and the stability of the free
surface is assured.



Mathematical Problems in Engineering 3

2. The Free Surfaces Equations and the Pressure Difference Limits

For a single crystal tube growth by E.F.G. technique, in hydrostatic approximation, the outer
free surface equation of the static meniscus is

z′′e =
ρ · g · ze − pe

γ

[
1 +

(
z′e
)2
]3/2
− 1
r
·
[
1 +

(
z′e
)2
]
· z′e; r ∈

[
Rgi + Rge

2
, Rge

]
, (2.1)

and the inner free surface equation is

z′′i =
ρ · g · zi − pi

γ

[
1 +

(
z′i
)2
]3/2
− 1
r
·
[
1 +

(
z′i
)2
]
· z′i; r ∈

[
Rgi,

Rgi + Rge

2

]
. (2.2)

Here, γ is the surface tension of the melt; ρ is the melt density; g is the gravitational
acceleration; ze, zi are the coordinates with respect to the Oz axis, directed vertically upwards;
r is the radial coordinate with respect to theOr axis, oriented horizontal;Rge, Rgi are the outer
and inner radius of the shaper, respectively; pe, pi are the pressure difference across the outer
and inner free surface, respectively:

pe = pm − peg − ρ · g ·H, pi = pm − pig − ρ · g ·H. (2.3)

In (2.3), pm denotes the hydrodynamic pressure in the meniscus melt due to the thermal and
Marangoni convection; peg, p

i
g are the pressure of the gas flow introduced in the exterior and

in the interior of the tube, respectively, for releasing the heat from the inner and outer side
of the tube wall; H denotes the melt column “height” between the horizontal crucible melt
level, and the shaper top level (Figure 1). H is positive when the crucible melt level is under
the shaper top level and it is negative when the shaper top level is under the crucible melt
level.

The solution ze = ze(r) of (2.1) has to satisfy the following conditions:

z′e(re) = − tan
(π

2
− αg

)
, (2.4a)

z′e
(
Rge

)
= − tanαc, (2.4b)

ze
(
Rge

)
= 0 and ze(r) is strictly decreasing on

[
re, Rge

]
, (2.4c)

where re ∈ ((Rgi + Rge)/2, Rge) is the tube outer radius; αg is the growth angle; αcis the
contact angle between the outer free surface and the outer edge of the shaper top and 0 <
αc < π/2; 0 < αg < π/2; π/2 − αg < αc (Figure 1).

Condition (2.4a) expresses that at the point (re, ze(re)) (the left end of the outer free
surface), where the solidification has to be realized, the angle between the tangent line to the
free surface and the vertical is equal to the growth angle αg (i.e., the tangent to the tube outer
wall is vertical).

Condition (2.4b) expresses that at the point (Rge, 0) (the right end of the outer free
surface, where the free surface is attached to the shaper edge), the angle between the tangent
line to the free surface and horizontal (i.e., the contact angle) is equal to αc.
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Figure 1: Axisymmetric meniscus geometry in the tube growth by E.F.G. method.

Condition (2.4c) expresses that at the point (Rge, 0) the free surface is attached to the
shaper edge.

Moreover, the solution ze = ze(r) has to minimize the energy functional of the melt
column:

Ie(z) =
∫Rge

re

{
γ ·

[
1 +

(
z′
)2
]1/2

+
1
2
· ρ · g · z2 − pe · z

}
· r · dr,

z(re) = he > 0, z
(
Rge

)
= 0.

(2.5)

The solution zi = zi(r) of (2.2) has to satisfy the following conditions:

z′i
(
Rgi

)
= tanαc, (2.6a)

z′i(ri) = tan
(π

2
− αg

)
, (2.6b)

zi
(
Rgi

)
= 0 and zi(r) is strictly increasing on

[
Rgi, ri

]
, (2.6c)

where: ri ∈ (Rgi, (Rgi + Rge)/2) is the tube inner radius; αg is the growth angle; αcis the
contact angle between the inner free surface and the inner edge of the shaper top and 0 <
αc < π/2; 0 < αg < π/2; π/2 − αg < αc (Figure 1).
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Condition (2.6a) expresses that at the point (Rgi, 0) (the left end of the inner free
surface, where the free surface is attached to the shaper edge), the angle between the tangent
line to the free surface and horizontal (i.e., the contact angle) is equal to αc.

Condition (2.6b) expresses that at the point (ri, zi(ri)) (the right end of the inner free
surface), where the solidification has to be realized, the angle between the tangent line to the
free surface and the vertical is equal to the growth angle αg (i.e., the tangent to the tube inner
wall is vertical).

Condition (2.6c) expresses that at the point (Rgi, 0) the free surface is attached to the
shaper edge.

Moreover, the solution zi = zi(r) has to minimize the energy functional of the melt
column:

Ii(z) =
∫ ri

Rgi

{
γ ·

[
1 +

(
z′
)2
]1/2

+
1
2
· ρ · g · z2 − pi · z

}
· r · dr,

z
(
Rgi

)
= 0, z(ri) = hi > 0.

(2.7)

Based on the mathematical theorems, rigorously proven in [25], the following
statements, regarding the creation of an appropriate meniscus, can be formulated.

Statement 1

If the solution of the initial value problem (IVP)

z′′e =
ρ · g · ze − pe

γ

[
1 +

(
z′e
)2
]3/2
− 1
r
·
[
1 +

(
z′e
)2
]
· z′e,

ze
(
Rge

)
= 0, z′e

(
Rge

)
= − tanαc

(2.8)

is convex, then it does not represent the outer free surface of an appropriate drop-like static
meniscus.

Comment 1. The above statement shows that the solutions of IVP (2.8), which represent the
outer free surface of an appropriate drop-like static meniscus, can be obtained only for those
values of pe for which the solution is not globally convex.

Statement 2

Ifpe < (γ/Rge) · sinαc, then the solution of the IVP (2.8) is globally convex, and it does not
represent the outer free surface of an appropriate drop-like static meniscus.

Comment 2. The above statement locates a set of pe values which are not appropriate for the
creation of a drop-like meniscus.
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Statement 3

If the solution ze = ze(r) of the nonlinear boundary value problem (NLBVP) (2.1), (2.4a),
(2.4b), and (2.4c) represents the outer free surface of an appropriate concave static meniscus
on the closed interval [Rge/n, Rge], with 1 < n < (Rgi+Rge)/2, then the following inequalities
hold:

n

n − 1
· γ ·

αc + αg − π/2
Rge

· cosαc +
γ

Rge
· cosαg

≤ pe ≤
n

n − 1
· γ ·

αc + αg − π/2
Rge

· sinαg +
n − 1
n
· ρ · g · Rge · tanαc + n ·

γ

Rge
· sinαc.

(2.9)

Comment 3. The above statement shows that in order to obtain the outer free surface of a
concave static meniscus, appropriate for the growth of a tube of outer radius re = Rge/n, pe
has to be searched in the range defined by the inequalities (2.9).

Consequence 1

If n = 2 · Rge/(Rgi + Rge) (re is the middle point of the interval [Rgi, Rge]), then re = Rge/n =
(Rgi + Rge)/2 and inequalities (2.9) become

2 · γ ·
αc + αg − π/2
Rge − Rgi

· cosαc +
γ

Rge
· cosαg

≤ pe ≤ 2 · γ ·
αc + αg − π/2
Rge − Rgi

· sinαg +
ρ · g ·

(
Rge − Rgi

)

2
· tanαc +

2 · γ
Rge + Rgi

· sinαc.

(2.10)

Comment 4. The above consequence shows that in order to obtain the outer free surface of
a concave static meniscus, appropriate for the growth of a tube of outer radius re = (Rgi +
Rge)/2, pe has to be searched in the range defined by the inequalities (2.10).

Consequence 2

If pe verifies the inequality

pe < 2 · γ ·
αc + αg − π/2
Rge − Rgi

· cosαc +
γ

Rge
· cosαg, (2.11)

then there is no re in the closed interval [(Rgi+Rge)/2, Rge] for which the NLBVP (2.1), (2.4a),
(2.4b), and (2.4c) possesses a concave solution.

Comment 5. The above consequence shows that if pe is in the range defined by the inequality
(2.11), then it is impossible to obtain a static meniscus having concave outer free surface
which is appropriate for the growth of a tube of outer radius re situated in the range [(Rgi +
Rge)/2, Rge].
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Consequence 3

If n → 1, then re = Rge/n → Rge and, according to (2.9), pe → +∞.

Comment 6. The above consequence shows that in order to obtain the outer free surface of a
concave static meniscus, appropriate for the growth of a tube of outer radius re ≈ Rge, pe has
to be very high.

Statement 4

If n and pe verify the inequalities

1 < n <
2 · Rge

Rge + Rgi
,

pe >
n

n − 1
· γ ·

αc + αg − π/2
Rge

· sinαg +
n − 1
n
· ρ · g · Rge · tanαc + n ·

γ

Rge
· sinαc,

(2.12)

then there exist re ∈ [Rge/n, Rge] and a concave solution of the NLBVP (2.1), (2.4a), (2.4b),
and (2.4c) on the interval [re, Rge].

Comment 7. The above consequence shows that if n and pe verify (2.12), then a static meniscus
having concave outer free surface, appropriate for the growth of a tube of outer radius re
situated in the range [Rge/n, Rge], is obtained.

Consequence 4

If for 1 < n′ < n < 2 · Rge/(Rgi + Rge ) and pe the following inequalities hold:

n

n − 1
· γ ·

αc + αg − π/2
Rge

· sinαg +
n − 1
n
· ρ · g · Rge · tanαc + n ·

γ

Rge
· sinαc

< pe <
n′

n′ − 1
· γ ·

αc + αg − π/2
Rge

· cosαc +
γ

Rge
· cosαg,

(2.13)

then there exist re in the interval [Rge/n, Rge/n
′] and a concave solution of the NLBVP (2.1),

(2.4a), (2.4b), and (2.4c) on the interval [re, Rge].

Comment 8. The above consequence shows that if pe is in the range defined by the inequalities
(2.13), then a static meniscus having concave outer free surface, appropriate for the growth
of a tube of outer radius re situated in the range [Rge/n, Rge/n

′], is obtained.

Statement 5

A concave solution ze = ze(r) of the NLBVP (2.1), (2.4a), (2.4b), and (2.4c) is a weak
minimum of the energy functional of the melt column.
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Comment 9. The above consequence shows that a static meniscus having a concave outer
free surface, appropriate for the growth of a tube of outer radius re situated in the range
[(Rgi + Rge)/2, Rge], is stable.

Statement 6

If n and pe satisfy the inequalities

1 < n <
2 · Rge

Rge + Rgi
, pe >

n − 1
n
· g · ρ · Rge · tanαc + n ·

γ

Rge
, (2.14)

then the solution ze = ze(r) of the IVP (2.8) is concave on the interval I ∩ [Rge/n, Rge] where
I is the maximal interval of the existence of ze(r).

Comment 10. The above consequence shows that if pe is in the range defined by the
inequalities (2.14), then eventually it can be used for the creation of a drop-like static
meniscus, appropriate for the growth of a tube of outer radius re in the range [Rge/n, Rge].

Statement 7

If pe > (γ/Rge) · sinαc and for a value re = Rge/n, which satisfies re ∈ ((Rgi + Rge)/2, Rge), a
static meniscus appropriate for the growth of a tube of outer radius re exists, then for pe the
following inequalities hold:

γ

Rge
· sinαc < pe < ρ · g ·

n − 1
n
· Rge · tanαc + n ·

γ

Rge
· cosαc. (2.15)

Comment 11. The above statement locates those values of pe for which eventually nonglobally
concave (drop-like) static meniscus, appropriate for the growth of a tube of outer radius
re = Rge/n, exists.

Statement 8

If the solution of the IVP

z′′i =
ρ · g · zi − pi

γ

[
1 +

(
z′i
)2
]3/2
− 1
r
·
[
1 +

(
z′i
)2
]
· z′i,

zi
(
Rgi

)
= 0, z′i

(
Rgi

)
= tanαc

(2.16)

is convex, then it does not represent the inner free surface of an appropriate drop-like static
meniscus.

Comment 12. The above statement shows that the inner free surface of an appropriate drop-
like static meniscus can be obtained only for those values of pi for which the IVP (2.16) is not
globally convex.
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Statement 9

If pi satisfies the inequality

pi < −
γ

Rgi
, (2.17)

then the solution zi = zi(r) of the IVP (2.15) is convex on the interval I ∩ [Rgi, (Rgi + Rge)/2],
where I is the maximal interval of the existence of zi(r).

Comment 13. The above statement shows that if pi is in the range defined by the inequality
(2.17), then it is impossible to obtain a static meniscus, appropriate for the growth of a tube
of inner radius ri situated in the range [Rgi, (Rgi + Rge)/2].

Statement 10

If the solution zi = zi(r) of the NLBVP (2.2) and (2.5) represents the inner free surface of
an appropriate concave static meniscus on the closed interval [Rgi,m · Rgi] with 1 < m <
(Rgi + Rge)/2 · Rgi, then the following inequalities hold:

1
m − 1

γ ·
αc + αg − π/2

Rgi
· cosαc −

γ

Rgi
· sinαc ≤ pi

≤ 1
(m − 1)

γ ·
αc + αg − π/2

Rgi
· sinαg + (m − 1) · ρ · g · Rgi · tanαc −

γ

m · Rgi
· cosαg.

(2.18)

Comment 14. The above statement shows that in order to obtain the inner free surface of a
concave static meniscus, appropriate for the growth of a tube of inner radius ri = m · Rgi, pi
has to be searched in the range defined by the inequalities (2.18).

Consequence 5

If m = (Rgi + Rge)/2 · Rgi, then ri = (Rgi + Rge)/2 (i.e., ri is the middle point of the interval
	Rgi, Rge
) and the inequalities (2.18) become:

2 · γ ·
αc + αg − π/2
Rge − Rgi

· cosαc −
γ

Rgi
· sinαc ≤ pi

≤ 2 · γ ·
αc + αg − π/2
Rge − Rgi

· sinαg +
ρ · g ·

[
Rge − Rgi

]

2
· tanαc −

2 · γ
Rge + Rgi

· cosαg.

(2.19)

Comment 15. The above consequence shows that in order to obtain the inner free surface of a
concave static meniscus, appropriate for the growth of a tube of inner radius ri = (Rgi+Rge)/2,
pi has to be searched in the range defined by the inequalities (2.19).
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Consequence 6

If pi verifies:

pi < 2 · γ ·
αc + αg − π/2
Rge − Rgi

· cosαc −
γ

Rgi
· sinαc, (2.20)

then there is no ri in the closed interval [Rgi, (Rgi + Rge)/2] for which the NLBVP (2.2) and
(2.5) possesses a concave solution.

Comment 16. The above consequence shows that if pi is in the range defined by the
inequalities (2.19), then it is impossible to obtain a static meniscus, having concave inner
free surface and appropriate for the growth of a tube of inner radius ri situated in the range
[Rgi, ((Rgi + Rge)/2)].

Consequence 7

If m → 1, then ri = m · Rgi → Rgi and pi → +∞.

Comment 17. The above consequence shows that in order to obtain the inner free surface of a
concave static meniscus appropriate for the growth of a tube of inner radius ri ≈ Rgi, pi has
to be very high.

Statement 11

If m and pi verify the inequalities

1 < m <
Rgi + Rge

2 · Rgi
,

pi >
1

m − 1
· γ ·

αc + αg − π/2
Rgi

· sinαg + (m − 1) · ρ · g · Rgi · tanαc −
γ

m · Rgi
· cosαg,

(2.21)

then there exist ri in the closed interval [Rgi,m · Rgi] and a concave solution of the NLBVP
(2.2) and (2.5) on the interval [Rgi, ri].

Comment 18. The above statement shows that if m and pi verify (2.21), then a static meniscus
having concave inner free surface and appropriate for the growth of a tube of inner radius ri
in the range (Rgi,m · Rgi), is obtained.
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Consequence 8

If for 1 < m′ < m < (Rgi + Rge)/2 · Rgi and pi the following inequalities hold:

1
m − 1

· γ ·
αc + αg − π/2

Rgi
· sinαg + (m − 1) · ρ · g · Rgi · tanαc −

γ

m · Rgi
· cosαg

< pi <
1

m′ − 1
· γ ·

αc + αg − π/2
Rgi

· cosαc +
γ

Rgi
· sinαc,

(2.22)

then there exist ri in the interval [m′ · Rgi,m · Rgi] and a concave solution of the NLBVP (2.2)
and (2.5) on the interval [Rgi, ri].

Comment 19. The above consequence shows that if pi is in the range defined by the
inequalities (2.22), then a static meniscus having a concave inner free surface and appropriate
for the growth of a tube of inner radius ri, situated in the range [m′ ·Rgi,m ·Rgi], is obtained.

Statement 12

A concave solution zi = zi(r) of the NLBVP (2.2) and (2.5) is a weak minimum of the energy
functional of the melt column.

Comment 20. The above statement shows that a static meniscus having a concave inner free
surface appropriate for the growth of a tube of inner radius ri, situated in the range [Rgi, (Rgi+
Rge)/2], is stable.

Statement 13

If pi satisfies pi < (−γ/Rgi) · sinαc and there exists ri ∈ (Rgi, (Rgi + Rge)/2) such that on the
interval [Rgi, ri] an appropriate static meniscus exists, then pi verifies:

−
γ

Rgi
< pi < −

γ

Rgi
· sinαc. (2.23)

Comment 21. Inequality (2.23) locates the values of pi for which eventually nonglobally
concave (convex-concave) static meniscus can be obtained.

Statement 14

If (−γ/Rgi) · sinαc < pi and there exists ri = m · Rgi; m ∈ (1, (Rgi + Rge)/2 · Rgi) such that
on [Rgi, ri] an appropriate non-globally concave static meniscus exists, then pi satisfies the
inequalities

−
γ

Rgi
· sinαc < pi < ρ · g · (m − 1) · Rgi · tanαc +

γ

Rgi
. (2.24)

Comment 22. Inequality (2.24) locates the values of pi for which eventually concave-convex
static menisci can be obtained.
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Statement 15

If m and pi satisfy the inequalities

1 < m <
Rgi + Rge

2 · Rgi
, pi >

γ

Rgi
+ ρ · g · (m − 1) · Rgi · tanαc, (2.25)

then the solution zi(r) of the IVP (2.16) is concave on the interval I ∩ [Rgi,m · Rgi] where I is
the maximal interval of the existence of zi(r).

Comment 23. Inequality (2.25) locates the values of pi for which we can obtain eventually
appropriate static menisci.

3. Creation of an Appropriate Drop-Like Static Meniscus for the
Growth of a Tube of Inner Radius ri and Outer Radius re

In this section it will be shown in which kind the explicit formulas presented in the
above section can be used for the creation of an appropriate drop-like meniscus when
αc, αg, ρ, γ, Rgi, Rge, ri and re are given a priori. In the same time the melt column “height”
H, which has to be used, is found in function of the pressure of the gas flow introduced in
the furnace for release the heat.

3.1. Creation of the Outer Free Surface

For the creation of the appropriate outer free surface, the following limits were considered:

Le1(n) =
n

n − 1
· γ ·

αc + αg − π/2
Rge

· cosαc +
γ

Rge
· cosαg,

Le2(n) =
n

n − 1
· γ ·

αc + αg − π/2
Rge

· sinαg +
n − 1
n
· ρ · g · Rge · tanαc + n ·

γ

Rge
· sinαc,

Le3(n) =
n − 1
n
· ρ · g · Rge · tanαc + n ·

γ

Rge
· cosαc,

Le4(n) =
n − 1
n
· ρ · g · Rge · tanαc + n ·

γ

Rge
,

le1 = 2 · γ ·
αc + αg − π/2
Rge − Rgi

· cosαc +
γ

Rge
· cosαg,

le2 = 2 · γ ·
αc + αg − π/2
Rge − Rgi

· sinαg +
ρ · g ·

(
Rge − Rgi

)

2
· tanαc +

2 · γ
Rge − Rgi

· sinαc,

le3 =
γ

Rge
· sinαc

(3.1)

for n > 1.
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Figure 2: The possible pe ranges which have to be investigated for n ∈ (1; 1.1).

These limits are represented for n ∈ (1; 1.1) in Figure 2. The computations were
performed in MathCAD V.13 using the following numerical data

Rge = 4.8 · 10−3 [m]; Rgi = 4.2 · 10−3 [m]; αc = 63.80 = 1.1135 [rad];

αg = 28.90 = 0.5044 [rad]; ρ = 6582
[
kg/m3

]
;

γ = 4.2 · 10−1[N/m]; g = 9.81
[
m/s2

]
.

(3.2)

When n1 = 1.03226, that is, r1
e = 4.65 · 10−3 [m], we have the following.

(i) If there exists a concave outer free surface, appropriate for the growth of a tube of
outer radius r1

e = 4.65 · 10−3 [m], then according to Statement 3 this can be obtained
for a value of pe which is in the range (Le1(n), L

e
2(n)) = (134.85; 164.49) [Pa].

(ii) Taking into account the above fact, in order to create a concave outer free surface,
appropriate for the growth of a tube of which outer radius is equal to r1

e =
4.65 · 10−3 [m], we have solved the IVP (2.8) for different values of pein the range
(134.85; 164.49) [Pa].

More precisely, we have integrated the following system:

dze
dr

= − tanαe

dαe
dr

= − 1
cosαe

·
[
g · ρ · ze − pe

γ
+

1
r
· sinαe

] (3.3)
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Figure 4: Nonglobally concave outer free surface obtained for p′e = 149.7 [Pa].

for ze(Rge) = 0, z′e(Rge) = − tanαc and different pe. The obtained outer radii re versus pe
are represented in Figure 3, which shows that the desired outer radius r1

e = 4.65 · 10−3 [m] is
obtained for p′e = 149.7 [Pa].

Actually, as it can be seen on the same figure, for p′e = 149.7 [Pa], we can obtain also
a second outer radius r2

e = 3.8 · 10−3 [m], which is not anymore in the desired range ((Rgi +
Rge)/2, Rge). Moreover, the outer free surface of this meniscus is not globally concave; it is a
convex-concave meniscus (Figure 4).

Taking into account pm ≈ 0 [7, 23, 24], the melt column height in this case is H ′e =
−[1/ρ ·g] · [p′e+peg], where peg ≥ 0 is the pressure of the gas flow (introduced in the furnace for
release the heat from the outer side of the tube wall). When peg = 0 [7, 24], thenH ′e is negative,
H ′e = −2.31 ·10−3 [m]; that is, the crucible melt level has to be with −H ′e = 2.31 ·10−3 [m] above
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the shaper top level. When peg = 800 [Pa], then H ′e = −15 · 10−3 [m]; that is, the crucible melt
level has to be with −H ′e = 15 · 10−3 [m] above the shaper top level.

Additional remarks are as follows.

(i) For pe in the range (−∞, le3) = (−∞, 78.51)[Pa], according to Statement 2, the outer
free surface of the meniscus is globally convex, and, according to Statement 1, such
a meniscus is not appropriate for the growth of a tube of outer radius r1

e = 4.65 ·
10−3 [m].

(ii) For pe in the range (le3, l
e
1) = (78.51; 105.73) [Pa], according to Consequence 2, it is

impossible to obtain concave outer free surface, which is appropriate for the growth
of a tube of outer radius r1

e = 4.65 · 10−3 [m].

(iii) For pe in the range (le1, L
e
1(n)) = (105.73; 134.85) [Pa], according to the Statement 3,

it is impossible to obtain concave outer free surface, which is appropriate for the
growth of a tube of outer radius r1

e = 4.65 · 10−3 [m].

(iv) For pe in the range (Le2(n); +∞) = (164.49; +∞) [Pa], according to the Statement 4,
the outer free surface is concave and is appropriate for the growth of a tube which
outer radius re is higher than r1

e = 4.65 · 10−3 [m].

3.2. Creation of an Appropriate Inner Free Surface

For the creation of the appropriate inner free surface, the following limits were considered

Li1(m) =
1

m − 1
· γ ·

αc + αg − π/2
Rgi

· cosαc −
γ

Rgi
· sinαc,

Li2(m) =
1

m − 1
· γ ·

αc + αg − π/2
Rgi

· sinαg + (m − 1) · ρ · g · Rgi · tanαc −
1
m
·
γ

Rgi
· cosαg,

Li3(m) = ρ · g · (m − 1) · Rgi · tanαc +
γ

Rgi
,

li1 = 2 · γ ·
αc + αg − π/2
Rge − Rgi

· cosαc −
γ

Rgi
· sinαc,

li2 = 2 · γ ·
αc + αg − π/2
Rge − Rgi

· sinαg +
ρ · g ·

(
Rge − Rgi

)

2
· tanαc −

2 · γ
Rge + Rgi

· cosαg,

li3 = −
γ

Rgi
· sinαc,

li4 = −
γ

Rgi
,

(3.4)

for m > 1.
These limits are represented for m ∈ (1; 1.1) in Figure 5. The computations were

performed in MathCAD V.13 using the same numerical data as for the creation of the
appropriate outer free surface.
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Figure 5: The possible pi ranges which have to be investigated for m ∈ (1; 1.1).

When m1 = 1.03571, that is, r ′i = 0.00435 [m], we obtain the following.

(i) If there exists a concave inner free surface for the growth of a tube of inner radius
r ′i = 0.00435 [m], then, according to the Statement 10, this can be obtained for a
value of pi which is in the range (Li1(m1), Li2(m1)) = (−31.46,−1.07) [Pa].

Taking into account the above fact, in order to create a concave inner free surface,
appropriate for the growth of a tube which inner radius is equal to r ′i = 0.00435 [m],
we have solved the IVP (2.16) for different values of pi in the range (Li1(m1), Li2(m1)) =
(−31.46,−1.07) [Pa]. More precisely, we have integrated the following system:

dzi
dr

= tanαi,

dαi
dr

=
1

cosαi
·
[
g · ρ · zi − pi

γ
− 1
r
· sinαi

] (3.5)

for zi(Rgi) = 0, z′i(Rgi) = tanαc and different pi. The obtained inner radii ri versus pi are
represented in Figure 6, which shows that the desired inner radius r1

i = 4.35 · 10−3 [m] is
obtained for p′i = −16.2 [Pa].

Taking pm ≈ 0 [7, 23, 24], the melt column height in this case isH ′i = −(1/ρ ·g) ·[p
′
i+p

i
g],

where pig ≥ 0 is the pressure of the gas flow (introduced in the furnace for release the heat
from the inner side of the tube wall). When pig = 0 [7, 24], then H ′i is positive, H ′i = 0.25 ·
10−3 [m]; that is, the crucible melt level has to be with H ′i = 0.25 · 10−3 [m] under the shaper
top level. When pig = 800 [Pa], then H ′i = −12.1 · 10−3 [m]; that is, the crucible melt level has to
be with −H ′e = 12.1 · 10−3 [m] above the shaper top level.



Mathematical Problems in Engineering 17

r i
(m

)

4.3

4.35

4.4

4.45
4.42

4.316

pi (Pa)

−40 −30 −20 −10 0

ri

Figure 6: Inner radii ri versus pi in the range (Li1(m1), Li2(m1)) = (−31.46,−1.07) [Pa].

Additional remarks are as follows.

(i) For pi in the range (−∞, li4) = (−∞,−100) [Pa], according to Statement 9, the
meniscus inner free surface is convex on the interval I ∩ [Rgi, ((Rgi + Rge)/2)], and
according to Statement 8, such a meniscus is not appropriate for the growth of a
tube of inner radius r ′i = 0.00435 [m].

(ii) For pi in the range (li4, l
i
3) = (−100, 89.72) [Pa] if an appropriate static meniscus

exists, then the inner free surface of the meniscus is not globally concave.

(iii) If pi is in the range (li3,+∞) = (89.72,+∞) [Pa] and an appropriate nonglobally
concave inner free surface exists, then pi is less than Li3(m1) = 119.68 [Pa].

(iv) For pi in the range (Li2(m),+∞) = (−1.07,+∞) [Pa] the obtained inner free surface is
appropriate for the growth of a tube of inner radius ri which is less than the desired
radius r ′i = 0.00435 [m].

3.3. Creation of a Concave Meniscus, Appropriate for the Growth of a Tube of
Inner Radius ri and Outer Radius re

For creating a concave meniscus, appropriate for the growth of a tube with outer radius r ′e =
0.00465 [m] (n1 = Rge/re = 1.03226) and inner radius r ′i = 0.00435 [m] (m1 = Rgi/ri = 1.03571)
the melt column heights (with respect to the crucible melt level) have to be

H1
i = − 1

ρ · g ·
[
p1
i + p

i
g

]
= − 1

ρ · g ·
[
−16.2 + pig

]
,

H1
e = − 1

ρ · g ·
[
p1
e + p

e
g

]
= − 1

ρ · g ·
[
149.7 + peg

]
.

(3.6)
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In the following we will present three different procedures to create such a meniscus.

Procedure A [H1
e = H1

i ; p
i
g /= p

e
g]

When the shaper outer top is at the same level as the shaper inner top, with respect to the
crucible melt level, then the relation H1

e = H1
i holds and hence: (1/ρ · g) · [−16.2 + pig] =

(1/ρ · g) · [149.7 + peg]. It follows that the pressure of the gas flow, introduced in the furnace
for releasing the heat from the inner wall of the tube, pig , has to be higher than the pressure
of the gas flow introduced in the furnace for release the heat from the outer wall of the tube,
peg ; pig − peg = 149.7 + 16.2 = 165.9 [Pa].The results of the integration of the system (3.3) and
(3.5) for pe = p1

e = 149.7 [Pa] and pi = p1
i = −16.2 [Pa] when the shaper outer top is at the

same level as the shaper inner top, with respect to the crucible melt level, are represented in
Figure 7.Figure 7 shows also that the inner free surface is higher than the outer free surface:
zi(r1

i ) = h
a
i = 2.865 · 10−4 [m]; ze(r1

e) = h
a
e = 2.860 · 10−4 [m]; hai − hae = 0.005 · 10−4 [m].

Procedure B [peg = pig ;H
1
e /=H

1
i ]

When the pressure of the gas flow introduced in the furnace for releasing the heat from the
outer wall of the tube, peg , is equal to the pressure of the gas flow introduced in the furnace
for release the heat from the inner wall of the tube pig , then the equalities peg = −p1

e −ρ ·g ·H1
e =

−149.7 − ρ · g ·H1
e and pig = −p1

i − ρ · g ·H
1
i = 16.2 − ρ · g ·H1

i imply the equality

H1
i −H

1
e =

(
1/ρ · g

)
· 165.9 = 2.569 · 10−3 [m]. (3.7)

.
In other words, when peg = pig , then the level difference between the shaper inner top

and outer top has to be H1
i −H1

e = 2.569 ·10−3 [m]. In this condition the inner surface top level
hbi with respect to the shaper outer top level is hbi = H

1
i −H1

e +h
a
i = (1/ρ · g) · (−p1

e + p
1
i ) +h

a
i =

2.855 · 10−3 [m] (see Figure 8).
Hence the level difference between the inner free surface top hbi and outer free surface

top hbe = h
a
e in this case is hbi − hbe = (1/ρ · g) · (−p1

e + p
1
i ) + (hai − hae) = 2.5695 · 10−3 [m].

Due to the difficulties which can appear in this case in the creation of an appropriate
thermal field, which assures the solidification in the right places, it is more appropriate to use
H1

e = H1
i and gas flows having the property (Procedure A) pig = peg+(p

1
i −p1

e) = p
e
g+165.9 [Pa].
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Figure 8: zi(r) and ze(r) for pi = −16.2 [Pa] and pe = 149.7 [Pa] and peg = pig .

For this choice the difference between the inner free surface height and outer free surface
height with respect to the shaper top level is only hi − he = 0.0005 · 10−3 [m], and the creation
of the thermal field, which assures the solidification in the right places, can be easier.

Procedure C [peg /= p
i
g ;H

1
e /=H

1
i ]

Finally, to create an appropriate concave meniscus for which the inner meniscus is equal to
the outer meniscus height, we will proceed by changing both the pressures pig , peg of the gas
flows and the inner and outer top levels Hi,He of the shaper.

For example, if we take peg = 100 [Pa] for creating an appropriate outer free surface,
then the crucible melt level has to be with −H1

e = (1/ρ ·g) · [149.7+ 100] [m] = 38.67 · 10−4 [m]
above the shaper outer top level.

Now we take H1
i = H1

e − (hai − hae) = −38.67 · 10−4 − 0.005 · 10−4 = −38.675 · 10−4 [m].
After that, in order to satisfy pi = −pig − ρ · g ·H1

i = −16.2 [Pa], we take the pressure pig equal
to pig = 16.2 − ρ · g · (−38.675 · 10−4) = 265.92 [Pa]. For this choice, we will have an appropriate
drop-like meniscus for which hci = hce, as it is shown in Figure 9, obtained by integration of
systems (3.3) and (3.5) for the given numerical data.

4. The Effect of the Choice of the Shaper Radii

In this sequence we intend to evaluate numerically the effect of the choice of the shaper radii
for the growth of a tube which outer radius is equal to re, and inner radius is equal to ri.

For this purpose, the procedure described in sequence 3 will be applied for the growth
of a tube having the same outer radius r ′e = 0.00465 [m] and inner radius r ′i = 0.00435 [m],
but the shaper radii changed: the inner radius of the shaper now is Rgi = 4 · 10−3 [m] (instead
of 4.2 · 10−3 [m]), and the outer radius of the shaper now is Rge = 5 · 10−3 [m] (instead of
4.8 · 10−3 [m]).
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Figure 9: zi(r) and ze(r) for pi = −16.2 [Pa] and pe = 149.7 [Pa]; peg = 100 [Pa]; pig = 265.92 [Pa];H1
e =

−38.67 · 10−4 [m]; H1
i = −38.675 · 10−4 [m].

Applying the procedure in this case we find that to create a static meniscus which outer
free surface is appropriate for the growth, pe has to be pe = 124.38 [Pa], and to create a static
meniscus which inner free surface is appropriate for the growth, pi has to be pi = −41.35 [Pa].
The so-obtained outer and inner free surfaces are stable. The inner free surface height is hi =
6.57 · 10−4 [m], and the outer free surface height is he = 6.603 · 10−4 [m].

When we take the shaper inner top at the same level as the shaper outer top, then the
pressure difference between the pressure of the inner gas flow pig and the outer gas flow peg
has to be pig − peg = pe − pi = 165.73 [Pa], and the level difference between the inner and outer
free surface top is equal to hi − he = −0.033 · 10−4 [m].

When we take the pressure of the inner gas flow pig equal to the pressure of the outer
gas flow peg , then the level difference between the shaper inner top Hi and the shaper outer
top He has to be Hi − He = (1/ρ · g) · [pi − pe] = 2.567 · 10−3 [m], and the level difference
between the inner and outer free surface top is equal to the difference Hi + hi − (He + he) =
(1/ρ · g) · [pi − pg] + hi − he = 2.5637 · 10−3 [m].

5. Conclusions

(i) Stable and drop-like static meniscus, appropriate for the growth of a single-crystal
cylindrical tube with a priori specified inner and outer radii, can be created by the
choice of the difference between the inner top level and outer top level of the shaper,
or by the choice of the pressure of the gas flows, introduced inside and outside of
the tube for release the heat from the tube walls.

(ii) The values of the differences between the inner and outer top level of the shaper,
or the pressure in the inner and outer gas flows, depend on the shaper radii. This
dependence can be relevant.

(iii) The realization of the thermal conditions, which assure that for the obtained static
meniscus the solidification conditions are satisfied at the right places, is easier when
we take the shaper inner top at the same level as the shaper outer top, and we use
inner and outer gas flows having different pressures (pig /= p

e
g). The setting of the

thermal conditions is not discussed in this paper.
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