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Numerical solutions of the generalized Burgers-Huxley equation are obtained using a polynomial
differential quadrature method with minimal computational effort. To achieve this, a combination
of a polynomial-based differential quadrature method in space and a low-storage third-order total
variation diminishing Runge-Kutta scheme in time has been used. The computed results with the
use of this technique have been compared with the exact solution to show the required accuracy
of it. Since the scheme is explicit, linearization is not needed and the approximate solution to
the nonlinear equation is obtained easily. The effectiveness of this method is verified through
illustrative examples. The present method is seen to be a very reliable alternative method to some
existing techniques for such realistic problems.
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1. Introduction

Nonlinear partial differential equations are encountered in various fields of science.
Generalized Burgers-Huxley equation being a nonlinear partial differential equation is of
high importance for describing the interaction between reaction mechanisms, convection
effects, and diffusion transports. Since there exists no general technique for finding analytical
solutions of nonlinear diffusion equations so far, numerical solutions of nonlinear differential
equations are of great importance in physical problems.

There are many researchers who used various numerical techniques to obtain
numerical solution of the Burgers-Huxley equation. Wang et al. [1] studied the solitary wave
solutions of the generalized Burgers-Huxley equation and Estevez [2] presented nonclassical
symmetries and the singular modified Burgers and Burgers-Huxley equation. In the past few
years, various powerful mathematical methods such as spectral methods [3–5], Adomian
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decomposition method [6–8], homotopy analysis method [9], the tanh-coth method [10],
variational iteration method [11, 12], and Hopf-Cole transformation [13] have been used in
attempting to solve the equation.

To the best knowledge of the authors, the idea of the differential quadrature method
(DQM), where approximations of the spatial derivatives have been based on a polynomial
of high degree, has not been implemented for the problems in physical phenomena
represented by the generalized Burgers-Huxley equation so far. The DQM is an efficient
discretization technique in solving initial and/or boundary value problems accurately using
a considerably small number of grid points. Bellman et al. [14] introduced the DQM
in the early seventies and, since then, the technique has been successfully employed in
finding the solutions of many problems in applied and physical sciences [15–21]. Recent
comparative studies show that the DQM provides highly accurate and efficient solutions of
the ordinary/partial differential equations taking a noticeably small number of grid points.
Due to the aforementioned advantages, the DQM has been projected by its proponents as
a potential alternative to the conventional numerical solution techniques such as the finite
difference and finite element methods.

In the DQM, derivatives of a function with respect to a coordinate direction are
expressed as linear weighted sums of all the functional values at all grid points along
that direction. The weighting coefficients in that weighting sum are determined using test
functions. Among the many kinds of test functions, the Lagrange interpolation polynomial
is widely used since it has no limitation on the choice of the grid points. This leads to
polynomial-based differential quadrature (PDQ) method which is suitable in most problems.
For periodic problems, Fourier series expansion can be the best approximation giving the
Fourier expansion-based differential quadrature (FDQ) method. To clearly describe the DQ
method, the readers can see that the PDQ method was first presented in the work of Shu
and Richards [18], and FDQ method was first appeared in the works of Shu and Chew [22],
and Shu and Xue [23]. The determination of weighting coefficients in explicit formulations
[24] for both cases is based on the analysis of function approximation and analysis of a linear
vector space.

Unlike some previous techniques using various transformations to reduce the
equation into more simple equation, the current method does not require extra effort to deal
with the nonlinear terms. Therefore the equations are solved easily and elegantly using the
present method. This method has also additional advantages over some rival techniques, ease
in use and computational costeffectiveness in order to find solutions of the given nonlinear
equations. The combination of the PDQ method in space with the low-storage third-order
total variation diminishing Runge-Kutta (TVD-RK3) scheme in time [25] provides an efficient
explicit solution with high accuracy and minimal computational effort for the problems
represented by the generalized Burgers-Huxley equation.

The present method is useful for obtaining numerical approximations of linear
or nonlinear differential equations and it is also quite straightforward to write codes
in any programming languages. Also, round off errors and necessity of large computer
memory are not faced in this method. The computed results obtained by this way have
been compared with the exact solution to show the required accuracy of it. Furthermore,
the current method is of a general nature and can therefore be used for solving the
nonlinear partial differential equations arising in various areas. Therefore, this paper
suggests the use of this technique for solving the generalized Burgers-Huxley equation
problems.
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2. The Model Equation

Behaviors of many physical systems encountered in models of reaction mechanisms,
convection effects, and diffusion transports give rise to the generalized Burgers-Huxley
equation. The following generalized Burgers-Huxley equation problem arising in various
fields of science is considered:

ut + αuδux − uxx = βu
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1 − uδ)(uδ − γ), 0 ≤ x ≤ 1, t ≥ 0 (2.1)
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The exact solution of (2.1) is
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where α, β, γ , and δ are parameters that β ≥ 0, δ > 0. The role of the parameters on exact
solutions was analyzed by Efimova and Kudryashov [13]. If β = 0, (2.1) reduces to Burgers’
equation. When α = 0, it is the Fitzhugh-Nagoma equation [26, 27].

The current work aims to demonstrate that the proposed numerical algorithm is
capable of achieving high accuracy for the problems represented by the generalized Burgers-
Huxley equation. The computed results are compared with the exact solutions to verify the
effectiveness of the current method.
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3. Polynomial-Based Differential Quadrature Method

The method uses the basis of the quadrature method in driving the derivatives of a function.
It follows that the partial derivative of a function with respect to a space variable can be
approximated by a weighted linear combination of function values at some intermediate
points in that variable.

The selection of locations of the sampling points plays an important role in the
accuracy of the solution of the differential equations. Using uniform grids can be considered
to be a convenient and easy selection method. Quite frequently, the DQM delivers more
accurate solutions using the so-called Chebyshev-Gauss-Lobatto points [20, 24]. For a domain
specified by a ≤ x ≤ b and discretized by a set of nonuniform grids, then the coordinate of
any point i can be evaluated by

xi = a +
1
2

(
1 − cos

(
i − 1
N − 1

π

))
(b − a). (3.1)

The values of function u(x, t) at any time on the above grid points are given as u(xi, t), i =
1, 2, . . . ,N. Here N stands for the number of grid points. The differential quadrature
discretizations of the first- and second-order spatial derivatives are given by, respectively:
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where aij and bij are the weighting coefficients of the first- and second-order derivatives,
respectively [24]. Once the weighting coefficients are determined, the bridge to link the
derivatives in the governing differential equation and the functional values at the mesh points
is established. The weighting coefficients of the first-order derivatives are as follows [24]:
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For weighting coefficients of the second = order derivative, the formulae are [24]:

bij = 2aij
(
aii − 1

xi − xj

)
, i /= j,

bii = −
N∑

j=1, j /= i

bij .

(3.4)



Mathematical Problems in Engineering 5

In order to attain the accurate numerical solution of differential equations, proper
implementation of the boundary is also very important. For prescribing the Dirichlet
boundary conditions (2.3), (2.1) should only be applied at the interior points since the
solution at the boundary grid points is known. Thus, (2.1) can be written in discretized form

dui
dt

= βui
(
1 − uδi

)(
uδi − γ

) − αuδi
N∑

k=1

aikuk +
N∑

k=1

bikuk + si, i = 2, 3, . . . ,N − 1, (3.5)

where

si = −αuδi ai1u1 − αuδNaiNuN + bi1u1 + biNuN. (3.6)

After the discretization, using the PDQ method, (3.5) can be reduced into a set of ordinary
differential equations in time. Thus,

dui
dt

= Lui, (3.7)

where L shows a spatial nonlinear differential operator. The low-storage explicit TVD-RK3
scheme integrates from time t0 (step m) to t0 + Δt (step m + 1) through the operations [26]
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In this procedure, each spatial derivative on the right hand side of (3.7) was computed
with the use of the PDQ method and then the semidiscrete equation (3.7) was solved
with the help of the low-storage explicit TVD-RK3 scheme. Thus, the solution is obtained
without solving any algebraic system of equations, and requiring neither linearization nor
any transformation.

4. Numerical Illustrations

In order to see numerically whether the present methodology leads to accurate solutions,
the PDQ solutions will be evaluated for some examples of the generalized Burgers-Huxley
equations given above. To verify the efficiency, measure its accuracy and the versatility of the
PDQ method for the current problem in comparison with the exact solution, absolute error
for different values of α, β, δ, and γ is reported which is defined by

∣∣u
(
xi, tj

) −U(
xi, tj

)∣∣ (4.1)
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Table 1: The absolute errors for various values of δ, x, and t with α = 1, β = 1, γ = 0.001.

xi t δ = 1 δ = 2 δ = 4 δ = 8

x3

0.20 6.841E-09 3.194E-07 2.239E-06 6.058E-06
0.60 7.733E-09 3.610E-07 2.531E-06 6.842E-06
0.80 7.748E-09 3.617E-07 2.535E-06 6.852E-06

x7

0.20 3.644E-08 1.701E-06 1.193E-05 3.226E-05
0.60 4.226E-08 1.973E-06 1.383E-05 3.739E-05
0.80 4.236E-08 1.977E-06 1.386E-05 3.746E-05

x13

0.20 1.420E-08 6.630E-07 4.649E-06 1.257E-05
0.60 1.615E-08 7.538E-07 5.284E-06 1.428E-05
0.80 1.618E-08 7.553E-07 5.294E-06 1.431E-05

Table 2: The absolute errors for various values of δ, x, and t with α = 0.1, β = 0.001, γ = 0.0001.

xi t δ = 1 δ = 2 δ = 4 δ = 8

x3

0.10 4.059E-14 5.984E-12 7.554E-11 2.802E-10
0.50 5.888E-14 8.681E-12 1.096E-10 4.065E-10
1.00 5.924E-14 8.733E-12 1.102E-10 4.090E-10

x7

0.10 2.021E-13 2.979E-11 3.760E-10 1.395E-09
0.50 3.215E-13 4.741E-11 5.984E-10 2.220E-09
1.00 3.239E-13 4.775E-11 6.027E-10 2.236E-09

x13

0.10 8.301E-14 1.224E-11 1.545E-10 5.731E-10
0.50 1.229E-13 1.812E-11 2.288E-10 8.487E-10
1.00 1.237E-13 1.824E-11 2.302E-10 8.541E-10

Table 3: The absolute errors for various values of δ, x, and t with α = −0.1, β = 0.1, γ = 0.001.

xi t δ = 1 δ = 2 δ = 4 δ = 8

x4

0.30 2.317E-09 1.013E-07 6.628E-07 1.682E-06
0.50 2.413E-09 1.055E-07 6.902E-07 1.751E-06
0.90 2.428E-09 1.062E-07 6.944E-07 1.762E-06

x8

0.30 6.580E-09 2.878E-07 1.882E-06 4.776E-06
0.50 6.899E-09 3.017E-07 1.974E-06 5.007E-06
0.90 6.950E-09 3.039E-07 1.988E-06 5.043E-06

x12

0.30 3.695E-09 1.616E-07 1.057E-06 2.681E-06
0.50 3.855E-09 1.686E-07 1.103E-06 2.798E-06
0.90 3.881E-09 1.697E-07 1.110E-06 2.816E-06

in the point (xi, tj). Here u(xi, tj) the solution portraying the behaviors of physical systems is
obtained by the present scheme while U(xi, tj) stands for the exact solution.

Consider the generalized Burgers-Huxley equation in the form (2.1) with the initial
condition (2.2), boundary conditions (2.3), and the exact solution (2.4). The results are
compared with the exact solution. The numerical computations were performed using
nonuniform grids. The current method is quite straightforward to write codes in any
programming languages. Here, all computations were carried out using some codes
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Table 4: The absolute errors for various values of β, x, and t with α = 1, δ = 1, γ = 0.001.

xi t β = 1 β = 10 β = 50 β = 100

x4

0.30 1.545E-08 1.854E-07 9.807E-07 1.989E-06
0.50 1.608E-08 1.930E-07 1.021E-06 2.071E-06
0.90 1.618E-08 1.942E-07 1.027E-06 2.082E-06

x8

0.30 4.387E-08 5.264E-07 2.785E-06 5.649E-06
0.50 4.600E-08 5.520E-07 2.920E-06 5.922E-06
0.90 4.633E-08 5.560E-07 2.941E-06 5.960E-06

x12

0.30 2.463E-08 2.956E-07 1.564E-06 3.172E-06
0.50 2.570E-08 3.084E-07 1.632E-06 3.309E-06
0.90 2.587E-08 3.105E-07 1.642E-06 3.328E-06

Table 5: The absolute errors for various values of γ , x, and t with α = 5, β = 10, δ = 2.

xi t γ = 10−2 γ = 10−3 γ = 10−4 γ = 10−5

x4

0.30 2.039E-04 6.505E-06 2.059E-07 6.512E-09
0.50 2.116E-04 6.771E-06 2.144E-07 6.780E-09
0.90 2.111E-04 6.808E-06 2.157E-07 6.823E-09

x8

0.30 5.809E-04 1.848E-05 5.848E-07 1.849E-08
0.50 6.071E-04 1.937E-05 6.131E-07 1.939E-08
0.90 6.064E-04 1.950E-05 6.175E-07 1.953E-08

x12

0.30 3.268E-04 1.038E-05 3.283E-07 1.038E-08
0.50 3.399E-04 1.083E-05 3.426E-07 1.083E-08
0.90 3.392E-04 1.089E-05 3.448E-07 1.091E-08

Table 6: Comparison of PDQ-Lagrange and PDQ-Chebyshev methods: the absolute errors for various
values of x and t with α = 2, β = 3, γ = 0.001, δ = 1.

xi t PDQ-Lagrange PDQ-Chebyshev

x4

0.01 7.6338863E-09 7.6338860E-09
0.10 3.1524288E-08 3.1524290E-08
1.00 4.6979115E-08 4.6979110E-08

x8

0.01 1.0877730E-08 1.0877730E-08
0.10 8.2905812E-08 8.2905810E-08
1.00 1.3450669E-07 1.3450670E-07

x12

0.01 9.7652503E-09 9.7652500E-09
0.10 4.9131274E-08 4.9131270E-08
1.00 7.5113908E-08 7.5113910E-08

produced in Visual Basic 6.0. N and Δt are taken to be 16 and 0.0001, respectively, in all
examples except in Example 4.7. The differences between the computed solution and the
exact solution for some values of the constants δ, α, β, and γ are shown in Tables 1–6.
As various problems of science were modelled by nonlinear partial differential equations
and since therefore the generalized Burgers-Huxley equation is of great importance,
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Table 7: The maximum absolute errors and convergence rate (CR) of the DQM-TVD-RK3 with α = 5,
β = 10, γ = 2, δ = 1, Δt = 0.00001, t = 0.1 in Example 4.7.

N Maximum absolute error CR
5 2.103906E-03
10 1.019676E-07 14.33
15 4.738276E-11 18.93
20 4.665157E-13 16.06

10.80.60.40.20

x

t = 0.0125
t = 0.025
t = 0.05

t = 0.1
t = 0.2
t = 0.4

0
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2
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Figure 1: Solutions of Example 4.7 at different times for α = 5, β = 10, γ = 2, δ = 1, N = 15, Δt = 0.00001.

various values of the parameters have been considered in the following examples
[4].

Example 4.1. In Table 1, the absolute errors were shown for various values of δ, x, and t with
α = 1, β = 1, γ = 0.001. A comparison has been made between the computed and the exact
results for various values of the parameters.

Example 4.2. In Table 2, the absolute errors have been shown for various values of δ,
x, and t with α = 0.1, β = 0.001, γ = 0.0001. A comparison between the exact
and the current results is given in Table 2. The obtained results are seen to be very
accurate.

Example 4.3. For the computational work in this example, the absolute errors have been
shown for various values of δ, x, and t with α = −0.1, β = 0.1, γ = 0.001.
The corresponding results of the parameters have been presented in Table 3. Again
accuracy of the present results is clearly seen for the values of the parameters in
Table 3.

Example 4.4. Here, the absolute errors have been shown in Table 4 for various values of β, x,
and t with α = 1, δ = 1, γ = 0.001. As is the previous examples, the results of the combination
of the PDQ method with the low-storage explicit TVD-RK3 have been presented in Table 4.
Comparisons of the current results with the exact results showed that the presented results
are very accurate.

Example 4.5. Table 5 shows absolute error for various values of γ , x, and t with α = 5, β = 10,
δ = 2. The results of the present method for the above values of the parameters are shown
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in Table 5. It is important to see from the computed results in Table 5 that the method is very
accurate.

Example 4.6. The PDQ method based on the Lagrange interpolation functions and the PDQ
method based on the Chebyshev interpolation functions are compared in terms of the
absolute errors for various values of x and t with α = 2, β = 3, γ = 0.001, δ = 1 in
Table 6. The results in both cases are nearly the same. However, it is important to know
that the grid points can be chosen arbitrarily in the case of Lagrange interpolation. This
is not the case for the Chebyshev interpolation function, when the problems which are of
asymptotic behaviors and need good mesh refinement near the sudden changes take place.
This can be easily carried out in the first case while that is not the case in the latter one.
Note that the Chebyshev polynomial interpolation function is a good choice for periodic
problems.

Example 4.7. The maximum absolute errors and convergence rate (CR) of the pro-
posed method are produced for various values of N with α = 5, β = 10,
γ = 2, δ = 1, Δt = 0.00001, t = 0.1 in Table 7. Accuracy of the present
method is shown by calculating the pointwise rate of convergence. Numerical rate
of convergence (CR) has also been studied to know about the convergency of the
scheme. The rate of convergence for the scheme is calculated using the following
formula:

rate of convergence (CR) ≈ log
(
E
(
N2

)
/E

(
N1

))

log
(
N1/N2

) , (4.2)

where E(Nj) is the maximum absolute error when using the number of grid points Nj .
Also computational orders in Table 7 show the high-order accuracy of the present method
for solving such problems. To see the behaviors at various times, the PDQ solutions are
exhibited for different times with α = 5, β = 10, γ = 2, δ = 1, N = 15, Δt = 0.00001 in
Figure 1.

In the examples above, although a very few number of grids are used and
even when the parameters are taken to increase the nonlinearity of the problem,
the present results are still seen to be very accurate. Tables 1–6 show that a very
good approximation to the actual solution of the equations was achieved by using
the method. A very good agreement between the results of the combination of the
PDQ with the low-storage explicit TVD-RK3 scheme and exact solution was observed,
which confirms the validity of the present method. This method is a very reli-
able alternative technique to some existing methods which face well-known difficul-
ties.

5. Conclusions

In this paper, use of a combination of polynomial-based differential quadrature method in
space and a low-storage third-order total variation diminishing Runge-Kutta method in time
has been proposed for the generalized Burgers-Huxley equation, with high convergence.
Comparisons of the computed results with exact solutions showed that the method has
the capability of solving the generalized Burgers-Huxley equation and is also capable of
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producing highly accurate solutions with minimal computational effort for both time and
space. It was seen that the polynomial-based differential quadrature technique approximates
the exact solution very well. Since the scheme is explicit, linearization is not needed. No
requiring extra effort to deal with nonlinear terms, ease in use, and computational cost-
effectiveness have made the current method an efficient alternative method for modelling
these nonlinear behaviors. For concrete problems where an exact solution does not exist, the
present method is a very good choice to achieve a high degree of accuracy while dealing with
the problems.
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