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This investigation presents a mathematical model describing the momentum, heat and mass
transfer characteristics of magnetohydrodynamic (MHD) flow and heat generating/absorbing
fluid near a stagnation point of an isothermal two-dimensional body of an axisymmetric body.
The fluid is electrically conducting in the presence of a uniform magnetic field. The series solution
is obtained for the resulting coupled nonlinear differential equation. Homotopy analysis method
(HAM) is utilized in obtaining the solution. Numerical values of the skin friction coefficient and
the wall heat transfer coefficient are also computed.
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1. Introduction

Stagnation point flows are classic problems in the theory of fluid dynamics. Pioneering works
of Hiemenz [1] and Homann [2] for two-dimensional and axisymmetric three-dimensional
stagnation point flows, respectively, have led to the extensive studies on such flows through
various aspects. These flows subject to magnetic filed, and heat transfer characteristics have
industrial applications, for instance, cooling of electronic devices by fans, heat exchangers
design and MHD accelerators, and many others. In view of this motivation, Chamkha [3]
studied the steady MHD flow and heat transfer of heat generating/absorbing viscous fluid
at a stagnation point. Very recently, Abdelkhalek [4] discussed the steady forced convection
MHD flow of heat generating/absorbing fluid by employing perturbation technique.

In the present paper, we developed the homotopy analysis solution for the problem
considered in [3, 4]. The homotopy analysis method [5] is a powerful tool and has been
already used for several nonlinear problems [6–18]. The governing partial differential
equations are reduced into the ordinary differential equations. These ordinary differential
equations are solved analytically. Some graphs depicting the variations of pertinent
parameters are also shown and discussed.
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2. Problem Statement

Here we consider the steady and MHD stagnation point flow impinging on a horizontal
surface. The considered viscous fluid generates or absorbs heat at uniform rate. The X-
and Y -axes are chosen along and normal to the plate. A uniform magnetic field is applied
transversely to the flow. The induced magnetic field is negligible by choosing small magnetic
Reynolds number. The governing equations are [3, 4, 19]
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where u, v, P , and T are the velocity components, pressure, and temperature, respectively.
ρ, ν, Ke, CP and σ the fluid density, kinematic viscosity, thermal conductivity, specific
heat at constant pressure and electrical conductivity, respectively. B0, Q0, Tw, and n are
the respective magnetic induction, heat generation/absorption coefficient, wall temperature,
and the dimensionality index such that n = 2 corresponding to plane flow and n = 3
corresponding to axisymmetric flow.

The boundary conditions for the problem under consideration are

u(X, 0) = 0, v(X, 0) = −v0, T(X, 0) = Tw, u(X,∞) = U∞, T(X,∞) = T∞,

(2.5)

in which v0 indicates the suction or injection velocity, and U∞ and T∞ are the free stream
velocity and temperature, respectively.
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where the constant B is a sort of a velocity gradient parallel to the wall, and prime denotes
ordinary differentiation with respect to η.
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Invoking (2.6), equation (2.1) is identically satisfied, and (2.2)–(2.4) yield
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where M2 = σB2
0(ρB)

−1, Pr = μCP/Ke (μ is the dynamic viscosity of the fluid), and
α = Q0(ρCPB)

−1 are the square of the Hartman number, the Prandtl number, and the
dimensionless heat generation/absorption coefficient, respectively.

The boundary conditions (2.5) now become

f(0) = fw, f ′(0) = 0, f ′(∞) = 1, θ(0) = 0, θ(∞) = 1, (2.10)

in which fw is the suction/injection parameter.
The expression of skin friction coefficient (C) and the wall heat transfer coefficient (H)

are in the form
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In the above equations, Rex = U∞X/ν and U∞ = BX/(n − 1) are the Reynolds number and
the free stream velocity.

3. Solution by Homotopy Analysis Method (HAM)

According to equations (2.8) and (2.9) and the boundary conditions (2.10), solution can be
expressed in the form
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where a0, aq,m, and bq,m are coefficients to be determined. According to the rule of solution
expression denoted by (3.1) and (3.2) and the boundary conditions (2.10), it is natural to
choose
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as the initial approximation to f(η) and θ(η), respectively. We define an auxiliary linear
operator L1 and L2 by
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where Ci, i = 1, 2, . . . , 5 are constants. This choice ofL1 andL2 is motivated by (3.1) and (3.2),
respectively, and from boundary conditions (2.10), we have C2 = C4 = 0.

From (2.8) and (2.9) we define nonlinear operators
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and then construct the homotopy
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where �1 /= 0 and �2 /= 0 are the convergence-control parameters [16], H1(η) and H2(η) are
auxiliary functions. Setting Hi[φ(η; p), ψ(η; p)] = 0, for i = 1, 2, we have the zero-order
deformation problems as follows:
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where p ∈ [0, 1] is an embedding parameter. When the parameter p increases from 0 to 1, the
solution φ(η; p) varies from f0(η) to f(η) and the solution ψ(η; p) varies from θ0(η) to θ(η).
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If these continuous variation are smooth enough, the Maclaurin’s series with respect to p can
be constructed for φ(η; p) and ψ(η; p), respectively, and further, if these series are convergent
at p = 1, we have
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Differentiating (3.8) and (3.9) and related conditions m times with respect to p, then setting
p = 0, and finally dividing by m!, we obtain the mth-order deformation problem:
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where prime denotes differentiation with respect to η and
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The general solutions of (3.14) and (3.15) are
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where Ci for i = 1, . . . , 5 are constants, f̂m(η) and θ̂m(η) are particular solutions of (3.14) and
(3.15), respectively.

According to the rule of solution expression denoted by (3.1) and (3.2), C2 = C4 = 0.
The other unknowns are governed by

f̂m(0) + C1 + C3 = 0, f̂ ′m(0) − C3 = 0, θ̂m(0) + C5 = 0, (3.20)

and according to our algorithm, the another boundary conditions are fulfilled. In this way,
we derive fm(η) and θm(η) for m = 1, 2, 3, . . ., successively.

For simplicity, here we take H1(η) = H2(η) = H(η). According to the third rule of
solution expression denoted by (3.11) and (3.12) and from (3.14) and (3.15), the auxiliary
function H(τ) should be in the form

H
(
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)
= e−κ η, (3.21)

where κ is an integer. To ensure that each coefficients aq,m in (3.1) and bq,m in (3.2) can be
modified as the order of approximation tends to infinity, we set κ = 1.

At the Nth-order approximation, we have the analytic solution of (2.8) and (2.9),
namely
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For simplicity, here we take �1 = �2 = �. The auxiliary parameter � can be employed to adjust
the convergence region of the series (3.22) in the homotopy analysis solution. By means of the
so-called �-curve, it is straightforward to choose an appropriate range for � which ensures the
convergence of the solution series. As pointed out by Liao [5], the appropriate region for � is
a horizontal line segment.

4. Numerical Results

We use the widely applied symbolic computation software MATHEMATICA to solve (3.14)
and (3.15) and find that φm(η, �) and ψm(η, �) have the following structure:
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Figure 1: The �-curves for the 10th-order approximation and n = 2, M = 1, α = 0.1, Pr = 0.7.
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Figure 2: The �-curves for the 10th-order approximation and n = 3, M = 1, α = 0.1, Pr = 0.7.

where

ϕ(m) =

⎧
⎨
⎩

2m, n = 2,

2m + 1, n = 3.
(4.2)

By means of the so-called �-curve, it is straightforward to choose an appropriate range for
� which ensures the convergence of the solution series. As pointed out by Liao [5], the
appropriate region for � is a horizontal line segment. We can investigate the influence of � on
the convergence of f ′′(0) and θ′(0), by plotting the curve of it versus �, as shown in Figure 1
for some examples in plane flow (n = 2), respectively. Also, Figure 2 shows the �-curve in
axisymmetric flow (n = 3). By considering the �-curve we can obtain the reasonable interval
for � in each case.

Also, by computing the error of norm 2 for two successive approximation of FN(η) or
ΘN(η), in each case, we can obtain the best value for � in each case. Figure 3 shows this error
for F10(η) with α = 0.1, M = 1 and Pr = 0.7 in axisymmetric flow and fw = −0.1 and 0.1
for η ∈ [0, 10]. One can compute easily that, in case fw = −0.1, we have � = −1.056, and for
fw = 0.1, � = −1.095 and these values are match with �-curve (in Figure 2).

Figure 4 presents representative profiles for the normal velocity f of both plane and
axisymmetric flows for various values of Hartman number M and in each case the value of �

computed by rule of minimizing the error of norm 2. Figures 5 and 6 show the respective
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effects of the Prandtl number Pr and the heat generation/absorption coefficient α on the
temperature profiles for both plane and axisymmetric stagnation point flows. As pointed by
Chamkha [3], for heat-generation case (α = 0.1) in Figure 6, a sharp peak exists in the layer
close the wall.

The so-called homotopy-Padé technique (see [5]) is employed, which greatly
accelerates the convergence. The [r, s] homotopy-Padé approximations of f ′′(0), or C in
(2.11), and θ′(0), or H in (2.12), according to (3.11) and (3.12) are formulated by

∑r
k=0 φ

′′
k(0, �)

1 +
∑s

k=1 φ
′′
r+k+1(0, �)

,

∑r
k=0 ψ
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1 +
∑s

k=1 ψ
′
r+k+1(0, �)

, (4.3)

respectively. In many cases, the [r, r] homotopy-Padé approximation does not depend upon
the auxiliary parameter �. To verify the accuracy of HAM, a comparison of wall heat
transfer coefficient Ch = H

√
Rex with those reported by White [19], Chamkha [3], and

Abdelkhalek [4] is given in Table 1 for M = 0 and α = 0. The values of Cf = C
√

Rex
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also compare well since the obtained values for n = 2 and n = 3 by [15] Homotopy-
Padé method are 2.4652 and 2.6239, while the values reported by Chamkha [3] are 2.4695
and 2.6240 and based on White’s correlations Cf ≈ 2Pr2/3Ch are 2.4782 and 2.6275,
respectively.

5. Final Remarks

Homotopy analysis method is employed to analyze the MHD flow near a stagnation
point. The resulting nonlinear differential system is solved analytically. The effects of
Hartman number, the Prandtl number and the heat generation/absorption coefficient are
seen on the normal component of velocity and temperatures respectively in both plane
and axisymmetric stagnation point cases. It is noticed that temperature profiles increase by
increasing the heat generation/absorption coefficient. The behavior of Prandtl number on the
temperature profile is similar to that of heat generation/absorption coefficient in a qualitative
sense.
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Table 1: Results for [15] Homotopy-Padé approach for Ch.

n = 2 n = 3
Pr [19] [3] [4] HAM [19] [3] [4] HAM
0.7 0.7060 0.7080 0.7054 0.70812 0.9438 0.9507 0.95421 0.95036
1.0 0.5700 0.5705 0.57235 0.56963 0.7620 0.7624 0.76421 0.76154
10.0 0.1432 0.1339 0.1446 0.13377 0.1914 0.1752 0.1925 0.13868
100.0 0.0360 0.0299 0.0381 0.02477 0.0481 0.0387 0.04923 0.02767
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