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1. Introduction

We consider the following viscous version of the three-dimensional Camassa-Holm equations
in the periodic box Ω = [0, L]3:

∂

∂t

(
α2
0u − α2

1Δu
)
− νΔ

(
α2
0u − α2

1Δu
)
− u ×

(
∇ ×

(
α2
0u − α2

1Δu
))

+
1
ρ0

∇p = f(x, t),

∇ · u = 0,

u(x, τ) = uτ(x),

(1.1)

where p/ρ0 = π/ρ0 + α2
0|u|2 − α2

1(u · Δu) is the modified pressure, while π is the pressure,
ν > 0 is the constant viscosity and ρ0 > 0 is a constant density. The function f is a given
body forcing α0 > 0 and α1 ≥ 0 are scale parameters. Notice α0 is dimensionless while α1 has
units of length. Also observe that at the limit α0 = 1, α1 = 0 we obtain the three dimensional
Navier-Stokes equations with periodic boundary conditions.
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We consider this equaton in an appropriate Hilbert space and show that there is an
attractor A which all solutions approach as τ → −∞. The basic idea of our construction,
which is motivated by the works of [1].

In addition, we assume that the function f(·, t) =: f(t) ∈ L2
loc(R;E) is translation

bounded, where E = D(A−1/2). This property implies that

∥∥f∥∥2
L2
b
=
∥∥f∥∥2

L2
b(R;E)

= sup
t∈R

∫ t+1

t

∥∥f(s)∥∥2
E ds < ∞. (1.2)

In [1] the authors established the global regularity of solutions of the autonomous
Camassa-Holm, or Navier-Stokes-alpha (NS-α) equations, subject to periodic boundary
conditions. The inviscid NS-α equations (Euler-α) were introduced in [2] as a natural
mathematical generalization of the integrable inviscid one-dimensional Camassa-Holm
equation discovered in [3] through a variational formulation. An alternative more physical
derivation for the inviscid NS-α equations (Euler-α), was introduced in [4, 5] (see also [6]).
For more information and a brief guide to the previous literature specifically about the NS-α
model, see [7].

The understanding of the asymptotic behavior of dynamical systems is one of the most
important problems of modern mathematical physics. One way to treat this problem for a
system having some dissipativity properties is to analyse the existence and structure of its
global attractor, which in the autonomous case, is an invariant compact set which attracts all
the trajectories of the system, uniformly on bounded sets. However, nonautonomous systems
are also of great importance and interest as they appear in many applications to natural
sciences. On some occasions, some phenomena are modeled by nonlinear evolutionary
equations which do not take into account all the relevant information of the real systems.
Instead some neglected quantities can be modeled as an external force which in general
becomes time dependent. In this situation, there are various options to deal with the problem
of attractors for nonautonomous systems (kernel sections [8], skew-product formalism
[9, 10], etc.), for our particular situation we have preferred to choose that of pullback attractor
(see [11–15]) which has also proved extremely fruitful, particularly in the case of random
dynamical systems (see [14, 16]).

In this paper, we study the existence of compact pullback attractor for the
nonautonomous three-dimensional-Camassa-Holm equations in bounded domain Ω with
periodic boundary condition. We apply the concept of measure of noncompactness to
nonautonomous Camassa-Holm equation with external forces f(x, t) in L2

loc(R;E) which is
translation bounded.

From (1.1) one can easily see, after integration by parts, that

d

dt

∫

Ω

(
α2
0u − α2

1Δu
)
dx =

∫

Ω
f dx, (1.3)

on the other hand, because of the spatial periodicity of the solution, we have
∫
ΩΔudx = 0.

As a result, we have (d/dt)
∫
Ωα

2
0udx =

∫
Ωf dx; that is, the mean of the solution is invariant

provided themean of the forcing term is zero. In this paper wewill consider forcing terms and
initial values with spatial means that are zero; that is, we will assume

∫
Ωuτ(x)dx =

∫
f dx = 0

and hence
∫
Ωudx = 0.

Next, let us introduce some notation and background.
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(i) Let E be a linear subspace of integrable functions defined on the domain Ω, we
denote

Ė :=
{
ϕ ∈ E :

∫

Ω
ϕ(x)dx = 0

}
. (1.4)

(ii) We denote V = {ϕ : ϕ is a vector valued trigonometric polynomial defined on Ω,
such that ∇ · ϕ = 0 and

∫
Ωϕ(x)dx = 0}, and let H and V be the closures of V in

L2(Ω)3 and in H1(Ω)3, respectively; observe that H⊥, the orthogonal complement
ofH in L2(Ω)3 is {∇p : p ∈ H1(Ω)} (cf. [17] or [18]).

(iii) We denote P : L2(Ω)3 → H the L2 orthogonal projection, usually referred as
Helmholtz-Leray projector, and by A = −PΔ the Stokes operator with domain
D(A) = (H2(Ω))3 ∩ V . Notice that in the case of periodic boundary condition
A = −Δ|D(A) is a selfadjoint positive operator with compact inverse. Hence the space
H has an orthonormal basis {wj}∞j=1 of eigenfunctions of A, that is, Awj = λjwj ,
with

0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · , λj −→ +∞, as j −→ ∞, (1.5)

in fact these eigenvalues have the form |k|24π/L2 with k ∈ Z3 \ {0}.
(iv) The scalar product on H is denoted by (·, ·), the one on V is denoted by ((·, ·)), and

the associated norms are denoted by | · | and ‖ · ‖ = |A1/2 · |, respectively. Notice that
the inner product ((·, ·)) is equivalent to theH1 inner product

[u, v] = α2
0(u, v) + α2

1((u, v)) for u, v ∈ V, (1.6)

provided α1 > 0.

2. Abstract Results

We now discuss the theory of pullback attractors, as developed in [11, 12, 15]. As it is
well known, in the case of nonautonomous differential equations the initial time is just as
important as the final time, and the classical semigroup property of autonomous dynamical
systems is no longer available.

Instead of a family of one time-dependent maps S(t) we need to use a two parameter
process U(t, τ) on the complete metric space E, U(t, τ)
 uses to denote the value of the
solution at time t which was equal to the initial value 
 at time τ .

The semigroup property is replaced by the process composition property

U(t, τ)U(τ, s) = U(t, s) ∀t ≥ τ ≥ s, (2.1)

and, obviously, the initial condition impliesU(τ, τ) = Id. As with the semigroup composition
S(t)S(τ) = S(t + τ), this just expresses the uniqueness of solutions.
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It is also possible to present the theory within the more general framework of cocycle
dynamical systems. In this case the second component of U is viewed as an element of some
parameter space J , so that the solution can be written as U(t, p)
, and a shift map θt : J → J
is defined so that the process composition becomes the cocycle property,

U
(
t + τ, p

)
= U

(
t, θτp

)
U
(
τ, p

)
. (2.2)

However, when one tries to develop a theory under a unified abstract formulation, the context
of cocycle (or skew-product flows)may not be themost appropriate to deal with the problem,
since it is not known how to construct the set J (the same happens with the construction of
the symbols set if one wishes to apply the theory of kernel sections as developed by [8]).
For this reason, we do not pursue this approach here, but note that it has proved extremely
fruitful, particularly in the case of random dynamical systems. For various examples using
this general setting, see [13]. For this reason, pullback attractors are often referred to as
cocycle attractors.

As in the standard theory of attractors, we seek an invariant attracting set. However,
since the equation is nonautonomous this set also depends on time. By B(E) we denote the
collection of the bounded sets of E.

Definition 2.1. Let U be a process on a complete metric space E. A family of compact sets
{A(t)}t∈R

is said to be a pullback attractor for U if, for all τ ∈ R, it satisfies

(i) U(t, τ)A(τ) = A(t) for all t ≥ τ,

(ii) lims→∞dist(U(t, t − s)D,A(t)) = 0, forD ∈ B(E).
The pullback attractor is said to be uniform if the attraction property is uniform in time, that
is,

lim
s→∞

sup
t∈R

dist(U(t, t − s)D,A(t)) = 0, forD ∈ B(E). (2.3)

Definition 2.2. A family of compact sets {A(t)}t∈R
is said to be a forward attractor forU if, for

all τ ∈ R, it satisfies

(i) U(t, τ)A(τ) = A(t) for all t ≥ τ,

(ii) limt→∞dist(U(t, τ)D,A(t)) = 0, forD ∈ B(E).
The forward attractor is said to be uniform if the attraction property is uniform in time, that
is,

lim
t→∞

sup
τ∈R

dist(U(t + τ, τ)D,A(t + τ)) = 0, forD ∈ B(E). (2.4)

In the definition, dist(A,B) is the Hausdorff semidistance between A and B, defined
as

dist(A,B) = sup
a∈A

inf
b∈B

d(a, b), forA,B ⊆ E. (2.5)
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Property (i) is a generalization of the invariance property for autonomous dynamical
systems. The pullback attracting property (ii) considers the state of the system at time twhen
the initial time t − s goes to −∞ (see also [19]).

The notion of an attractor is closely related to that of an absorbing set.

Definition 2.3. The family {B(t)}t∈R
is said to be (pullback) absorbing with respect to the

process U if, for all t ∈ R and D ∈ B(E), there exists S(D, t) > 0 such that for all s ≥ S(D, t)

U(t, t − s)D ⊂ B(t). (2.6)

The absorption is said to be uniform if S(D, t) does not depend on the time variable t.

Indeed, just as in the autonomous case, the existence of compact absorbing sets is the
crucial property in order to obtain pullback attractors. For the following result see [11].

Theorem 2.4. Let U(t, τ) be a two-parameter process, and suppose U(t, τ) : E → E is continuous
for all t ≥ τ . If there exists a family of compact (pullback) absorbing sets {B(t)}t∈R

, then there exists a
pullback attractor {A(t)}t∈R

and A(t) ⊂ B(t) for all t ∈ R.

A(t ) =
⋃

D∈B(E)
ω(D, t), (2.7)

where

ω(D, t) =
⋂
n∈N

⋃
s≥n

U(t, t − s)D. (2.8)

Now we recall the abstract results in [15].

Definition 2.5. The family of processes {U(t, t − s)} is said to be satisfying pullback Condition
(C) if for any fixed B ∈ B(E) and ε > 0, there exist s0 = s(B, t, ε) ≥ 0 and a finite dimensional
subspace E1 of E such that

(i) {‖P(⋃s≥s0 U(t, t − s)B)‖
E
} is bounded,

(ii) ‖(I − P)(
⋃

s≥s0 U(t, t − s)B)‖
E

≤ ε,

where P : E → E1 is a bounded projector.

Theorem 2.6. Let the family of processes {U(t, τ)} acting in E be continuous and possesses compact
pullback attractorA(t) satisfying

A(t) =
⋃
B∈B

ω(B, t), for t ∈ R, (2.9)

if it

(i) has a bounded (pullback) absorbing set B,

(ii) satisfies pullback Condition (C).

Moreover if E is a uniformly convex Banach space then the converse is true.
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3. Pullback Attractor of Nonautonomous Camassa-Holm Equations

This section deals with the existence of the attractor for the three-dimensional nonau-
tonomous Camassa-Holm equations in a bounded domain Ω with periodic boundary
condition (see [1]).

We use the notation in [1] to obtain the equivalent system of equations

dv

dt
+ νAv + B(v)u + B∗(v)u = Pf,

v(x, τ) = vτ(x) ∈ V.

(3.1)

Here v = α2
0u + α2

1Au and B∗(v) denotes the adjoint operator of the linear operator B(v)
defined above.

It is similar to autonomous case that we can establish the existence of solution of (3.1)
by the standard Faedo-Galerkin method.

In [1], the authors have shown that the semigroup S(t) : V → V (t ≥ 0) associated
with the autonomous systems (3.1) possesses a global attractor in V and D(A). The main
objective of this section is to prove that the nonautonomous system (3.1) has pullback
attractors in V and D(A).

To this end, we first state some the following results.

Proposition 3.1. Let f ∈ V ′ and let uτ ∈ V . Then the problem (1.1) has a unique solution u(t) such
that for any T > 0,

u ∈ C([0, T);V ) ∩ L2([0, T);D(A)),
du

dt
∈ L2([0, T),H), (3.2)

and such that for almost all t ∈ [0, T) and for any w ∈ D(A),

〈
∂

∂t

(
α2
0u − α2

1Δu
)
, w

〉

D(A)
′
+ ν

〈
A
(
α2
0u − α2

1Δu
)
, w

〉
D(A)

′ +
〈
B̃
(
u, α2

0u − α2
1Δu

)
, w

〉
D(A)

′

=
(
f,w

)
,

(3.3)

here

(
B̃(u, v), w

)
= (B(u, v), w) − (B(w,v), u) = (B(v)u − B∗(v)u,w) (3.4)

for every u, v,w ∈ V .

Proof. The Proof of Proposition 3.1 is similar to autonomous Camassa-Holm in [1].
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Proposition 3.2. The process {U(t, t − s)} : V → V associated with the system (3.1) possesses
(pullback) absorbing sets, that is, there exists a family {B(t)}t∈R of bounded (pullback) absorbing sets
in V and D(A) for the process U, which is given by

B0 = B(t) = {v ∈ V | ‖v‖ ≤ r0},
B1 = B(t) = {v ∈ D(A) | |Av| ≤ r1},

(3.5)

which absorb all bounded sets of V . Moreover B0 and B1 absorb all bounded sets of V andD(A) in the
norms of V and D(A), respectively.

Proof. The proof of Proposition 3.2 is similar to autonomous Camassa-Holm equation. We can
obtain absorbing sets in V and D(A) the following from [1].

The main results in this section are as follows.
Nowwe prove the existence of compact pullback attractors in V andD(A) by applying

Theorem 2.6.

Theorem 3.3. If f(x, t) ∈ L2
b
(R;V ′) and uτ ∈ V , then the processes {U(t, t − s)} corresponding

to problem (3.1) possesses compact pullback attractor A0(t) in V which coincides with the pullback
attractor

A0(t) =
⋃
B0∈B

ω(B0, t), (3.6)

where B0 is the (pullback) absorbing set in V .

Proof. As in the previous section, for fixedN, letH1 be the subspace spanned byw1; · · · ;wN ,
and H2 the orthogonal complement of H1 inH. We write

u = u1 + u2; u1 ∈ H1, u2 ∈ H2 for anyu ∈ H. (3.7)

Nowwe testify that the family of processes {U(t, τ)} corresponding to (3.1) satisfies pullback
Condition (C). Namely, we need to estimate |u2(t)|, where u(t) = u1(t) + u2(t) is a solution of
(3.1) given in Proposition 3.1

Multiplying (3.1) by u2, we have

1
2
d

dt

(
α2
0|u2|2 + α2

1‖u2‖2
)
+ ν

(
α2
0‖u2‖2 + α2

1|Au2|2
)
+
(
B̃
(
u, α2

0u − α2
1Au

)
, u2

)
=
(
Pf, u2

)
.

(3.8)

Notice that

∣∣(Pf, u2
)∣∣ ≤ ∣∣f∣∣V ′ ‖u2‖ ≤

∣∣f∣∣2V ′

να2
0

+
ν

4
α2
0‖u2‖2. (3.9)
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From the above inequalities we get

1
2
d

dt

(
α2
0|u2|2 + α2

1‖u2‖2
)
+
3ν
4

(
α2
0‖u2‖2 + α2

1|Au2|2
)
+
(
B̃
(
u, α2

0u − α2
1Au

)
, u2

)
≤

∣∣f∣∣2V ′

να2
0

.

(3.10)

We use part (iii) of Lemma1 in [1] to obtain

1
2
d

dt

(
α2
0|u2|2 + α2

1‖u2‖2
)
+
3ν
4

(
α2
0‖u2‖2 + α2

1|Au2|2
)

≤ c
(
α2
0‖u2‖2 + α2

1‖u2‖‖Au2‖
)
|u2|1/2‖u2‖1/2 +

∣∣f∣∣2V ′

να2
0

.

(3.11)

By Young’s inequality, together with H1—Estimates in [1], we have

1
2
d

dt

(
α2
0|u2|2 + α2

1‖u2‖2
)

+
ν

4

(
α2
0|u2|2 + α2

1‖u2‖2
)
≤ M1 +

∣∣f∣∣2V ′

να2
0

. (3.12)

Here M1 = M1(α0, α1, r0) depends on λm+1 is not increasing as λm+1 is increasing.
Therefore, we deduce that

1
2
d

dt

(
α2
0|u2|2 + α2

1‖u2‖2
)
+
ν

4

(
α2
0|u2|2 + α2

1‖u2‖2
)
≤ M1 +

c

ν

∣∣f∣∣2V ′ . (3.13)

By the Gronwall inequality, the above inequality implies

α2
0|u2|2 + α2

1‖u2‖2 ≤
(
α2
0|u2(τ)|2 + α2

1‖u2(τ)‖2
)
e−νλm+1(t−τ)/2

+
2M1

νλm+1
+
2c
ν

∫ t

τ

e−νλm+1(t−s)/2∣∣f∣∣2V ′ds.

(3.14)

If we consider the time t − s instead of τ (so that we can use more easily the definition of

pullback attractors) we have
3
ν

∫ t
τe

−νλm+1(t−σ)/2|f(σ)|2V ′dσ =
3
ν

∫ t
t−se

−νλm+1(t−σ)/2|f(σ)|2V ′ dσ.

Applying continuous integral and [8, Lemma II 1.3] for any ε, there exists η = η(ε) > 0
such that

∫ t

t−η

∣∣f(σ)∣∣2V ′dσ <
νε

18
, (3.15)
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thus, we have

3
ν

∫ t

t−η
e−νλm+1(t−σ)/2∣∣f(σ)∣∣2V ′ dσ ≤ ε

6
, (3.16)

3
ν

∫ t−η

t−s
e−νλm+1 (t−σ)/2∣∣f(σ)∣∣2V ′ dσ

≤ 3
ν

∫ t−η

t−η−1
e−νλm+1 (t−σ)/2∣∣f(σ)∣∣2V ′ dσ

+
3
ν

∫ t−η−1

t−η−2
e−νλm+1 (t−σ)/2∣∣f(σ)∣∣2V ′ dσ + · · ·

≤ 3
ν
e−νλm+1η/2

(∫ t−η

t−η−1

∣∣f(σ)∣∣2V ′ dσ + e−νλm+1/2
∫ t−η−1

t−η−2

∣∣f(σ)∣∣2V ′ dσ + · · ·
)

≤ 3
ν
e−νλm+1η/2

(
1 + e−νλm+1/2 + · · ·

)
sup
s∈R

∫ s

s−1

∣∣f(σ)∣∣2V ′ dσ

≤ (3/ν)e−νλm+1η/2

1 − e−νλm+1/2

∥∥f∥∥2
L2
b
.

(3.17)

Using (1.5) and let s1 = 2/νλm+1 ln(3r20/ε), then s ≥ s1 implies

3
ν

∫ t−η

t−s
e−νλm+1(t−σ)∣∣f(σ)∣∣2V ′ dσ ≤ (3/ν)e−νλm+1η/2

1 − e−νλm+1/2

∥∥f∥∥2
L2
b(R;V

′) ≤
ε

6
,

2M1

νλm+1
≤ ε

3
;

k1e
−νλm+1(t−τ)/2 ≤ r20e

−νλm+1s1/2 ≤ ε

3
.

(3.18)

Therefore, we deduce from (3.14) that

‖u2‖2 ≤ ε, ∀s ≥ s1, (3.19)

which indicates {U(t, τ)} satisfying pullback Condition (C) in V . Applying Theorem 2.6 the
proof is complete.

According to Propositions 3.1-3.2, we can now regard that the families of processes
{U(t, τ)} are defined in D(A) and B1 is a pullback absorbing set in D(A).
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Theorem 3.4. If f(x, t) ∈ L2
b(R;V

′), then the processes {U(t, τ)} corresponding to problem (3.1)
possesses compact pullback attractorA1(t) in V or D(A):

A1(t) =
⋃
B1∈B

ω(B1, t), (3.20)

where B1 is the absorbing set in D(A).

Proof. Using Proposition 3.2, we have the family of processes {U(t, τ)} corresponding to (3.1)
possesses the pullback absorbing set in D(A).

Similarly, we only have to verify pullback Condition (C).
Multiplying the equation (3.1) by Au2, we have

1
2
d

dt

(
α2
0‖u2‖2 + α2

1|Au2|2
)
+ ν

(
α2
0|Au2|2 + α2

1

∣∣∣A3/2u2

∣∣∣
2
)
+
(
B̃
(
u, α2

0u − α2
1Au

)
, Au2

)

=
(
Pf,Au2

)
.

(3.21)

Notice that

∣∣(Pf,Au2
)∣∣ ≤ ∣∣f∣∣V ′

∣∣∣A3/2u2

∣∣∣ ≤
∣∣f∣∣2V ′

να2
1

+
ν

4
α2
1

∣∣∣A3/2u2

∣∣∣
2
. (3.22)

Therefore we get

1
2
d

dt

(
α2
0‖u2‖2 + α2

1‖Au2‖2
)
+
3ν
4

(
α2
0‖Au2‖2 + α2

1

∣∣∣A3/2u2

∣∣∣
2
)
+
(
B̃
(
u, α2

0u − α2
1Au

)
, u2

)

≤
∣∣f∣∣2V ′

να2
1

.

(3.23)

We use part (iii) of Lemma 1 in [1] to obtain

1
2
d

dt

(
α2
0‖u2‖2 + α2

1|Au2|2
)
+
3ν
4

(
α2
0|u2|2 + α2

1

∣∣∣A3/2u2

∣∣∣
2
)

≤ c‖u2‖
(
α2
0‖u2‖ + α2

1

∣∣∣A3/2u2

∣∣∣
)
|Au2|

∣∣∣A3/2u2

∣∣∣
1/2

+

∣∣f∣∣2V ′

να2
1

.

(3.24)

By Young’s inequality, together with H1—Estimates in [1], we have

1
2
d

dt

(
α2
0‖u2‖2 + α2

1|Au2|2
)
+
ν

4

(
α2
0‖u2‖2 + α2

1|Au2|2
)
≤ M2 +

∣∣f∣∣2V ′

να2
1

. (3.25)

Here M2 = M2(α0, α1, r1) depends on λm+1 is not increasing as λm+1 is increasing.
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By the Gronwall inequality, the above inequality implies

α2
0‖u2‖2 + α2

1|Au2|2 ≤
(
α2
0‖u2(τ)‖2 + α2

1|Au2(τ)|2
)
e−νλm+1(t−τ)/2

+
2M2

νλm+1
+
2c
ν

∫ t

τ

e−νλm+1(t−σ)/2∣∣f∣∣2V ′dσ.

(3.26)

We consider the time t − s instead of τ . The following result is similar to (3.16)-(3.18), for
any ε

2c
ν

∫ t

τ

e−νλm+1(t−σ)/2∣∣f∣∣2V ′ dσ ≤ ε

3
. (3.27)

Using (1.5) and let s2 = (2/νλm+1) ln(3r21/ε), then s ≥ s2 implies

2M2

νλm+1
≤ ε

3
,

(
α2
0‖u2(τ)‖2 + α2

1|Au2(τ)|2
)
e−νλm+1(t−τ)/2 ≤ k2e

−νλm+1s/2 <
ε

3
.

(3.28)

Therefore, we deduce from (3.26) that

|Au2|2 ≤ ε, ∀s ≥ s1, (3.29)

which indicates {U(t, τ)} satisfying pullback Condition (C) in D(A).
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