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1 Departamento de Matemática, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista,
Avenida 24A, 1515, Bela Vista, 13506-900 Rio Claro, SP, Brazil
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Some dynamical properties for a bouncer model—a classical particle of mass m falling in the
presence of a constant gravitational field g and hitting elastically a periodically moving wall—in
the presence of drag force that is assumed to be proportional to the particle’s velocity are studied.
The dynamics of the model is described in terms of a two-dimensional nonlinear mapping obtained
via solution of the second Newton’s law of motion. We characterize the behavior of the average
velocity of the particle as function of the control parameters as well as the time. Our results show
that the average velocity starts growing at first and then bends towards a regime of constant value,
thus confirming that the introduction of drag force is a sufficient condition to suppress Fermi
acceleration in the model.
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1. Introduction

The bouncer model consists basically of a classical particle of mass m that moves under the
presence of a gravitational field g and suffers elastic collisions with an infinitely heavy and
periodically moving wall. It is well known in literature [1–3] that, depending on both the
combination of control parameters and initial conditions, the particle can accumulate, along
the orbit, large values of energy thus exhibiting a phenomenon called as Fermi acceleration
[4].

The bouncer model has been studied along last decades under different versions
[5, 6] and considering several approaches including theoretical and experimental. For the
theoretical approach, results like fixed point stability [7, 8], manifold crossings [9], period
doubling cascades, and fully chaotic behavior were discussed [10] both as function of the
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initial conditions and control parameters. For the case of experimental approach, many
results have been obtained considering the presence of inelastic collisions [11–13] including
the observance of locking phenomenon.

There exist many situations where one can observe Fermi acceleration in one-
dimensional models. One of them is assuming that the perturbation is no longer periodic but
rather stochastic [14]. This perturbation leads to a growth in the average velocity according
to square root of the number of collisions of the particle with the randomly moving wall.
It is more often to be studied, in such models, conditions where Fermi acceleration (FA) is
feasible. Our approach in this paper is rather different. Instead of looking at conditions to
produce FA, we will consider a condition to suppress such a phenomenon. Although many
results are known in literature concerning the bouncer model, our approach is original in the
sense we look at conditions to break down the unlimited energy growth.

In this paper, we consider the bouncer model with the particle experiencing a drag
force that is proportional to its velocity. As usual in literature, we have described the model
in terms of a two-dimensional nonlinear mapping for the variables velocity of the particle
and time at the instant of the collisions with the moving wall. The mapping was obtained by
analytical solution of Newton’s law of motion. We show that the dissipation suppresses the
phenomenon of Fermi acceleration.

The organization of the paper is as follows. In Section 2 we describe all the details used
for the mapping construction. Section 3 presents and discusses our numerical results while
final remarks and conclusions are drawn in Section 4.

2. The Model and the Mapping

In this section we describe with full details the model we are considering and the procedure
used to obtain the nonlinear mapping. The system consists of a classical particle of mass m
which experiences a drag force that is proportional and contrary to the particle’s velocity.
The particle is suffering the action of a constant gravitational field g, and it collides elastically
a time varying wall whose equation of motion is given by yw(t) = ε cos(ωt). Here ε is the
amplitude of oscillation and ω denotes the angular frequency of the wall. As it is so common
in literature [15–18] the dynamics of the model is described in terms of a two-dimensional
mapping T(vn, tn) = (vn+1, tn+1) where vn and tn denote the posthit velocity of the particle
and the instant of the nth collision with the moving wall, respectively.

To obtain the mapping that fully describes the dynamics of the system, we must first
write down Newton’s law of motion, which is given by md−→v/dt = m−→g − η′ −→v where positive
η′ is the coefficient of viscosity. Defining η = η′/m we can rewrite the differential equation
in scalar form as dv/dt = −g − ηv where the ascendent motion has positive v, and g is
the modulus of gravitational acceleration. Integrating with respect to the time this equation
assuming that at the time t = tn which is the time that the particle hits the moving wall, the
particle is at the position yp(tn) = ε cos(ωtn) with initial velocity v(tn) = vn > 0, and then we
find that

v(t) =
[
vn +

g

η

]
e−η(t−tn) −

g

η
, t ≥ tn. (2.1)

Since the expression of the velocity of the particle is known, we must integrate with
respect to the time again the relation dy(t)/dt = v(t). Then we have that the position of the
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particle is given by

yp(t) = ε cos(ωtn) +
1
η

(
vn +

g

η

)(
1 − e−η(t−tn)

)

−
g

η
(t − tn), t ≥ tn.

(2.2)

To find the instant of the collisions of the particle with the moving wall, we must
take into account two different kinds of collisions that can occur, namely, (1) successive
collisions—those collisions that the particle experiences coming from inside the collision zone
y ∈ [−ε, ε]; (2) indirect collisions—those collisions where the particle comes from outside the
collision zone.

Let us discuss the equations of the mapping for case (1) first. Matching the condition
yp(tc) = yw(tc) we obtain the instant of the collision (tc = tn+1) of the particle with the moving
wall. Such condition gives rise to the following transcendental equation:

0 = G(tc) = ε cos[ω(tn + Δtc)] − ε cos(ωtn) +
g

η
Δtc

− 1
η

(
vn +

g

η

)(
1 − e−ηΔtc

)
,

(2.3)

where the interval of collision (Δtc = tc − tn) ∈ (0, 2π/ω], while exist, is the smallest solution
of the equation G(tc) = 0 along Δtc ∈ (0, 2π/ω]. At the instant of the collision, we assume
a noninertial system in which the moving wall is at rest, then the exchange of momentum
can be obtained. Finally we return to the original inertial system, leading to a mapping of the
type

TM :

⎧⎪⎨
⎪⎩
vn+1 = −

[
vne

−ηΔtc +
g

η

(
e−ηΔtc − 1

)]
− 2εω sin(ωtn+1),

tn+1 = tn + Δtc.
(2.4)

We now discuss case (2), that is, indirect collisions. In the approach we have
considered there are three steps to obtain the time the particle spent between collisions in the
bouncer model. The first one is the elapsed time from the last collision up to the maximum
height where the particle acquires null velocity. The second one is the time the particle spent
from the maximum height up to the entrance of the collision zone. Finally the third time is
the time the particle spent from the entrance of the collision zone up to experiences a collision
with the moving wall again. With these steps in mind, we must first find the maximum
height that the particle reaches, which is obtained by considering the case v(tu) = 0 where
Δtu = tu − tn corresponds to the time the particle spent from the last collision up to the
maximum height. It is given by Δtu = − ln[g/(ηvn + g)]/η. At this time, the position of
the particle is

yp(tu) = hmax = ε cos(ωtn) +
vn
η

+
g

η2
ln
(

g

ηvn + g

)
. (2.5)
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From this maximum height (hmax), the expression that describes the particle’s position in the
downwards motion is given by

yp(t) = ε cos(ωtn) +
vn
η

+
g

η2
ln
(

g

ηvn + g

)

+
g

η2

(
1 − e−η(t−tu)

)
−
g

η
(t − tu), if t ≥ tu.

(2.6)

The next step is to obtain the time the particle spends until the entrance of the collision zone.
The instant td is obtained by matching the condition yp(td) = ε, leading then to the following
transcendental function Z(t) = yp(t) − ε that must be solved:

0 = Z(td) = ε cos(ωtn) +
vn
η

+
g

η2
ln
(

g

ηvn + g

)

+
g

η2

(
1 − e−ηΔtd

)
−
g

η
Δtd − ε,

(2.7)

where Δtd = td − tu. Since we obtain the solution of the above equation, then we found that
the velocity of the particle at the entrance of the collision zone is ve = v(td), that is written as
ve = g/η(exp(−ηΔtd) − 1). From there, the expression of the particle velocity is given by

v(t) = e−η(t−td)
(
ve +

g

η

)
−
g

η
if t ≥ td. (2.8)

To find the instant of the collision of the particle with the moving wall, we must solve the
following equation F(tc) = yw(tc) − yp(tc) = 0 where yw(t) corresponds to the moving wall
position and yp(t) is the particle position obtained by integration of (2.8). Then we found that

0 = F(tc) =
1
η

(
ve +

g

η

)
−
g

η
Δtc −

1
η

(
ve +

g

η

)
e−ηΔtc

− ε cos(ω(tn + Δtu + Δtd + Δtc)) + ε,

(2.9)

where Δtc = tc − td is the smallest positive root of the above equation for the interval Δtc ∈
[0, 2π/ω). Thus, in the instant of the collision we have

TI =

⎧⎪⎨
⎪⎩
vn+1 = −

[
e−ηΔtc

(
ve +

g

η

)
−
g

η

]
− 2εω sin(ωtn+1),

tn+1 = tn + Δtu + Δtd + Δtc,
(2.10)

where Δtc is obtained from the smallest solution of F(tc) = 0.
We can see that there is a relatively large number of control parameters, 4 in total,

namely, ε, η, ω, g and that the dynamics of the system does not depend on all of them. It
is convenient to define dimensionless and more appropriate variables. Thus we define V =
(vnω)/g, δ = ω/η, a = (εω2)/g, and measure the time in terms of the number of oscillations
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of the moving wall, φ = ωt. With this new set of variables, the mapping that describes the
dynamics of the model is given by

T =

⎧⎨
⎩
Vn+1 = −

[
(V ∗n + δ)e−Δφc/δ − δ

]
− 2a sin

(
φn+1

)
,

φn+1 =
[
φn + Δφ

]
mod (2π),

(2.11)

where the variables V ∗n and Δφ depend on the kind of collisions that occurs. For successive
collisions we have that V ∗n = Vn and Δφ = Δφc where Δφc is obtained as the smallest positive
solution of G(φc) = 0 for Δφc ∈ (0, 2π], with

0 = G
(
φc
)
= a cos

(
φn
)
+ δ(Vn + δ)

(
1 − e−Δφc/δ

)

− δΔφc − a cos
(
φn + Δφc

)
.

(2.12)

For the case of indirect collisions, we have that V ∗n = Ve where Ve = δ[exp(−Δφd/δ) − 1] and
Δφ = Δφu + Δφd + Δφc with Δφu = −δ ln(δ/(Vn + δ)) corresponding to the upward elapsed
time, and Δφd is obtained as the smallest positive root of Z(φd) = 0 with

0 = Z
(
φd
)
= a cos

(
φn
)
+ δVn + δ2 ln

(
δ

Vn + δ

)

+ δ2
(

1 − e−Δφd/δ
)
− δΔφd − a,

(2.13)

where Δφd is the elapsed time along the downward direction until the entrance of the
collision zone. Finally Δφc is the smallest positive solution of F(φc) = 0, with

0 = F
(
φc
)
= a + δ(Ve + δ) − δΔφc − δ(Ve + δ)e−Δφc/δ

− a cos
(
φn + Δφu + Δφd + Δφc

)
.

(2.14)

After some straightforward algebra we found that the determinant of the Jacobian
matrix is written as

det

⎛
⎜⎜⎜⎝
∂Vn+1

∂Vn

∂Vn+1

∂φn

∂φn+1

∂Vn

∂φn+1

∂φn

⎞
⎟⎟⎟⎠ = A

(
Vn + a sin

(
φn
)

Vn+1 + a sin
(
φn+1

)
)
, (2.15)

where A depends on the kind of collisions. For multiple collisions A = exp(−φc/δ) and for
indirect collisions A = δ exp(−[φc + φd]/δ)/(Vn + δ). We note that when δ → ∞, which is
equivalent to η → 0, then A → 1 and therefore all results for the non dissipative case are
recovered.
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Figure 1: (a) represents a chaotic attractor for the dissipative bouncer model. The control parameters used
were δ = 60 and a = 10. (b) corresponds to the convergence of the positive Lyapunov exponent for five
different initial conditions for the same control parameters used in (a).

3. Numerical Results

In this section we will present and discuss our numerical results for the dissipative bouncer
model. It is shown in Figure 1(a) the behavior of a chaotic attractor in phase space for the
control parameters δ = 60 and a = 10. To confirm that the orbit shown in Figure 1(a) is
really chaotic, we should then evaluate the Lyapunov exponent and check whether the larger
value is positive [19]. It is well known in literature that the Lyapunov exponent is a good
tool that can be used to quantify the sensitivity to the initial conditions. They are defined
as

λj = lim
n→∞

1
n

n∑
i=1

ln
∣∣∣Λi

j

∣∣∣, j = 1, 2, (3.1)
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Figure 2: Positive Lyapunov exponent as function of the control parameter: (a) a and (b) δ.

where Λi
j are the eigenvalues of the matrix M =

∏n
i=1Ji(Vi, φi) with Ji representing the

Jacobian matrix of the mapping. In the appendix we show all the expressions of the Jacobian
matrix for both multiple and indirect collisions.

After implementing the algorithm in a computer code, we found that the Lyapunov
exponent for the attractor shown in Figure 1(a) is positive as can be seen in Figure 1(b). We
have evolved in time five different initial conditions for the control parameters δ = 60 and
a = 10 and saw that both converge for long time for a constant value of λ = 2.443 ± 0.003.

We have also obtained the behavior of the positive Lyapunov exponent for the
dissipative bouncer model as a function of the control parameters a and δ, as we can see
in Figures 2(a) and 2(b). Each point in Figure 2 was obtained as an average of five different
initial conditions along the chaotic attractor and evolved up to 6 · 106 collisions of the particle
with the moving wall. We can see that the positive Lyapunov exponent grows as a function
of a as well as a function of δ.

Let us now discuss the behavior of the average velocity for chaotic orbits. To obtain
the average velocity we consider two different kinds of averages: (1) average over the orbit
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Figure 3: Behavior of V × n for different control parameter, as shown in the figure.

(sometimes also called as Birkoff’s average) and (2) average over an ensemble of initial
conditions. The average over the orbit is obtained by evolving for a long time a single initial
condition so that we have

Vi =
1
n

n∑
j=1

Vi,j , (3.2)

where j corresponds to the number of collisions and i corresponds to a sample in an ensemble
of M different initial conditions. After that, we can average over different initial conditions
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leading to

V =
1
M

M∑
i=1

Vi, (3.3)

where M is the number of different initial conditions used. It is then shown in Figures 3(a)
and 3(b) the behavior of V × n for different control parameters. We can see that the velocity
grows at first and then approaches a regime of saturation for long enough time (similar results
for nondissipative dynamics have also been observed [20–22]). We consider now the behavior
of the velocity for long time, thus corresponding to the constant plateau. Such plateaus are
clear evidence that the phenomenon of Fermi acceleration has been suppressed [14].

After a careful analysis of Figures 3(a) and 3(b) we can see that as both the control
parameters rise, the value of the average velocity for long time, we call it now as V sat, also
rises. Such a behavior allows us to suppose that

V sat ∝ δα1aα2 , (3.4)

where α1 and α2 are critical exponents that must be obtained.
If we obtain the behavior of V sat as function of both a and δ, we can then obtain the

critical exponents α1 and α2. It is shown in Figures 4(a) and 4(b) the behavior of V sat as a
function of the control parameter a and δ. After adjusting a power law fitting, we obtain that
the critical exponents are α1 = 0.299 ± 0.003 and α2 = (0.747 ± 0.007) ∼= 3/4.

Let us now discuss the consequences of the results obtained above. If we increase the
value of the control parameter a, it corresponds to enlarge the ratio of accelerations, then
allowing the particle to acquire more energy upon collision with the moving wall. This result
is then confirmed since the critical exponent obtained was α2 = 0.747 ± 0.007. Similar result
can be obtained as function of the control parameter δ. However, we must emphasize that as
the control parameter δ rises, the straight of the dissipation decreases since δ ∝ 1/η. So in the
limit of very large values of δ, almost no dissipation is present. For such a regime, it is then
expected that Fermi acceleration should holds. Our results confirm such a supposition since
the critical exponent α1 = 0.299± 0.003 leading then to the phenomenon of Fermi acceleration
for the regime of δ → ∞. However for finite values of δ, suppression of Fermi acceleration is
observed. This result enlarges the condition where FA is suppressed since it is already known
[14] that inelastic collision also suppress Fermi acceleration.

4. Conclusions

We have studied the bouncer model with the presence of a drag force that is proportional
to particle’s velocity. The model was described by using a two-dimensional nonlinear map,
obtained by the solution of a Newton’s law of motion. We show that chaotic attractors are
present in the system and we have characterized them by use of the positive Lyapunov
exponent. We have shown that the introduction of a drag force leads the particle to
experience a limited energy gain. Then as to answer the question proposed in the title, the
introduction of a drag force proportional to the particle’s velocity can indeed be assumed as
a mechanism to suppress Fermi acceleration. Such suppression is topologically demostrated
by the determinant, of the Jacobian matrix. Since the pre-factor A in the determinant of the
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Figure 4: Behavior of V sat as function of (a) a and (b) δ. After a power law fitting we obtain that α1 =
0.299 ± 0.003 and α2 = (0.747 ± 0.007) ∼= 3/4.

Jacobian matrix is less than the unity, attractors are present in the phase space; thus unlimited
energy growth is not feasible anymore.

Appendix

We present in this appendix all the expressions of the partial derivatives of the Jacobian
matrix. We start with the expressions obtained for the multiple collisions

∂Vn+1

∂Vn
= e−Δφc/δ

[
∂φc
∂Vn

(
1 +

Vn
δ

)
− 1
]
− 2a cos

(
φn+1

)∂φn+1

∂Vn
,

∂Vn+1

∂φn
= e−Δφc/δ

∂Δφc
∂φn

(
1 +

Vn
δ

)
− 2a cos

(
φn+1

)∂φn+1

∂φn
,
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∂φn+1

∂Vn
=
∂φc
∂Vn

,

∂φn+1

∂φn
=
∂φc
∂φn

+ 1,

(A.1)

where ∂φc/∂Vn and ∂φc/∂φn are obtained, respectively, via implicit derivative of G(Δφc)
with respect to Vn and φn. Their expressions are

∂φc
∂Vn

=
δ
(
e−Δφc/δ − 1

)
e−Δφc/δ(Vn + δ) − δ + a sin

(
φn+1

) ,
∂φc
∂φn

=
a sin

(
φn
)
− a sin

(
φn+1

)
(Vn + δ)e−Δφc/δ − δ + a sin

(
φn + 1

) .
(A.2)

We now obtain the expression of the Jacobian terms for the indirect collisions

∂Vn+1

∂Vn
= e−Δφc/δ

[
∂Δφc
∂Vn

(
1 +

Ve
δ

)
− ∂Ve
∂Vn

]
− 2a cos

(
φn+1

)∂φn+1

∂Vn
,

∂Vn+1

∂φn
= e−Δφc/δ

[
∂Δφc
∂φn

(
1 +

Ve
δ

)
− ∂Ve
∂φn

]
− 2a cos

(
φn+1

)∂φn+1

∂φn
,

∂φn+1

∂Vn
=
∂Δφu
∂Vn

+
∂Δφd
∂Vn

+
∂Δφc
∂Vn

,

∂φn+1

∂φn
= 1 +

∂Δφd
∂φn

+
∂Δφc
∂φn

,

(A.3)

where ∂φd/∂Vn, ∂φd/∂φn, ∂φc/∂Vn, and ∂φc/∂φn are obtained by implicit derivative of
Z(Δφc) and F(Δφc) with respect to Vn and φn. Their expressions are

∂Δφd
∂Vn

=
∂Δφu/∂Vn − 1
e−Δφd/δ − 1

,

∂Δφd
∂φn

=
a sin

(
φn
)

δ
(
e−Δφd/δ − 1

) ,

∂Δφc
∂Vn

=
δ(∂Ve/∂Vn)

(
1 − e−Δφc/δ

)
+ a sin

(
φn+1

)((
∂Δφu/∂Vn

)(
∂Δφd/∂Vn

))
δ − e−Δφc/δ(Ve + δ) − a sin

(
φn+1

) ,

∂Δφc
∂φn

=
δ
(
∂Ve/∂φn

)(
1 − e−Δφc/δ

)
+ a sin

(
φn+1

)(
∂Δφd/∂φn + 1

)
δ − e−Δφc/δ(Ve + δ) − a sin

(
φn+1

) ,

(A.4)
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where ∂Δφu/∂Vn, ∂Ve/∂Vn, and ∂Ve/∂φn are the implicit derivative of Δφu with respect to Vn
and the the implicit derivative of Ve with respect to Vn and φn, respectively. They are written
as

∂Δφu
∂Vn

=
δ

Vn + δ
,

∂Ve
∂Vn

= −e−Δφd/δ
∂Δφd
∂Vn

,

∂Ve
∂φn

= −e−Δφd/δ
∂Δφd
∂φn

.

(A.5)
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