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We introduce a finite class of weighted quadrature rules with the weight function |x|−2a exp(−1/x2)
on (−∞,∞) as

∫∞
−∞|x|−2a exp(−1/x2)f(x)dx =

∑n
i=1 wif(xi) + Rn[f], where xi are the zeros of

polynomials orthogonal with respect to the introduced weight function, wi are the corresponding
coefficients, andRn[f] is the error value. We show that the above formula is valid only for the finite
values of n. In other words, the condition a ≥ {maxn} + 1/2 must always be satisfied in order that
one can apply the above quadrature rule. In this sense, some numerical and analytic examples are
also given and compared.
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reproduction in any medium, provided the original work is properly cited.

1. Introduction

Recently in [1] the differential equation
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is introduced, and its explicit solution is shown by
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It is also called the generic equation of classical symmetric orthogonal polynomials [1, 2]. If
this equation is written in a self-adjoint form then the first-order equation

x
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)
W(x) (1.3)

is derived. The solution of (1.3) is known as an analogue of Pearson distributions family and
can be indicated as
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In general, there are four main subclasses of distributions family (1.4) (as subsolutions of
(1.3)) whose explicit probability density functions are, respectively,
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The valuesKi; i = 1, 2, 3, 4 play the normalizing constant role in these distributions. Moreover,
the value of distribution vanishes at x = 0 in each four cases, that is, W(0; p, q, r, s) = 0 for
s /= 0. Hence, (1.4) is called in [1] “The dual symmetric distributions family.”

As a special case of W(x; p, q, r, s), let us choose the values p = 1, q = 0, r = −2a + 2,
and s = 2 corresponding to distribution (1.8) here and replace them in (1.1) to get
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If (1.9) is solved, the polynomial solution of monic type
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is obtained. According to [1], these polynomials are finitely orthogonal with respect to a
special kind of Freud weight function, that is, x−2a exp(−1/x2), on the real line (−∞,∞) if
and only if a ≥ {maxn} + 1/2; see also [3, 4]. In other words, we have
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if and only if m,n = 0, 1, 2, . . . , N = max{m,n} ≤ a − 1/2, (−1)2a = 1 and

δn,m =

⎧
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⎩
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(1.12)

Furthermore, the polynomials (1.10) also satisfy a three-term recurrence relation as

Sn+1(x) = x Sn(x) − 2(−1)n(n − a) + 2a
(2n − 2a + 1)(2n − 2a − 1)

Sn−1(x), S0(x) = 1, S1(x) = x, n ∈ N.

(1.13)

But the polynomials Sn(x; 1, 0,−2a + 2, 2) are suitable tool to finitely approximate arbitrary
functions, which satisfy the Dirichlet conditions (see, e.g., [5]). For example, suppose that
N = max{m,n} = 3 and a > 7/2 in (1.10). Then, the function f(x) can finitely be
approximated as

f(x) ∼= C0S0(x; 1, 0,−2a + 2, 2) + C1S1(x; 1, 0,−2a + 2, 2)

+ C2S2(x; 1, 0,−2a + 2, 2) + C3S3(x; 1, 0,−2a + 2, 2),
(1.14)
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for m = 0, 1, 2, 3.
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Clearly (1.14) is valid only when the general function xm|x|−2a exp(−1/x2) f(x) in

(1.15) is integrable for anym = 0, 1, 2, 3. This means that the finite set {Si(x; 1, 0,−2a + 2, 2)}3i=0
is a basis space for all polynomials of degree atmost three. So if f(x) = a3x

3+a2x
2+a1x+a0, the

approximation (1.14) is exact. By noting this, here is a good position to express an application
of the mentioned polynomials in weighted quadrature rules [6, 7] by a straightforward
example. Let us consider a two-point approximation as
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provided that a > 5/2. According to the described themes, (1.16) must be exact for all
elements of the basis f(x) = {x3, x2, x, 1} if and only if x1, x2 are two roots of S2(x; 1, 0,−2a +
2, 2). For instance, if a = 3 > 5/2 then (1.16) should be changed to
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Hence, after solving (1.18) the final form of (1.16) is known as
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This approximation is exact for all arbitrary polynomials of degree at most 3.

2. Application of Polynomials (1.10) in Weighted
Quadrature Rules: General Case

As we know, the general form of weighted quadrature rules is given by
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in which the weights {wi}ni=1 and the nodes {xi}ni=1 are unknown values, w(x) is a positive
function, and [α, β] is an arbitrary interval; see, for example, [6, 7]. Moreover the residue
Rn[f] is determined (see, e.g., [7]) by

Rn

[
f
]
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(2n)!
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It can be proved in (2.1) that Rn[f] = 0 for any linear combination of the sequence
{1, x, x2, . . . , x2n−1} if and only if {xi}ni=1 are the roots of orthogonal polynomials of degree
n with respect to the weight function w(x) on the interval [α, β]. For more details, see [6].
Also, it is proved that to derive {wi}ni=1 in (2.1), it is not required to solve the following linear
system of order n × n:
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In this way, as it is shown in [8, 9], P̂i(x) satisfies a particular type of three-term recurrence as

xP̂n−1(x) = αnP̂n(x) + βnP̂n−1(x) + αn−1P̂n−2(x). (2.6)

Now, by noting these comments and the fact that the symmetric polynomials Sn(x; 1, 0,−2a+
2, 2) are finitely orthogonal with respect to the weight function W(x, a) = |x|−2a exp(−1/x2)
on the real line, we can define a finite class of quadrature rules as
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Moreover, for the residue value we have
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2.1. An Important Remark

It is important to note that by applying the change of variable 1/x2 = t in the left-hand side
of (2.7) the orthogonality interval (−∞,∞) changes to [0,∞) and subsequently
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As it is observed, the right-hand integral of (2.10) contains the well-known Laguerre weight
function xue−x for u = a − 3/2. Hence, one can use Gauss-Laguerre quadrature rules [8, 9]
with the special parameter u = a − 3/2. This process changes (2.7) in the form
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(a−3/2)
j are the zeros of Laguerre polynomials L

(a−3/2)
n (x). But, there is a large

disadvantage for formula (2.11). According to (2.2) or (2.9), the residue of integration rules
generally depends on f (2n)(ξ); α < ξ < β. Thus, by noting (2.11) we should have
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where φi(x) are real functions to be computed and f (i), i = 0, 1, 2, . . . , 2n, are the successive
derivatives of function f(x).

As we observe in (2.12), f(x) cannot be in the form of an arbitrary polynomial function
in order that the right-hand side of (2.12) is equal to zero. In other words, (2.11) is not exact
for the basis space f(x) = xj , j = 0, 1, 2, . . . , 2n − 1. This is the main disadvantage of using
(2.11), as the examples of next section support this claim.

3. Examples

Example 3.1. Since a 2-point formula was presented in (1.19), in this example we consider a
3-point integration formula. For this purpose, we should first note that according to (1.11)
the condition a > 7/2 is necessary. Hence, let us, for instance, assume that a = 4. After some
computations the related quadrature rule would take the form
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where
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Example 3.2. To have a 4-point formula, we should again note that a > 9/2 is a necessary
condition. In this sense, if, for example, a = 5 then we eventually get
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where
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Clearly this formula is exact for the basis elements f(x) = xj , j = 0, 1, 2, . . . , 7, and the nodes
of quadrature (3.5) are the roots of S4(x; 1, 0,−8, 2) = x4 − (4/3)x2 + 4/15.

4. Numerical results

In this section, some numerical examples are given and compared. The numerical results
related to the 2-point formula (1.19) are presented in Table 1, the results related to 3-point
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Table 1:
∫+∞
−∞x−6exp(−1/x2)f(x)dx.

f(x) Approx. value (2-point) Exact value Error

cosx 0.9103037512 0.9382539141 0.0279501629

exp(−2/x2) 0.0661839608 0.0852772257 0.0190932649

exp(− cosx) 0.6702559297 0.6812645398 0.0110086101

Table 2:
∫+∞
−∞x−8exp(−1/x2)f(x)dx.

f(x) Approx. value (3-point) Exact value Error

exp(− cosx) 1.494420894 1.492841821 0.001579073√
1 + sinx2 3.866024228 3.866700560 0.000676332√
1 + cosx2 4.544708979 4.561266761 0.016557782

Table 3:
∫+∞
−∞x−10exp(−1/x2)f(x)dx.

f(x) Approx. value (4-point) Exact value Error√
1 + cosx2 16.21776936 16.21978539 0.002016030

(1 + x2)−1/2 10.30987753 10.31704740 0.007116987

exp(−x2 − 2) 1.198219038 1.199125136 0.000906098

formula (3.1) are given in Table 2, and finally the results related to 4-point formula (3.5) are
presented in Table 3.
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