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1. Introduction

The heat and wave-like models are the integral part of applied sciences and arise in
various physical phenomena. Several techniques including spectral, characteristic, modified
variational iteration and Adomian’s decomposition have been used for solving these
problems; see [1–3] and the references therein. Most of these techniques encounter a
considerable size of difficulty. He [4–11] developed and formulated homotopy perturbation
method (HPM) by merging the standard homotopy and perturbation. The homotopy
perturbation method (HPM) proved to be compatible with the versatile nature of the
physical problems and has been applied to a wide class of functional equations; see [1, 4–
19] and the references therein. In this technique, the solution is given in an infinite series
usually converging to an accurate solution; see [1, 4–19] and the references therein. It is
worth mentioning that HPM is applied without any discretization, restrictive assumption
or transformation and is free from round off errors. The HPM is applied for all the nonlinear
terms in the problem without discretizing either by finite difference or by spline techniques
at the nodes and involves laborious calculations coupled with a strong possibility of the ill-
conditioned resultant equations which are a complicated problem to solve. Moreover, unlike



2 Mathematical Problems in Engineering

the method of separation of variables that requires initial and boundary conditions, the
homotopy perturbation method (HPM) provides an analytical solution by using the initial
conditions only. The fact that HPM solves nonlinear problems without using Adomian’s
polynomials is a clear advantage of this technique over the decomposition method. It is
worth mentioning that [12, 13] introduced He’s polynomials by splitting the nonlinear term
and proved their compatibility with Adomian’s polynomials coupled with the conclusion
that He’s polynomials are easier to calculate, are more user friendly, and are independent
of the complexities arising in calculating the so-called Adomian’s polynomials. It is to
be highlighted that He’s polynomials are calculated from homotopy perturbation method
(HPM). Inspired andmotivated by the ongoing research in this area, we useHe’s polynomials
for solving heat and wave-like equations. It is worth mentioning that Noor and Mohyud-Din
[20] introduced a homotopy approach which involves an additional term and consequently
leads towards laborious and redundant calculations, whereas the approach used in Section 2
is more precise and easier to implement. Moreover, it reduces the huge unnecessary
calculation arising in [20]. Several examples are given to verify the reliability and efficiency
of the algorithm.

2. Homotopy Perturbation Method and He’s Polynomials

To explain the homotopy perturbation method, we consider a general equation of the type

L(u) = 0, (2.1)

where L is any integral or differential operator. We define a convex homotopy H(u, p) by

H
(
u, p

)
=
(
1 − p

)
F(u) + pL(u), (2.2)

where F(u) is a functional operator with known solutions v0, which can be obtained easily. It
is clear that, for

H
(
u, p

)
= 0, (2.3)

we have

H(u, 0) = F(u), H(u, 1) = L(u). (2.4)

This shows thatH(u, p) continuously traces an implicitly defined curve from a starting point
H(v0, 0) to a solution function H(f, 1). The embedding parameter monotonically increases
from zero to unit as the trivial problem F(u) = 0 is continuously deforms the original
problem L(u) = 0. The embedding parameter p ∈ (0, 1] can be considered as an expanding
parameter [1, 2, 4–19]. The homotopy perturbation method uses the homotopy parameter p
as an expanding parameter [4–11] to obtain

u =
∞∑

i=0

piui = u0 + pu1 + p2u2 + p3u3 + · · · , (2.5)
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if p → 1, then (2.5) corresponds to (2.2) and becomes the approximate solution of the form

f = lim
p→ 1

u =
∞∑

i=0

ui. (2.6)

It is well known that series (2.6) is convergent for most of the cases and also the rate of
convergence is dependent on L(u); see [4–11]. We assume that (2.6) has a unique solution.
The comparisons of like powers of p give solutions of various orders. In sum, according to
[12, 13], He’s HPM considers the solution, u(x), of the homotopy equation in a series of p as
follows:

u(x) =
∞∑

i=0

piui = u0 + pu1 + p2u2 + · · · , (2.7)

and the method considers the nonlinear termN(u) as

N(u) =
∞∑

i=0

piHi = H0 + pH1 + p2H2 + · · · , (2.8)

where Hn’s are the so-called He’s polynomials [12, 13], which can be calculated by using the
formula

Hn(u0, . . . , un) =
1
n!

∂n

∂pn

(

N

(
n∑

i=0

piui

))

p=0

, n = 0, 1, 2, . . . . (2.9)

3. Numerical Applications

In this section, we use He’s polynomials which are calculated from homotopy perturbation
method (HPM) for solving heat and wave-like equations.

Example 3.1 ([1, 2]). Consider the one-dimensional initial boundary value problem which
describes the heat-like models

ut =
1
2
x2uxx, 0 < x < 1, t > 0, (3.1)

with boundary conditions

u(0, t) = 0, u(1, t) = et, (3.2)

and initial conditions

u(x, 0) = x2. (3.3)
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Apply the convex homotopy

u0 + pu1 + p2u2 + · · · = x2 +
∫ t

0

1
2
x2

(
∂2u0

∂x2
+ p

∂2u1

∂x2
+ p2

∂2u2

∂x2
+ · · ·

)

dt. (3.4)

Compare the coefficient of like powers of p

p(0) : u0(x, t) = x2,

p(1) : u1(x, t) = x2t,

p(2) : u2(x, t) = x2 t
2

2!
,

p(3) : u3(x, t) = x2 t
3

3!
,

p(4) : u4(x, t) = x2 t
4

4!
,

...

(3.5)

where p(i)s are He’s polynomials. The series solution is given by

u(x, t) = x2

(

1 + t +
t2

2!
+
t3

3!
+
t4

4!
+ · · ·

)

, (3.6)

and in a closed form by

u(x, t) = x2et. (3.7)

Example 3.2 ([1, 2]). Consider the two-dimensional initial boundary value problem which
describes the heat-like models

ut =
1
2

(
y2uxx + x2uyy

)
, 0 < x, y < 1, t > 0, (3.8)

with boundary conditions

ux

(
0, y, t

)
= 0, ux

(
1, y, t

)
= 2 sinh t,

uy(x, 0, t) = 0, uy(x, 1, t) = 2 cosh t,
(3.9)

and initial conditions

u
(
x, y, 0

)
= y2. (3.10)
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Apply the convex homotopy method

u0 + pu1 + p2u2 + · · · = y2 +
1
2

∫ t

0

(

y2

(
∂2u0

∂x2
+ p

∂2u1

∂x2
+ p2

∂2u2

∂x2
+ · · ·

)

+x2

(
∂2u0

∂y2
+ p

∂2u1

∂y2
+ p2

∂2u2

∂y2
+ · · ·

))

ds.

(3.11)

Compare the coefficient of like powers of p

p(0) : u0
(
x, y, t

)
= y2,

p(1) : u1
(
x, y, t

)
= x2t,

p(2) : u2
(
x, y, t

)
= y2 t

2

2!
,

p(3) : u3
(
x, y, t

)
= x2 t

3

3!
,

p(4) : u4
(
x, y, t

)
= y2 t

4

4!
,

...

(3.12)

where p(i)s are He’s polynomials. The series solution is given by

u
(
x, y, t

)
= x2

(

t +
t3

3!
+
t5

5!
+ · · ·

)

+ y2

(

1 +
t2

2!
+
t4

4!
+ · · ·

)

, (3.13)

and in a closed form by

u
(
x, y, t

)
= x2 sinh t + y2 cosh t. (3.14)

Example 3.3 ([1, 2]). Consider the three-dimensional inhomogeneous initial boundary value
problem which describes the heat-like models

ut = x4y4z4 +
1
36

(
x2uxx + y2uyy + z2uzz

)
, 0 < x, y, z < 1, t > 0, (3.15)

subject to the boundary conditions

u
(
0, y, z, t

)
= 0, u

(
1, y, z, t

)
= y4z4

(
et − 1

)
,

u(x, 0, z, t) = 0, u(x, 1, z, t) = x4z4
(
et − 1

)
,

u
(
x, y, 0, t

)
= 0, u

(
x, y, 1, t

)
= x4y4(et − 1

)
,

(3.16)
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and the initial conditions

u
(
x, y, z, 0

)
= 0. (3.17)

Apply the convex homotopy method

u0 + pu1 + p2u2 + · · · = x4y4z4t +
1
36

p

∫ t

0
x2

(
∂2u0

∂x2
+ p

∂2u1

∂x2
+ p2

∂2u2

∂x2
+ · · ·

)

dt

+
1
36

p

∫ t

0

(

y2

(
∂2u0

∂y2
+ p

∂2u1

∂y2
+ p2

∂2u2

∂y2
+ · · ·

)

+z2
(

∂2u0

∂z2
+ p

∂2u1

∂z2
+ · · ·

))

dt.

(3.18)

Compare the coefficient of like powers of p

p(0) : u0
(
x, y, z, t

)
= x4y4z4t,

p(1) : u1
(
x, y, z, t

)
= x4y4z4

t2

2!
,

p(2) : u2
(
x, y, z, t

)
= x4y4z4

t3

3!
,

p(3) : u3
(
x, y, z, t

)
= x4y4z4

t4

4!
,

...

(3.19)

where p(i)s are He’s polynomials. The series solution is given by

u
(
x, y, t

)
= x4y4z4

(

t +
t2

2!
+
t3

3!
+
t4

4!
+ · · ·

)

, (3.20)

and in a closed form by

u
(
x, y, z, t

)
= x4y4z4

(
et − 1

)
. (3.21)

Example 3.4. Consider the following nonlinear heat-like model:

ut = uxx +
k

x
ux − (2 + 2k)u − 4u ln(u), (3.22)
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subject to the initial conditions

u(0, t) = exp
(
exp(− 4t)

)
. (3.23)

Apply the convex homotopy method

u0 + pu1 + p2u2 + · · ·

= exp
(
exp (− 4t)

)
+ p

∫ t

0

(
∂2u0

∂x2
+ p

∂2u1

∂x2
+ p2

∂2u2

∂x2
+ · · ·

)

dt

+ p

∫ t

0

(
k

x

(
∂u0

∂x
+ p

∂u1

∂x
+ p2

∂u2

∂x
+ · · ·

)
− (2 + 2k)

(
u0 + pu1 + p2u2 + · · ·

))
dt

− 4p
∫ t

0

(
u0 + pu1 + p2u2 + · · ·

)(
lnu0 + p lnu1 + · · · )dt.

(3.24)

Compare the coefficient of like powers of p

p(0) : u0(x, t) = ee
−4t
,

p(1) : u1(x, t) =
x2

1!
ee

−4t
,

p(2) : u2(x, t) =
x4

2!
ee

−4t
,

p(3) : u3(x, t) =
x6

3!
ee

−4t
,

p(4) : u4(x, t) =
x8

4!
ee

−4t
,

p(5) : u2(x, t) =
x10

5!
ee

−4t
,

...

(3.25)

where p(i)s are He’s polynomials. The series solution is given by

u(x, t) =

(

1 +
x2

1!
+
x4

2!
+
x6

3!
+
x8

4!
+
x10

5!
+ · · ·

)

ee
−4t
, (3.26)

and the closed form solution is given as

u(x, t) = ex
2+ee

−4t
. (3.27)
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Example 3.5 ([1, 2]). Consider the one-dimensional initial boundary value problem which
describes the wave-like models

utt =
1
2
x2uxx, 0 < x < 1, t > 0, (3.28)

subject to the boundary conditions

u(x, t) = x, u(1, t) = 1 + sinh t, (3.29)

and initial conditions

u(x, 0) = x, ut(x, 0) = x2. (3.30)

Apply the convex homotopy method

u0 + pu1 + p2u2 + · · · = x2 +
1
2

∫∫ t

0
x2

(
∂2u0

∂x2
+ p

∂2u1

∂x2
+ p2

∂2u2

∂x2
+ · · ·

)

dt dt. (3.31)

Compare the coefficient of like powers of p

p(0) : u0(x, t) = x + x2t,

p(1) : u1(x, t) = x2 t
3

3!
,

p(2) : u2(x, t) = x2 t
5

5!
,

p(3) : u3(x, t) = x2 t
7

7!
,

...

(3.32)

where p(i)s are He’s polynomials. The series solution is given by

u(x, t) = x + x2

(

t +
t3

3!
+
t5

5!
+
t7

7!
+ . . .

)

, (3.33)

and in a closed form by

u(x, t) = x + x2 sinh t. (3.34)
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Example 3.6 ([1, 2]). Consider the two-dimensional initial boundary value problem which
describes the wave-like models

utt =
1
12

(
x2uxx + y2yyy

)
, 0 < x, y < 1, t > 0, (3.35)

subject to the Neumann boundary conditions

ux

(
0, y, t

)
= 0, ux

(
1, y, t

)
= 4 cosh t,

uy(x, 0, t) = 0, uy(x, 1, t) = 4 sinh t,
(3.36)

and initial conditions

u
(
x, y, 0

)
= x4, ut

(
x, y, 0

)
= y4. (3.37)

Apply the convex homotopy method

u0 + pu1 + p2u2 + · · · =
(
x4 + y4t

)
+

1
12

∫∫ t

0
x2

(
∂2u0

∂x2
+ p

∂2u1

∂x2
+ p2

∂2u2

∂x2
+ · · ·

)

dt dt

+
1
12

∫∫ t

0
y2

(
∂2u0

∂y2
+ p

∂2u1

∂y2
+ p2

∂2u2

∂y2
+ · · ·

)

dt dt.

(3.38)

Compare the coefficient of like powers of p

p(0) : u0
(
x, y, t

)
= x4 + y4t,

p(1) : u1
(
x, y, t

)
= x4 t

2

2!
+ y4 t

3

3!
,

p(2) : u2
(
x, y, t

)
= x4 t

4

4!
+ y4 t

5

5!
,

p(3) : u3
(
x, y, t

)
= x4 t

6

6!
+ y4 t

7

7!
,

...

(3.39)

where p(i)s are He’s polynomials. The series solution is given by

u
(
x, y, t

)
= x4

(

1 +
t2

2!
+
t4

4!
+ · · ·

)

+ y4

(

1 +
t3

3!
+
t5

5!
+ · · ·

)

, (3.40)

and in a closed form by

u
(
x, y, t

)
= x4 cosh t + y4 sinh t. (3.41)
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Example 3.7 ([1, 2]). Consider the three-dimensional inhomogeneous initial boundary value
problem which describes the wave-like models

utt =
(
x2 + y2 + z2

)
+
1
2

(
x2uxx + y2uyy + z2uzz

)
, 0 < x, y, z < 1, t > 0, (3.42)

subject to the boundary conditions

u
(
0, y, z, t

)
= y2(et − 1

)
+ z2

(
e−t − 1

)
, u

(
1, y, z, t

)
=
(
1 + y2

)(
et − 1

)
+ z2

(
e−t − 1

)
,

u(x, 0, z, t) = x2(et − 1
)
+ z2

(
e−t − 1

)
, u(x, 1, z, t) =

(
1 + x2

)(
et − 1

)
+ z2

(
e−t − 1

)
,

u
(
x, y, 0, t

)
=
(
x2 + y2

)(
et − 1

)
, u

(
x, y, 1, t

)
=
(
x2 + y2

)(
et − 1

)
+
(
e−t − 1

)
,

(3.43)

and the initial conditions

u
(
x, y, z, 0

)
= 0, ut

(
x, y, z, 0

)
= x2 + y2 − z2. (3.44)

Apply the convex homotopy method

u0 + pu1 + p2u2 + · · · =
(
x2 + y2 − z2

)
t +

1
2

∫∫ t

0
x2

(
∂2u0

∂x2
+ p

∂2u1

∂x2
+ p2

∂2u2

∂x2
+ · · ·

)

dt dt

+
1
2

∫∫ t

0

(

y2

(
∂2u0

∂y2
+ p

∂2u1

∂y2
+ p2

∂2u2

∂y2
+ · · ·

)

+z2
(

∂2u0

∂z2
+ p

∂2u1

∂z2
+ p2

∂2u2

∂z2
+ · · ·

))

dt dt.

(3.45)

Compare the coefficient of like powers of p and proceede as before, the series solution is given
by

u
(
x, y, t

)
=
(
x2 + y2

)(

t +
t2

2!
+
t3

3!
+
t4

4!
+ · · ·

)

+ z2
(

−t + t2

2!
+
t3

3!
+
t4

4!
+ · · ·

)

, (3.46)

and in a closed form by

u
(
x, y, z, t

)
=
(
x2 + y2

)
et + z2e−t −

(
x2 + y2 + z2

)
. (3.47)
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4. Conclusion

In this paper, we use He’s polynomials which are calculated from homotopy perturbation
method (HPM) for solving heat and wave-like equations. The method is applied in a direct
way without using linearization, transformation, discretization, or restrictive assumptions.
It may be concluded that the proposed scheme is very powerful and efficient in finding the
analytical solutions for a wide class of boundary value problems. The method gives more
realistic series solutions that converge very rapidly in physical problems. It is also observed
that He’s polynomials are compatible with Adomian’s Polynomials but are easier to calculate
and are more user friendly.
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