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1. Introduction

Considerable attention has been directed toward the solution of nonlinear equations since
they play crucial role in applied mathematics, physics, and engineering problems. In general,
the analytical approximation to solution of a given nonlinear problem ismore difficult than
the numerical solution approximation. During the past decades, several types of methods
are proposed to obtain approximate solution of nonlinear equations of various types.
Among them are variational iteration methods [1–7], homotopy perturbation method [8–
15], modified Lindstedt-Poincare method [16], parameter expansion method [17, 18], and
variational methods [19–21]. The variational method is different from any other variational
methods in open literature, and it is only valid for nonlinear oscillators [22]. Paper [23] is an
example of use of variational approach method in nonlinear oscillator problem.

When we examine the frequency amplitude relations of some nonlinear oscillators, it
is seen that paper [24] focuses on only the first-order solutions.

Variational methods combine the following two advantages: (1) they provide physical
insight into the nature of the solution of the problem; (2) the obtained solutions are the best
among all the possible trial functions [20].
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In the present study, we have investigated the application of variational approach to
nonlinear oscillator with discontinuity.

2. A Variational Method

Let us consider a general nonlinear oscillator in the form

u′′ + f (u) = 0. (2.1)

He proposed a variational principle for (2.1) as follows [20]:

J (u) =
∫T/4

0

(
−1

2
u′2 + F (u)

)
dt, (2.2)

where T is period of the nonlinear oscillator, ∂F/∂u = f . Actually, the upper limit is originally
T instead of T/4. Normally, it works in most of the cases. Let us suppose that f(u) = sgn(u)
such

sgn (u) =

⎧⎨
⎩
−1, u < 0,

+1, u ≥ 0,
(2.3)

therefore

F (u) =

⎧⎨
⎩
−u, u < 0,

u, u ≥ 0.
(2.4)

But this form is not suitable for discontinuity equation. Therefore, we propose the
equation in the form of

J (u) =
∫T/2

0

(
−1

2
u′2 + |u|

)
dt. (2.5)

Assume that its solution can be expressed as

u (t) = A cosωt + B (cosωt − cos 3ωt) + C (cos 3ωt − cos 5ωt) + · · · , (2.6)

where ω is the frequency of the oscillator.
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Inserting (2.6) into (2.5) yields

J (A,B,C, . . . , ω)

=
∫T/2

0

{
−1

2
ω2[A sinωt + B(sinωt − 3 sin 3ωt) + C(3 sin 3ωt − 5 sin 5ωt) + · · · ]2

+ |A cosωt + B (cosωt − cos 3ωt) + C (cos 3ωt − cos 5ωt) + · · · |
}

(2.7)

Let us define τ = ωt. Then (2.7) becomes

J (A,B,C, .., ω) =
∫π

0

{
−1

2
ω[A sin τ + B(sin τ − 3 sin 3τ) + C(3 sin 3τ − 5 sin 5τ) + · · · ]2

+
1
ω
|A cos τ + B (cos τ − cos 3τ) + C (cos 3τ − cos 5τ) + · · · |

}
dτ.

(2.8)

Using the Ritz method, we require

∂J

∂ω
= 0,

∂J

∂A
= 0,

∂J

∂B
= 0,

∂J

∂C
= 0, . . . , (2.9)

∂J

∂ω
= −

∫π

0

{
1
2
[A sin τ + B(sin τ − 3 sin 3τ) + C(3 sin 3τ − 5 sin 5τ) + · · · ]2

+
1
ω2 |A cos τ + B (cos τ − cos 3τ) + C (cos 3τ − cos 5τ) + · · · |

}
dτ.

(2.10)

By a careful inspectation, we find that

∂J

∂ω
< 0. (2.11)

Thus, the conditions in (2.9) reduce to

∂J

∂A
= 0,

∂J

∂B
= 0,

∂J

∂C
= 0, . . . . (2.12)

3. Application

Consider the following nonlinear oscillator with discontinuity:

u′′ + sgn (u) = 0, (3.1)
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with initial conditions

u (0) = A,
du (0)
dt

= 0. (3.2)

Its variational formulation can be written as follows:

J (u) =
∫π/2

0

(
−1

2
u′2 + u

)
dt +

∫π

π/2

(
−1

2
u′2 − u

)
dt. (3.3)

For the first approximation assume that u(t) is in the following form:

u (t) = A cosωt. (3.4)

Substitute this first approximation into (3.3):

J (A,ω) = 2A − 1
4
π A2ω2. (3.5)

The stationary condition with respect to A reads

∂J

∂A
= 2 − π A

2
ω2 = 0, (3.6)

which leads to the result

ω =
2√
Aπ

=
1.128379√

A
, (3.7)

and the approximate period can be obtained as follows:

T1app (A) = π
√
π A = 5.568328

√
A, relative error = 1.6%. (3.8)

This solution agrees with Liu’s solution obtained by He’s modified Lindsted-Poincaré
method [16], Rafei et al.’s solution obtained by He’s variational iteration method [2], Wu
et al.’s solution obtained by the low-order harmonic balance method [25], and A. Belendéz
et al.’s solution obtained by He’s homotopy perturbation method [9].

Secondly, to obtain a more accurate result, define u as follows:

u = A cosωt + B (cosωt − cos 3ωt) . (3.9)

Notice that (3.9) satisfies the initial conditions (3.2).
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Substituting (3.9) into (3.3), we obtain

J (A,B,ω) =
∫T/4

0

(
−1

2
(A + B)2ω2sin2ωt + 3B (A + B)ω2 sinωt sin 3ωt

)
dt

+
∫T/4

0

(
−9

2
B2ω2sin23ωt + (A + B) cosωt − B cos 3ωt

)
dt

+
∫T/2

T/4

(
−1

2
(A + B)2ω2sin2ωt + 3B (A + B)ω2 sinωt sin 3ωt

)
dt

+
∫T/2

T/4

(
−9

2
B2ω2sin23ωt − (A + B) cosωt + B cos 3ωt

)
dt.

(3.10)

The J(A,B,ω) in (3.10) can be obtained as follows:

J (A,B,ω) = 2A +
8
3
B − 1

4
πA2ω2 − 1

2
πABω2 − 5

2
πB2ω2. (3.11)

The stationary condition with respect to A and B reads

∂J

∂A
= 2 − 1

2
Aπω2 − 1

2
Bπω2 = 0, A =

104
27πω2

, (3.12)

∂J

∂B
=

8
3
− 1

2
Aπω2 − 5Bπω2 = 0, B =

4
27πω2

, (3.13)

from which the relationship between oscillator frequency and amplitude can be determined.
From (3.12) we have

ω =
2
3

√
26

3Aπ
=

1.10729√
A

, (3.14)

and the approximate period can be obtained as follows:

T2app (A) =

√
27Aπ3

26
= 5.67440

√
A, relative error = 0.31 %. (3.15)

In this study, we obtained the relative error as 1.6% for the first-order approximation
while the other researchers [2, 16] obtained the relative error as 1.8%. The reason for the
difference in the relative error is that the other researchers take less precision in the decimal
numbers during calculations. In [9], the frequency ω = 1.107452/

√
A and the period

T2app(A) = 5.67440
√
A were found for the same problem by second-order approximation

and the relative error was calculated as %0.30.
Equation (3.1) was approximately solved in [25] using an improved harmonic balance

method that incorporates salient features of both Newtons’s method and the harmonic
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Figure 1: Comparison of approximate normalized functions (dashed line) with exact normalized functions
(continuous line) for (a) first approximation (b) second approximation (c) third approximation.

balance method. In [25], the following results for the first and second-order approximations
were obtained:

TWSL1 (A) = 5.568328
√
A, relative error = 1.6%

TWSL2 (A) = 5.67440
√
A, relative error = 0.31%.

,
(3.16)
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To obtain a more accurate result, define u as follows:

u = A cosωt + B (cosωt − cos 3ωt) + C (cos 3ωt − cos 5ωt) . (3.17)

Notice that (3.17) satisfies the initial conditions (3.2).
Substituting (3.17) into (3.3) gives

J (A,B,C,ω) = 2A +
8
3
B − 16

15
C − 1

4
πω2

(
A2 + 2AB + 10B2 − 18BC + 34C2

)
. (3.18)

The stationary condition with respect to A, B, and C reads

∂J

∂A
= 2 − 1

2
Aπω2 − 1

2
Bπω2 = 0, A =

13108
3375πω2

,

∂J

∂B
=

8
3
− 1

2
Aπω2 − 5Bπω2 +

9
2
Cπω2 = 0, B =

392
3375πω2

,

∂J

∂C
= −16

15
− 17Cπω2 +

9
2
Bπω2 = 0, C =

−4
125πω2

.

(3.19)

Hence the approximate frequency is

ω =

√
13108

3375Aπ
=

1.11188√
A

. (3.20)

Therefore, approximate period of the nonlinear oscillator can be obtained as follows:

T3app (A) = 2

√
3375π3A

13108
= 5.65098

√
A, relative error = 0.1%. (3.21)

For this nonlinear problem in (3.1), the exact period is given as follows [25]:

Te (A) = 4
√

2A = 5.656854
√
A. (3.22)

The period values and these relative errors obtained in this method for nonlinear
oscillator with discontinuity are the following:

T1app (A) = 5.568328
√
A, relative error = 1.6%,

T2app (A) = 5.67440
√
A, relative error = 0.31%,

T3app (A) = 5.65098
√
A, relative error = 0.10%.

(3.23)
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Equation (3.1) was approximately solved in [25] using an improved harmonic balance
method that incorporates salient features of both Newtons’s method and the harmonic
balance method. In [25], the following result for the third-order approximations was
obtained:

TWSL3 (A) = 5.650976
√
A, relative error = 0.10%. (3.24)

Equation (3.1) was approximately solved in [9] using a homotopy perturbation
method. In [9], the following result for the third-order approximations was obtained:

T3 (A) = 5.653609
√
A, relative error = 0.057%. (3.25)

By using above values, the periodic function u(t) can be written for three levels of
approximation as follows:

ua1 (t) = A cos (ω1t) ,

ua2 (t) = 1.03846A cos (ω2t) − 0.0384615A cos (3ω2t) ,

ua3 (t) = 1.02991A cos (ω3t) − 0.0381446A cos (3ω3t) + 0.00823924A cos (5ω3t) .

(3.26)

The normalized exact periodic solution uex/A has been obtained by numerically
integrating (3.1) and (3.2) and compared with approximate solutions (3.26) in Figure 1. Here
nondimensional time h is defined as follows:

h =
t

Te
. (3.27)

4. Conclusions

He’s variational approach is modified for nonlinear oscillator with discontinuities. The
method has been applied to obtain three levels of approximation of a nonlinear oscillator
with discontinuities for which the elastic force term is proportional to sgn(u). We reached
1.6%, 0.31%, and 0.1% relative errors for the first, second, and third approximate periods,
respectively. One can obtain higher-order accuracy by extending the idea given in this paper.
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