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The New Horizons project is currently in progress, but until recently years ago, a mission
to Neptune-Triton System predicted in the mid term 2008–2013 was one of the priorities of
NASA’s Solar System Exploration theme. Any way, it is important to increase our knowledge
on the dynamics of the inner satellites of Neptune, since according to some authors, this was
a key question in the mission to Neptune-Triton system. In a previous work, we presented the
expansion of the disturbing function for the dynamics of this system. Here we derive the averaged
classical equations of the precession of the equator for this problem. The highly inclined and
retrograde orbit of Triton makes this problem very unusual. Therefore, the classical truncations
in the inclinations are not acceptable, so that the precession equations must be obtained in closed
form for the inclination. With a significant mass and due to its distance from Neptune, which
is continuously decreasing, Triton should exert in the future, important precession on Neptune’s
equator. The effects of this precession on the inner satellites are shown, including some resonant
cases predicted in the future. Although Triton’s orbit is almost circular, no expansion in the
eccentricity is needed.

Copyright q 2009 C. do Nascimento and T. Yokoyama. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Some years ago, the exploration of the Neptune system in the next ten years was posed as
an important priority of NASA’s Solar System Exploration theme [1]. Although the New
Horizons project is now the top priority for the far reaches of the solar system, most probably,
to design a mission to explore the Neptune-Triton system will be just a mater of time. The
authors [1] raised some important questions about the dynamics (stability) of the arcs and
inner satellites of Neptune. In order to give support to the mission, we must increase our
knowledge on the dynamics of this system. In this work we derive the classical equations
of the precession for the equator of Neptune. Basically, this equator is disturbed by the
presence of Triton since it has a remarkable mass: mT/MN ≈ 2.09 × 10−4. (mT , MN are
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Figure 1: XYZ: inertial system, xyz: moving system fixed on the equator.

the masses of Triton and Neptune, resp.). Moreover, Triton’s inclination with respect to
Neptune’s equator is quite unusual (≈157.350). In a short time span, this precession should
not be so important on the dynamics of the inner satellites. However, for a longer time (more
than 600 years), this effect must be investigated. This work is organized in the following
way: in Section 2 the averaged precessional equations for Neptune’s equator considering
arbitrary inclination obtained. Some authors [2] hypothesize that in the past, the eccentricity
of Triton (eT ), might have been very high. Therefore, the precessional equations are also
obtained for arbitrary eT . In Section 3, we discuss the definition of the invariable plane and
the existence of a corresponding equilibrium solution when we assume circular orbit for
Triton. Considering the current dynamics of Neptune-Triton system, several authors have
improved the ephemerides and data of the small satellites (e.g., Owen et al. [3]). Here, some
numerical simulations showing the effects of the precession , particularly for the future 2 : 1
and 3 : 1 resonances involving Triton and Proteus, are presented. Section 4 is devoted to the
conclusions.

2. The Ĩ and Ω̃ equations

Let XYZ be an arbitrary reference system (inertial) and a moving system xyz fixed on the
equator of Neptune (see Figure 1). We define Ĩ = inclination of the equator and Ω̃ = node of
the equator [4]. Due to the presence of a massive satellite (Triton), the equator of Neptune will
be disturbed. Let T be the associated torque due to Triton and let WT be the corresponding
oblateness potential of Neptune:

WT = −
GMNmTJ2R

2
N

r3
T

(
−1

2
+

3sin2β

2

)
, (2.1)

where G is the gravitation constant, MN and mT are the masses of Neptune and Triton,
respectively. The oblateness constant is J2, β is the Triton’s latitude and rT is the radial distance
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Neptune-Triton in the xyz system. The equatorial radius of Neptune is indicated by RN .
Then:

T = (L,M,N) = −rT × ∇TWT , (2.2)

where ∇T is the usual gradient operator with respect to Triton coordinates and L, M, and N
are the components of the torque T, that is:

L =
(
∂WT

∂yT

)
zT −

(
∂WT

∂zT

)
yT ,

M = −
(
∂WT

∂xT

)
zT +

(
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∂zT

)
xT ,

N =
(
∂WT

∂xT

)
yT −

(
∂WT

∂yT

)
xT ,

(2.3)

where xT , yT and zT are the cartesian coordinates of Triton with respect to the moving system
xyz. On account of the rotational symmetry, we can show that N = 0. To this end, since β
is the latitude we have: sin(β) = zT/rT . Then a direct calculation shows that WT depends on
Triton coordinates only through rT and zT/rT , therefore:

WT =WT

(
rT ,

zT
rT

)
, rT =

(
x2
T + y

2
T + z

2
T

)1/2
,

∂WT
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∂rT

xT
rT
,

∂WT

∂yT
=
∂WT

∂rT

yT
rT
.

(2.4)

Substituting these last two relations in N given in (2.3), we get N = 0. Now, let w =
(pN, qN,wN) be the rotation vector of Neptune. According to Euler’s dynamical equations:

ṗN +
C −A
A

wNqN =
L

A
,

q̇N −
C −A
A

wNpN =
M

A
,

ẇN =
N

C
= 0,

(2.5)

where A (= B) and C are the moments of inertia of the planet. From the geometric equations,
w can be expressed in terms of the inertial XYZ system:

pN = sin
(
Ĩ
)

sin
(
χ
) ˙̃Ω + cos

(
χ
) ˙̃I,

qN = sin
(
Ĩ
)

cos
(
χ
) ˙̃Ω − sin

(
χ
) ˙̃I,

wN = cos
(
Ĩ
) ˙̃Ω + χ̇.

(2.6)
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Taking the time derivative of pN ,

ṗN = cos
(
Ĩ
) ˙̃I
(

sin
(
χ
) ˙̃Ω
)
+ sin

(
Ĩ
)(
χ̇ cos

(
χ
) ˙̃Ω + sin

(
χ
) ¨̃Ω
)

− sin
(
χ
)
χ̇ ˙̃I + cos

(
χ
) ¨̃I.

(2.7)

Assuming that the polar component of the rotation of the planet is dominant, the following

quantities: ˙̃I ˙̃Ω, ¨̃I e ¨̃Ω e ˙̃Ω
2

can be neglected when compared to χ̇ [5, 6]. Then,

ṗN = sin
(
Ĩ
)
χ̇ cos

(
χ
) ˙̃Ω − sin

(
χ
)
χ̇ ˙̃I. (2.8)

Substituting ṗN e qN in the first Euler’s equation,

L

A
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)
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(2.9)

Substituting wN = cos(Ĩ) ˙̃Ω + χ̇ and neglecting terms factored by ˙̃Ω
2

and ˙̃I ˙̃Ω, we have

C

A
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(
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(
Ĩ
)

cos
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χ
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A
. (2.10)

Similarly, putting q̇N and pN into the second Euler dynamical equation, we obtain:

−C
A
wN

(
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(
Ĩ
)
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(
χ
) ˙̃Ω + cos

(
χ
) ˙̃I
)
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A
. (2.11)

Now we can eliminate L and M in the above equations. Defining W0 = −GmTMNJ2R
2
N/2,

we have
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(2.12)
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and so,

L =
∂WT

∂yT
zT −

∂WT

∂zT
yT = −WzyT , (2.13)

where Wz = 6W0zT/r
5
T . Similarly, M =WzxT . From (2.10) and (2.11),
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Ĩ
)
= − Wz
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χ
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.

(2.14)

If a sequence of three rotations, Ω̃, Ĩ, is χ are applied on the system XYZ, it will coincide
with xyz. Therefore we can write xT , yT , and zT in terms of the well-known elliptic orbital
elements of Triton.

xT = rT cos
(
fT +wT

)
cosΩT − rT sin

(
fT +wT

)
sinΩT cos IT ,

yT = rT cos
(
fT +wT

)
sinΩT + rT sin

(
fT +wT

)
cosΩT cos IT ,

zT = rT sin
(
fT +wT

)
sin IT ,

(2.15)

where rT , fT , wT , ΩT , wT , and IT refer to classical orbital elements of Triton referred to
(X,Y,Z) inertial system.

Finally, averaging the resulting equations with respect to the mean anomaly of Triton,
the precessional equations, without any restriction on the inclination IT or on the eccentricity
eT , are
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(2.16)

where

F0 =
3GmTMNR

2
NJ2

CwN
. (2.17)

Notice that, as expected in this approximation, these two equations are decoupled from χ
equation.
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Figure 2: t1 is perpendicular to the orbital plane of Triton, n1 is perpendicular to Neptune’s equator, and R
is the resulting vector which defines the invariable plane.

3. The Invariable Plane

In this section, we define the reference plane. Let t1 and n1 be the orbital angular momentum
of Triton and rotation angular momentum of Netpune, respectively. Then R = t1 + n1 is a
constant vector. Therefore, the plane perpendicular to the direction of R is invariable (see
Figure 2), and it will be adopted as our reference plane.

The dynamics of the system involving Ĩ, Ω̃, ΩT , and IT shows an interesting solution
in this invariable plane. To see that, let us assume Triton in a circular Keplerian orbit. In this
case, we have t1 = mTnTa

2
T , where nT is the mean motion, and mT is the Triton’s mass. On

the other hand, n1 = CwN , where C is the polar moment of inertia of Neptune and wN is its
angular velocity of rotation (spin rate). Now, from Figure 2, we have

sin(π − IT ) =
s

mTnTa
2
T

, sin Ĩ = sCwN (3.1)

that is, the inclination Ĩ of the invariable plane is given by:

sin Ĩ =
mTnTa

2
T sin IT

CwN
. (3.2)

In order to have the complete set of equations that govern the motion of the equator, we have
to consider (2.16) and also the corresponding equations for IT and ΩT . They are

dIT
dt

= − 1
nTa

2
T sin(IT )

∂RJ2

∂ΩT
,

dΩT

dt
=

1
nTa

2
T sin(IT )

∂RJ2

∂IT
,

(3.3)
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where RJ2 is the disturbing function due to the oblateness of Neptune which is written with
respect to the following invariable plane:

RJ2 = S0

[
1
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,

(3.4)

where
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For Ω̃ −ΩT = π, we easily see that

İT = Ĩ = 0,
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. (3.7)

Therefore,

˙̃Ω − Ω̇T =
3GMNR

2
NJ2

4a3
T

sin
(

2Ĩ + 2IT
)⎡⎢⎣ 1

nTa
2
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(
Ĩ
)
⎤⎥⎦, (3.8)

that is, the term inside the brackets is automatically zero provided the reference plane is the
invariable plane (see (3.2)). In this case; ˙̃Ω − Ω̇T = 0, IT and Ĩ are constants; Ω̃ and ΩT are
synchronous. This means that the precession rate of the Neptune’s equator is the same of the
Triton’s node on the invariable plane (≈688 years). It is also easy to show that Ω̃ − ΩT = π
defines a stable periodic solution of the system (simple calculations show that such solution
does not exist for Ω̃ −ΩT = 0). This means that it is very convenient to choose the invariable
plane as the reference for our purposes.
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Figure 3: (a), (c): the lighter points were obtained taking into account the Ĩ and ˙̃Ω equations in the
integration, while in the thick points these contributions were neglected. (b), (d): time variation of the
eccentricity (b) and inclination (d) for two orbits. Initially their paths are similar, but when their semimajor
axes enter the 2 : 1 resonance region, a jump appears in the eccentricity (b), first in the orbit which contains
the effect of the precession. The same occurs for the inclination (d), that is, the precession accelerates the
onset of the jump of the inclination.

4. Some Effects on the Inner Satellites

Initially we tested our (2.16) for the case of Earth and Mars. As expected, the results agree
quite well with very known values (≈26000 and ≈175000 years for Earth and Mars, resp.).
For the Neptune’s equator, considering aT = 14.063RN, our numerical experiments show
≈688 years for the period of precession, referred to the invariable plane Neptune-Triton. This
period is rather sensitive for the adopted value of the semimajor axis of Triton. In this section
we test the effect of the precession of Neptune’s equator on an inner satellite of this planet. In
Figure 3, we always integrate two orbits. The lighter points in the left panels, correspond to
the orbits when we include the precessional effect, while the thick points come from the orbit
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when we neglect (2.16). The inclinations are referred to the invariable plane. We consider a
test particle (Proteus) disturbed by Triton.

In the integration of the equations of the motion, we used our averaged disturbing
function R as described Yokoyama et al. [7] which is very efficient for this case. The initial
conditions for Proteus are a = 4.751, e = 0.0005, w = 00, Ω = 900, I = 10 Figure 3(a) and
I = 100 Figure 3(c), and λ = 900, while for Triton we consider a = 14.325, e = 0.000016, w = 00,
Ω = 2700, I = 1570, and λ = 2700. The effect of the precession is very clear: Figure 3(a), shows
the variation of Proteus’ inclination which remains confined in a very narrow interval when
precession equations are considered. In Figure 3(c), in opposition to the above panel, we take
Proteus at high inclination (100). Then, although the periods are different, the inclinations
of both orbits undergo a large variation. Moreover, there is quite clear a periodic oscillation
of about 670 years, which is related to the precession of the node (ΩT ). Panels on the right,
refer to the variation of the eccentricity Figure 3(b) and inclination Figure 3(d) of Proteus in
the case of future 2 : 1 resonance. As described by Yokoyama [8] and Yokoyama et al. [7],
due to the tides, Triton is falling down to the planet, so that, its orbital period will be in a
3 : 1 or 2 : 1 orbital resonance with Proteus in the future. For these two panels, instead of the
averaged equations, we integrated the exact equations and we applied a slow dissipation on
the semimajor axis of Triton in order to simulate the tidal effect. As pointed in Yokoyama et
al. [7] the eccentricity suffers a strong variation and Proteus can be ejected. The effect of the
precession is to anticipate the ejection. However, this is not a general rule, since some tests
performed in the 3 : 1 resonance showed different results, that is, the precession can delay
the ejection. More tests must be carried on in order to clarify these details.

5. Conclusion

In this work, we derived the classical averaged equations for the precession of the Neptune’s
equator, extending for the case of arbitrary inclination and eccentricity of the disturber. Due
to the high retrograde inclination of Triton, these equations must be obtained in closed form
for this inclination. If the invariable plane is chosen as the reference plane, the averaged
equations of the precession in the case of eT = 0, satisfy an equilibrium solution where Ω̃
and ΩT remain synchronous while Ĩ and IT are constants. The numerical experiments show
that, when the precessional equations are considered, the inclination of an inner satellite
of Neptune (Proteus) remains confined in a very narrow range, that is, the variation of
the inclination with respect to the invariable plane is very small. However for high initial
inclination (≥ 100) of the inner satellite, this confinement is not preserved anymore, that is,
even considering the precessional effect, the amplitude of the variation of the inclination is
significant. Additional simulations show that the precessional effects are also important in
the future 2 : 1 and 3 : 1 resonances, since the jump in inclination or eccentricity can be
anticipated or delayed.
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