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experiments. This model is experimentally obtained by using the described LPV fractional
identification procedure. This procedure consists of the identification of a rational order model in
each operation point in an experimental test canal. Global LPV model is obtained from polynomial
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important role to play in management and efficient use of water resources.
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1. Introduction

Water is becoming a precious and very scarce resource in many countries due to the increase
of industrial and agricultural demands, as well as population growth. Irrigation is the main
water consuming activity in the world, as it represents about 80% of the available fresh
water consumption. There is growing interest for the application of advanced management
methods that prevent wastage and facilitate the efficient use of this vital resource [1].

Unfortunately, for control design purposes control techniques and their implemen-
tation are directly proportional to the complexity of proposed control models. Then, it
is essentially a noncomplex and simple control model that represents in a precise way
water behavior of open-flow canals. However, this type of systems corresponds to long
distributed systems with complex dynamics. Furthermore, these systems involve mass
energy transport phenomena which behave as intrinsically distributed parameter systems,
and their characteristics are very complex such as the variation of parameters with operation
points, large delays that vary with operation point, and numerous interactions between
different consecutive subsystems and strong nonlinearity. Their complete dynamics is
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represented by nonlinear partial differential hyperbolic equations (PDEs) that depend on
the time as well as the spatial coordinates: Saint-Venant’s equations. This equation system
has unknown analytical solution in real geometry and it has to be solved numerically
(characteristic method, Preissman implicit scheme, etc.) [2].

Resulting time consuming simulation models are therefore suitable for scientific
purposes but they are too complex for on-line applications and control needs. Moreover,
linearizations or simplifications of Saint-Venant’s equations are currently studied by
irrigation control research community [3]. Distributed parameters systems, considered as
systems with a very large number of states could be approximated with low-order linear
time invariant (LTI) models in order to use classical linear control design tools, as an usual
practice in control engineering. There are two main approaches that are followed to obtain a
linear model for irrigation main canals: the use of linearized Saint-Venant equations [4, 5] and
the use of identification methods [6–8]. In case of open canal hydraulic system, identification
is a classical method because their operational data are widely available and resulting models
are suitable for design control.

Normally, classical identification methods [9] are used to obtain LTI discrete models
which describe dynamics of irrigation water. However, in such systems LTI models lose
information about these characteristics (non-linearity, coupling between pools, dynamics
parameters changing over operation time in a wide range variationĚ). Then, a simplified
control model structure that still preserve their information is needed. Such a structure can be
provided by linear parameter varying (LPV) models consisting of a linear lumped parameter
model in which parameters are not constant, but they depend on external parameters and/or
system states and/or operating conditions of the system.

One of the main motivations for using LPV gain scheduling control versus classical
gain scheduling control is that the former, as opposed to the latter, rigorously guarantees
system stability [10]. Gain scheduling control is a heuristic method that consists in dividing
the parameter space into small regions, in which the plant is observed as an LTI system,
and LTI controllers are designed for every fixed set of parameters to achieve a synthetic
controller with the use of interpolation or other techniques as switching techniques or fuzzy
control. Heuristic gain scheduling controllers normally guarantee control system stability
when parameters perform a slow variation [11] but sometimes may lead to unstability or
chaotic behavior [12]. Furthermore, benefits of using gainscheduling techniques instead of
robust control are obvious in this type of systems because of conservative results of robust
control since model errors are partly due to non-linear effects and partly to the strong
unknown perturbations considered as uncertainties [13]. Then, it is convenient to identify
an LPV model for control canal purposes. Mainly, there are two approaches of identifying
LPV models: since an LPV model is essentially a parameterized family of LTI models, a
first identification approach is to collect data enough at each operating point to identify
its corresponding LTI model [14]. Identified LTI coefficients are used to interpolate LPV
coefficients as polynomial functions of scheduling variables.

Alternatively, a second approach that can be carried out in “one shot” , by assuming a
linear dependence of parameters with operating points. Here, according to [15], identification
problem can be reduced to a linear regression that may be solved using an extended regressor
in the Least Mean Square (LMS) algorithm. In general, both methods lead to similar models.
These identified LTI integer models do fit good enough with the dynamics of the canal system
in each operating point in order to lineary control the system in such points. But, due to (i)
that recently some control researchers have used fractional control methods for canal control
purposes with satisfactory results [16] and (ii) noninteger models describe completely the
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behaviour of distributed systems [17], such as irrigation canals, in this article authors have
carried out an LPV fractional identification using the former mentioned LPV approach. This
fractional identification approach has been developed to model an irrigation prototype canal.
Some properties of fractional calculus are applied in order to obtain a noninteger order model
in each operation point.

2. LPV Noninteger Order Modeling for Irrigation Canal Pool

The last two decades have witnessed considerable development in the use of fractional
differentiation in various fields. Fractional control is now mature enough and is widely
used to design control for representing systems that present diffusive phenomena,
electromechanical diffusion, and transport phenomena. This last phenomenon corresponds
to the case of irrigation pools. In this section, LPV identification methodology used for the
experimental modelling of a pilot canal plant is described.

2.1. Pilot Canal Plant Description

An experimental canal prototype (this experimental test canal is a part of a more complex
laboratory research canal available at Automatic Control Dept, UPC, Barcelona) is used in
the research presented in this paper (Figure 1). This plant consists on two tanks, P1 and P2

(Figure 2), with a top side view shown in Figure 3. On one side of pool P1 there is a pump (B2,
1.3 kl/h) to empty the pool. The output-flowing liquid of B2 is collected in P2, where there is a
second pump (B3, 1.3 kl/h) to empty the pool. The output-flowing liquid of B3 is collected in
a reservoir, R, located under P2. The reservoir supplies flow to the pool P1 by another pump
(B1, 3.8 kl/h). In fact, the plant is a closed system, where the liquid that arrives to the reservoir
from the pool P2 returns to the pool P1 via the pump. Lengthening the water path, tank plant
is easily converted into a canal plant. The water path can vary placing methacrylate plates
along the structure, (Figure 3). Here, the plates are separated 2 cm away creating a zigzag
path. Then, pools are enlarged from 2 m to 12 m long, 15 cm wide, and the maximum allowed
level is 25 cm. To know pools’ levels after the zigzag path, that is, the pool level at the end
of their path, two ultrasonic level sensors, y1 and y2, with a precision of 1 mm are used. The
sensors are attached to the canal metallic structure.

2.2. Preliminary Definitions in Fractional Modeling

The mathematical definition of fractional derivatives has been the subject of several different
approaches [17]. In this paper the following definition of fractional discrete derivative,

Δαyk =
k∑

j=0

wα
j yk−j 0 < α < 1, (2.1)

where

wα
j = (−1)j

(
α

j

)
(2.2)

will be used; α is the order of the fractional difference.
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Figure 1: Frontal view of the experimental prototype canal.
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Figure 2: Full structure of the plant.

The fractional order models are clasificated in commensurable and non-
commensurable order models. In this work, commensurable models are used.

Definition 2.1. A system is of commensurable order if it can be represented by a differential equation
where all the orders of derivation are integers multiple of an order basis, α, that is, systems where the
next condition is fulfilled:

anΔγny(t) + an−1Δγn−1y(t) + · · · + a0Δγ0y(t) = bmΔβmu(t) + bm−1Δβm−1u(t) + · · · + b0Δβ0u(t)

γk, βk = kα, α ∈ R
+.

(2.3)

So, the differential equation (2.3) can be written as follow:

n∑

k=0

akΔkαy(t) =
m∑

k=0

bkΔkαu(t). (2.4)
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Figure 3: Top side view of the tank, converted into a pool.

Definition 2.2. A system is of rational order, if it is a commensurable order system and besides fulfills
the condition ofα = 1/q for all q ∈ N | q /= 0.

From the previous definition and based on the property of “q”, an integer order system
is a particular case of rational order systems, whereq = 1 .

Consider the fractional discrete linear system, described by the state-space equations

Δαxk+1 = Axk + Buk; k ∈ Z
+,

yk = Cxk,
(2.5)

where xk ∈ R
n, uk ∈ R

m, yk ∈ R
p are the state, input, and output vectors and A ∈ R

n×n,
B ∈ R

n×m, C ∈ R
p×n. Using Definition 2.1, equations (2.5) can be written in the form

xk+1 +
k+1∑

j=1

wα
j xk−j+1 = Axk + Buk,yk = Cxk. (2.6)

2.3. LPV Fractional Identification Methodology

LPV identification method used in this article is a two-step procedure where (1) nonfractional
models are identified at several different equilibrium (operating condition) by classical
methods [9]; (2) a global multimodel is obtained by interpolating among the local
nonfractional models [14]. In this paper, a nonlinear leastsquares estimation method, based
on Levenberg-Marquardt [18, 19], is used to obtain the parameters of the rational identified
model in each operation point [20]. Local identification method forces rational local models
to fit the system separately and locally. This local identification procedure (in each operation
point) is standard and it can be itemized as follows: (1) design of the experiment and
collection of input-output data in each operation mode from the process to be identified; (2)
model structure selection in each operation point; (3) parameter estimation in each operation
point; (4) model validation in each operation point.

As the LPV model is interpolated between local rational models, varying parameters
of LPV model can be locally interpreted as parameters of the interpolated rational model.
Varying parameters in each operation point are interpolated in a polynomical way. This
polynomial depends on a scheduling parameter vector θ ∈ R

2
+, in this case θ = [u1, u2], that

corresponds to the integral of pump activation in each canal that changes in their operating
ranges. These values correspond to the upstream levels and are proportional to the upstream
flow of each pool. Once the LPV model is obtained, it is validated globally.
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Table 1: Operation points for pool P1.

Pool P1 Operation range [cm]; u2 = 0.5
OP1P1

u1 ∈ [0.0000, 1.5398]
OP2P1

u1 ∈ [1.5398, 3.1241]
OP3P1

u1 ∈ [3.1241, 4.6063]
OP4P1

u1 ∈ [4.6063, 6.3979]
OP5P1

u1 ∈ [6.3979, 8.3671]

Table 2: Operation points for pool P2.

Pool P2 Operation range [cm]; u1 = 0.5
OP1P2

u2 ∈ [0.0000, 0.9396]
OP2P2

u2 ∈ [0.9396, 1.8679]
OP3P2

u2 ∈ [1.8679, 2.8067]
OP4P2

u2 ∈ [2.8067, 3.7535]
OP5P2

u2 ∈ [3.7535, 4.6989]
OP6P2

u2 ∈ [4.6989, 5.6261]
OP7P2

u2 ∈ [5.6261, 6.5445]
OP8P2

u2 ∈ [6.5445, 7.4333]

In this paper, this system identification procedure is used to obtain a reliable dynamic
model of a main irrigation canal when the design of a model-based control system is
requested.

3. Experiment Design and Model Structure Selection

For identification of the pilot canal system different experiments have been carried out. These
canal pools are operated by means of a downstream water level regulation method. Available
measurements are downstream water levels (y1 for pool P1 and y2 for pool P2) and pump
voltage (uP1 for pump B1 and uP2 for pump B2). Then, for the identification of the control
model canal, as output variables, downstream levels are used, and as input variables integral
pump voltage variables (u1 and u2) are used. According to literature [5, 21, 22], this model
obtained after identification corresponds to a first-order model with delay with an integrator
or to a second order model with delay with an integrator, depending on the geometry of the
pool.

The appearance of integrator pole, or in other words, the fact that a reach has
similarities with a swimming pool or a tank, is not a real surprise and is, in some case,
expected. As mentioned before, this pole appears clearly in the uniform case regime and has
been successfully included in several simplified models proposed in other works (Integrator
Delay (ID) model [23], Integrator Delay Zero (IDZ) model [4], etc.). It is known that the
identification of a system with integrators is very erratic about the exact localization of its
poles. For this reason, the identified model relates the downstream levels (model outputs)
and the integral of pump voltages (model inputs: u1 for pool P1 and u2 for pool P2).
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3.1. Experiment Design

To obtain data containing the maximum information about the canal pools dynamic
behaviour, pools must be excited with a persistent input signal that contains the largest
number of frequencies representative of the system dynamics [9]. Then a pseudorandom
binary sequence (PRBS) is a kind of signal that fulfills these conditions. Since these signals
are suitable to identify linear systems and our system is nonlinear and timevarying, a PBRS
is used in each operating point within the working range of the system. These signals are
integrated (because the system has implicitly an integrator [5]) generating the input for the
identification process, u1 and u2.

The sampling time T was selected to be 0.5 second because it is enough dueto the
system dynamics. Pools act in different operating points. As the pool dynamics are different
(due to their input pumps) five points have been selected for pool P1 (OPkP1

, k = 1, . . . , 5) and
eight points for pool P2 (OPkP2

, k = 1, . . . , 8); see Tables 1 and 2.

3.2. Model Structure Selection

The model structure selection constitutes one of the most important and difficult decisions
in system identification procedure because model complexity influences the accuracy of
the description of the real process and the control schemes. Saint-Venant equations [24]
represent the dynamics of an open flow canal in a precise and complete manner. This pair of
partialdifferential equations constitutes a nonlinear hyperbolic system, which has no analytic
solution for arbitrary geometry. However, such equations are not useful for designing a
controller using linear theory as already noticed by [4, 25]. In these references, a simplified
control-oriented model methodology is proposed that describes an n-pool canal system. In
this methodology each pool is modeled around a given operating point using the transfer
function matrices:

[
Y1(s)

Y2(s)

]
=

[
P11(s) P12(s)

P21(s) P22(s)

][
Q1(s)

Q2(s)

]
, (3.1)

where Y1(s) and Y2(s) are the upstream and downstream water levels of pools, respectively,
and Q1(s) and Q2(s) are the upstream and downstream flow levels of pools considered here.
P12 = 0 and P21 = 0 because, normally, control models do not take into account the strong
coupling between canals because SISO controllers and decouplers are used [26], and the
model structure for each pool:

Pij(s) =
1
s

k

Sijs2 +Mijs + 1
e−τij s, (3.2)

where i = j and i = 1, 2 are transfer functions relating downstream flows with upstream
levels. Additionally, there is a relationship between discharge flow and pump voltage. The
upstream flow of each pool can be related with its upstream level equivalent to the integral
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Figure 4: Downstream level for pool P1, y1 [cm], and pump input voltage integral, u1 [cm].
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Figure 5: Downstream level for pool P2, y2 [cm], and pump input voltage integral, u2 [cm].

of pump voltages, respectively in a linear way. The following additional relationship should
be considered [27]:

Qi(s) = αiUi(s). (3.3)

The second-order system behaviour can be clearly observed in Figures 4 and 5 when
the integral of pump voltage is used as input of the identification model. As it is studied
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in literature, in backwater part of each pool the dynamics are complicated: waves move up
and down and reflect against the boundaries. However, at low frequencies, the water level
“integrates” flow variations in the backwater part. In other words, the backwater can be
considered to behave as an integrator or reservoir for low frequencies, and for this reason
the integrator is included in the control model.

In order to identify the canal system, the continuous model is discretized by using
zero-order hold method. Furthermore we assume that control model is LPV (as it is explained
in Section 2.3). For each operating point in each pool (OPkP1

for pool P1 and OPkP2
for pool

P2, see Tables 1 and 2), the discretized model can be expressed as

Pd(z, θ) =
a3(θ)z + a4(θ)

z−2 + a1(θ)z−1 + a2(θ)
z−τ(θ)/T . (3.4)

Observing and analyzing the PRBS responses obtained at each operation point (see
Figures 4 and 5) in our prototype canal, the canal dynamics can be represented by a seconds
order equation with delay, as it is often used in the literature by Hayami model in linear
and integer control [1]. As canals are systems that vary according to the operation point,
an LPV Hayami model is more suitable [28]. Besides, as canals are nonlinear systems and
with distributed parameters, fractional control models are suitable because they yield a
more accurate behavior representation. It is desirable to hold the maximum degree of the
dynamical equation (second order). So, our models in each operation point are of n-rational
order with nα = 2. Then, as defined by (2.5), the proposed model structure for α = 0.5 and
n = 4 is

Δ0.5xk+1 = A0.5(θ)xk + B0.5(θ)uk,

yk = C0.5(θ)xk,
(3.5)

where xk ∈ R
4, uk ∈ R, yk ∈ R and

A0.5(θ) =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

−b4(θ) −b3(θ) −b2(θ) −b1(θ)

⎤
⎥⎥⎥⎥⎥⎦
, (3.6)

B0.5(θ) = [0 0 0 b4(θ)]
T and C0.5(θ) = [1 b7(θ) b6(θ) b5(θ)] .

For α = 0.25 and n = 8, the proposed model structure is

Δ0.25xk+1 = A0.25(θ)xk + B0.25(θ)uk,

yk = C0.25(θ)xk,
(3.7)
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Table 3: Model parameters obtained by identification in each operating point OPkP1
: pool P1

Parameters OP1P1
OP2P1

OP3P1
OP4P1

OP5P1

τ 17 10 8 6 5
a1 −1.9527 −1.9287 −1.9008 −1.8960 −1.8659
a2 0.9537 0.9309 0.9051 0.9011 0.8747
a3 0.0010 0.0022 0.0043 0.0051 0.0088
a4 0.0203 −0.0261 −0.0409 0.0063 −0.0028
b1 −0.1313 −0.1144 −0.0757 −0.0667 −0.0080
b2 0.0370 0.0333 0.0261 0.0226 0.0212
b3 0.0019 0.0052 0.0104 0.0139 0.0198
b4(×10−3) 0.0995 0.1224 0.1793 0.1969 0.3952
b5 633.48 606.00 553.53 544.37 229.55
b6 −345.72 −352.92 −335.57 −363.27 −179.48
b7 55.0820 74.408 82.686 95.255 62.955
c1 −2.1318 −1.7484 −2.1485 −2.2626 −2.0778
c2 2.0729 1.8516 2.1183 2.3379 2.0016
c3 −1.1719 −1.3840 −1.2185 −1.4044 −1.1296
c4 0.4176 0.7331 0.4440 0.5309 0.4104
c5 −0.0948 −0.2552 −0.1036 −0.1270 −0.0985
c6 0.0133 0.0560 0.0151 0.0185 0.0162
c7 −0.0010 −0.0071 −0.0013 −0.0015 −0.0021
c8(×10−3) 0.0464 0.6397 0.0990 0.1061 0.2949
c9 −1.9148 −1.5150 0.9473 0.9293 1.8894
c10 −2.0112 −1.5179 0.8899 0.8545 1.1611
c11 −1.3216 −0.8523 0.9887 0.9411 0.6570
c12 0.3424 0.5942 1.4846 1.4310 0.9577
c13 2.2736 2.1238 2.0835 2.0224 1.8793
c14 2.1646 1.7134 1.2674 1.1950 1.5309
c15 −3.1753 −2.8745 −2.6283 −2.6231 −2.6879

where xk ∈ R
8, uk ∈ R, yk ∈ R and

A0.25(θ) =

⎡
⎢⎢⎢⎢⎢⎣

0 1 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1

−c8(θ) −c7(θ) · · · −c1(θ)

⎤
⎥⎥⎥⎥⎥⎦

8×8

,

B0.25(θ) =
[
0 · · · 0 c8(θ)

]T
8×1,

C0.25(θ) =
[
1 c15(θ) · · · c9(θ)

]
1×8

(3.8)

a(θ) ∈ R
4, b(θ) ∈ R

7, c(θ) ∈ R
15, and τ(θ) are the coefficients to be determined in operation

points proposed in Tables 1 and 2. As it can be appreciated in (3.4), (3.5), and (3.7), both
canals have been considered uncoupled, a widely common practice in literature [26].
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Table 4: Model parameters obtained by identification in each operating point OPkP2
: pool P2

Parameters OP1P2
OP2P2

OP3P2
OP4P2

OP5P2

τ 11 10 9 8 7
a1 −1.9419 −1.9244 −1.9115 −1.8951 −1.8830
a2 0.9434 0.9270 0.9153 0.9005 0.8904
a3 0.0015 0.0026 0.0038 0.0055 0.0074
a4 −0.0188 −0.0190 0.0075 0.0147 0.0205
b1 −0.1515 −0.1931 −0.1361 −0.0535 −0.0244
b2 0.0377 0.0484 0.0356 0.0178 0.0100
b3 0.0032 0.0017 0.0069 0.0154 0.0199
b4(×10−3) 0.1347 0.3226 0.2270 0.1694 0.1214
b5 603.9000 117.29 307.20 726.79 989.96
b6 −299.6300 −72.221 −204.48 −496.96 −734.07
b7 51.8040 15.713 48.386 122.65 207.87
c1 −2.0539 −1.8107 −2.1661 −2.3208 −2.3517
c2 1.9327 1.6503 2.1372 2.4464 2.5364
c3 −1.0584 −0.9557 −1.2253 −1.4919 −1.5938
c4 0.3661 0.4019 0.4440 0.5688 0.6308
c5 −0.0808 −0.1250 −0.1032 −0.1363 −0.1579
c6 0.0111 0.0283 0.0151 0.0197 0.0241
c7 −0.0008 −0.0042 −0.0014 −0.0016 −0.0021
c8(×10−3) 0.0434 0.4807 0.1050 0.1112 0.1667
c9 2.1585 −1.5600 −0.6518 −0.1523 1.1259
c10 1.4147 −1.7388 −0.9192 −0.5187 0.0930
c11 0.8165 −1.0839 −0.4348 −0.2286 −0.4165
c12 1.0115 0.6744 1.1870 1.1744 0.5429
c13 1.7673 2.4956 2.8789 2.7318 2.4285
c14 0.9012 1.3293 1.2377 1.1205 1.6084
c15 −2.2559 −2.7775 −2.8406 −2.7515 −2.8369

Parameters of models (3.4)–(3.7) in each operation points and pools are independently
identified. To test the improvement of these rational order models (3.5) and (3.7) with respect
to the LTI model with delay (3.4) in each pool, a parametric estimation of each model has been
carried out. This estimation consists in the computation of parameter vectors a(θ) and τ(θ)
for integer model, b(θ) and c(θ) for non-integer models (α = 0.5 and α = 0.25, resp.).

The estimation method used in this work is the previously mentioned in Section 2.3
(see [18, 19]). This methodology guarantees robust convergence, even when the parameters
are initialized with values far from the optimal value.

In the case of integer model, there exists a delay which is estimated using correlation
analysis [9], providing an estimation of the canal impulse response with regard to the integral
of pump activation. This method computes intervals for the delay with a given confidence,
and only the nominal values are chosen.

Parameters of models obtained in both pools, P1 and P2, are gathered in Tables 3, 4,
and 5, respectively.

Parameters are estimated experimentally by applying the set of input PRBSs,
explained in Section 3.1, sweeping all the operating points in each pool (Figures 4 and 5).
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Each linear varying parameter depends on the gain scheduling variable θ = [u1, u2]. Hence,
it is assumed that the variation of parameters a(θ) and τ(θ) for integer model and b(θ) and
c(θ) for non-integer models according to the scheduling variable θ can be approximated by
a polynomial function of θ, where θ = u1 with u2 = 0.5 cm for pool P1, and θ = u2 with
u1 = 0.5 cm for pool P2.



Mathematical Problems in Engineering 13

Table 5: Model parameters obtained by identification in each operating Point OPkP2
: pool P2 (cont.)

Parameters OP6P2
OP7P2

OP8P2

τ 5 4 3
a1 −1.8826 −1.8804 −1.8697
a2 0.8907 0.8891 0.8791
a3 0.0081 0.0088 0.0094
a4 0.0309 0.0447 0.0720
b1 0.1722 0.2216 0.0919
b2 −0.0398 −0.0470 −0.0235
b3 0.0434 0.0509 0.0437
b4(×10−3) 0.3951 0.4421 0.2546
b5 722.21 566.36 757.35
b6 −515.24 −476.59 −674.80
b7 133.11 136.39 203.67
c1 −2.2296 −2.3769 −2.4777
c2 2.2776 2.6077 2.8311
c3 −1.3542 −1.6760 −1.8925
c4 0.5203 0.6903 0.8029
c5 −0.1375 −0.1888 −0.2194
c6 0.0282 0.0369 0.0390
c7 −0.0050 −0.0059 −0.0048
c8(×10−3) 0.7180 0.7576 0.4943
c9 5.6247 3.8395 13.4920
c10 2.3606 2.4912 −11.8110
c11 −2.0125 −1.2561 −1.2178
c12 −3.8188 −3.8690 7.8987
c13 0.1248 −0.6176 −8.5361
c14 5.8407 6.5926 8.5167
c15 −4.1413 −4.4149 −4.4914

Table 6: Values of p for each bi(θ): pool P1.

Coefficients p1 p2 p3

b1 0 0.01746 −0.1632
b2 0.0002788 −0.005239 0.04517
b3 0 0.002626 −0.002383
b4 6.889 × 10−6 −2.84 × 10−5 0.0001364

For instance, for non-integer model α = 0.5. Figures 6 and 7 graphically depict
polynomial approximations of b1(θ) − b4(θ) in both pools that correspond to the following
functions:

bi(θ) = p1θ
2 + p2θ + p3, (3.9)

where the values of pj (j = 1, . . . , 3) are shown in Tables 6 and 7.
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Table 7: Values of p for each bi(θ): pool P2.

Coefficients p1 p2 p3

b1 0 0.0606 −0.1632
b2 0 −0.01459 0.06633
b3 0 0.008233 −0.01152
b4 0 2.42 × 10−5 0.0001565

Table 8: Mean absolute error (MAE) in every operation point: pool P1.

Operation points ŷi(α = 1) ŷi(α = 0.5) ŷi(α = 0.25)
OP1P1

0.0294 0.0152 0.0148
OP2P1

0.0228 0.0145 0.0067
OP3P1

0.0164 0.0120 0.0163
OP4P1

0.0191 0.0168 0.0180
OP5P1

0.0187 0.0172 0.0179

Table 9: Mean absolute error (MAE) in every operation point: pool P2.

Operation points ŷi(α = 1) ŷi(α = 0.5) ŷi(α = 0.25)
OP1P2

0.0160 0.0093 0.0074
OP2P2

0.0133 0.0095 0.0073
OP3P2

0.0121 0.0098 0.0188
OP4P2

0.0133 0.0123 0.0106
OP5P2

0.0117 0.0114 0.0108
OP6P2

0.0129 0.0124 0.0093
OP7P2

0.0128 0.0125 0.0099
OP8P2

0.0101 0.0097 0.0077

4. Model Validation

Model validation is the core of the identification problem because it makes possible to
evaluate the model quality, that is, if the method fits the measured experimental data with
accuracy enough, if it is valid for its purpose, and if the model describes correctly the real
process [9]. Figures 8 and 10 show the performance in all the operation points for rational
models as well as for integer model in pools P1 and P2, respectively. Globally, in Figures 8
–11 it can be appreciated that rational models track better measured downstream level in
transitory case and also in permanent regime case than integer models.

In order to assess how suitable models respect validation data set, mean absolute error
(MAE) is quantified as

MAE =
1
n

n∑

i=1

∣∣ŷi(α) − yi
∣∣ =

1
n

n∑

i=1

|ei|. (4.1)

As its name suggests, the mean absolute error is an average of absolute errors ei = ŷi(α) − yi,
where ŷi(α) is the prediction value and yi the real value. The values of MAE for operating
points in each pool are shown in Tables 8 and 9, being ŷi(α = 1) the integer case (3.4) and
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Figure 8: Model output in pool P1.
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Figure 9: Model output in operation point OP3P1
in pool P1.

ŷi(α = 0.5) and ŷi(α = 0.25) the rational models (3.5) and (3.7), respectively. As it can
be observed, most of errors in the integer case are higher than errors in the rational case,
indicating that rational models give an improvement in the accuracy in each control model.

However, the lower the value of α is, the higher is the number of coefficients to be
determined (see Tables 3, 4, and 5).
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Figure 10: Model output in pool P2.
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Figure 11: Model output in operation point OP7P2
in pool P2.

5. Conclusions

In this article, an LPV rational order model-based control-oriented system identification
procedure for irrigation canals has been developed. This identification procedure has been
applied in an experimental prototype canal. In this case, rational local models for an irrigation
pool in different operation points have been obtained and interpolated to reach the complete
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model: the LPV rational model. Resulting LPV rational order control model normally
describes the plant with a lower error than the corresponding LPV integer order control
model. The lower the α value (degree of the rational order models) is, the lower the error
is. Nevertheless, there exists a relevant trade-off between α values and model complexity for
control purposes, because the lower the α values are, the higher is the number of coefficients
to be computed. This amount of data increases controller computational complexity but on
the other hand controller design techniques become simpler.
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