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Rolling-element bearings are simple machine elements of great utility used both in simple
commercial devices as in complex engineering mechanisms. Because of being a very popular
machine element, there is a lot of literature on the subject. With regard to the behavior of internal
loading distribution, elastic deformations at point or line contacts, and geometric parameters
under loading, although there are many works describing the parameters variation models, few
works show such variations in practice, even under simple static loadings. In an attempt to cover
this gap some studies are being developed in parallel. Particularly in this work, a new, iterative
computational procedure is introduced which calculates internal normal ball loads in statically
loaded single-row, angular-contact ball bearings, subjected to a known thrust load which is applied
to a variable distance (lever arm or eccentricity) from the geometric bearing center line. Numerical
examples results for a 218 angular-contact ball bearing have been compared with those from the
literature. Fifty figures are presented showing geometrical features and the following parameters
variations as functions of the thrust load and eccentricity: contact angle, contact ellipse parameters,
normal ball loads, distances between groove curvature centers, normal and axial deflections, and
loading zones.

Copyright q 2009 Mário César Ricci. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Ball and roller bearings, generically called rolling bearings, are commonly used machine
elements. They are employed to permit rotary motions of, or about, shafts in simple
commercial devices such as bicycles, roller skates, and electric motors. They are also used
in complex engineering mechanisms such as aircraft gas turbines, rolling mils, dental drills,
gyroscopes, and power transmissions.

The standardized forms of ball or roller bearings permit rotary motion between two
machine elements and always include a complement of ball or rollers that maintain the
shaft and a usually stationary supporting structure, frequently called a housing, in a radially
or axially spaced-apart relationship. Usually, a bearing may be obtained as a unit, which
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Figure 1: An angular-contact ball bearing (courtesy of SKF Industries).

(a) Small angle (b) Large angle

Figure 2: Angular-contact ball bearings.

includes two steel rings; each of which has a hardened raceway on which hardened balls or
rollers roll. The balls or rollers, also called rolling elements, are usually held in an angularly
spaced relationship by a cage, also called a separator or retainer.

There are many different kinds of rolling bearings. This work is concerned with single-
row angular-contact ball bearings (Figure 1) that are designed to support combined radial and
thrust loads or heavy thrust loads depending on the contact angle magnitude. The bearings
having large contact angle can support heavier thrust loads. Figure 2 shows bearings having
small and large contact angles. The bearings generally have groove curvature radii in the
range of 52%–53% of the ball diameter. The contact angle does not usually exceed 40o.

This work is devoted to the study of the internal loading distribution in statically
loaded ball bearings. Several researchers have studied the subject as, for example, Stribeck
[1], Sjoväll [2], Jones [3], and Rumbarger [4], to cite a few. The methods developed by
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them to calculate distribution of load among the balls and rollers of rolling bearings can be
used in most bearing applications because rotational speeds are usually slow to moderate.
Under these speed conditions, the effects of rolling-element centrifugal forces and gyroscopic
moments are negligible. At high speeds of rotation these body forces become significant,
tending to alter contact angles and clearance. Thus, they can affect the static load distribution
to a great extension.

Harris [5] described methods for internal loading distribution in statically loaded
bearings addressing pure radial, pure thrust (centric and eccentric loads), combined radial
and thrust load, which uses radial and thrust integrals introduced by Sjoväll [2], and for ball
bearings under combined radial, thrust, and moment load, initially due to Jones [3].

The method described by Harris for eccentric thrust load, initially due to Rumbarger
[4], is an approximate, direct method, based in a single-row, 90o thrust bearing and in thrust
and moment integrals whose values are obtained from tables and graphics, as functions of
eccentricity and pitch diameter. The maximum ball load is given directly and no computer
is necessary. Although it is not entirely appropriate, the method was used by Harris to find
approximations for the maximum ball load magnitude and for the extension of the loading
zone in the 218 angular-contact ball bearing.

We can see that there are many works describing the parameters variation models
under static loads but few show such variations in practice, even under simple static loadings.
The author believes that the lack of practical examples in the literature is mainly due to the
inherent difficulties of the numerical procedures that, in general, deal with the resolution of
several nonlinear algebraic equations that must be solved simultaneously.

In an attempt to cover this gap studies are being developed in parallel [6–14].
Particularly in this work is described a new, precise method for internal load distribution
computation in statically loaded, single-row, angular-contact ball bearings subjected to a
known external thrust load which is applied to a variable distance (lever arm or eccentricity)
from the geometric bearing center line. It must be solved iteratively using a digital computer
and can be thought as a particular case of the Jones method, with null external radial
load and external moment load given by the product of the thrust load by the eccentricity.
Unlike Rumbarger’s method, it is adequate to angular-contact bearings, and theoretically
and numerically more precise. The novelty of the method is in the choice of the set of the
nonlinear equations, which must be solved simultaneously. The author did not find in the
literature the resolution of this problem using the same set of equations.

The difference between the method described here and the method described by
Harris for eccentric thrust load mainly comes from the fact that Rumbarger’s method, for
sake of simplicity, makes use of the pitch radius, de/2, as lever arm, instead of the inner
contact radius, dcj/2, in the r.h.s. of the moment equation—see (4.19) for comparison— and
secondarily by the fact that it uses the pitch radius instead of the locus of the centers of the
inner ring raceway groove curvature radii, Ri, in the computations of the load distribution
factor, ε, in (4.10) and of the extension of load zone, ψl, in (4.11). These approximations are
guarantee of the straightforwardness but obviously they introduce errors in the normal ball
loads determination. However, at first glance appears that the method for thrust bearing
is more attractive than the method of this paper because it supplies results more directly
whereas no computer is necessary. But, despite the simplicity of the former, comparative
analyses between the results show significant differences in the magnitudes of the maximum
ball load and extension of the loading zone.
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Figure 3: Radial cross-section of a single-row ball bearing.
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Figure 4: Cross-section of a ball and an outer race showing race conformity.

2. Geometry of Ball Bearings

In this section, the principal geometrical relationships for an unloaded ball bearing are
summarized. The radial cross section of a single-row ball bearing shown in Figure 3 depicts
the diametral clearance and various diameters. The pitch diameter, de, is the mean of the inner-
and outer-race diameters di and do, respectively, and is given by

de =
1
2
(di + do). (2.1)

The diametral clearance, Pd, can be written as

Pd = do − di − 2D. (2.2)

Race conformity is a measure of the geometrical conformity of the race and the ball in a plane
passing through the bearing axis (also named center line or rotation axis), which is a line
passing through the center of the bearing perpendicular to its plane and transverse to the
race. Figure 4 depicts a cross section of a ball bearing showing race conformity expressed as

f =
r

D
. (2.3)
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Figure 5: Cross-section of a radial ball bearing showing ball-race contact due to axial shift of inner and
outer rings.

Radial bearings have some axial play since they are generally designed to have a diametral
clearance, as shown in Figures 5(a) and 5(b), that shows a radial bearing with contact due to
the axial shift of the inner and outer rings when no measurable force is applied. The radial
distances between the curvature centers of the two races are the same in Figures 5(a) and
5(b). Denoting quantities which referred to the inner and outer races by subscripts i and o,
respectively, this radial distance value can be expressed as A − Pd/2, where A = ro + ri −D
is the curvature centers distance in the shifted position given by Figure 5(b). Using (2.3) we
can write A as

A = BD, (2.4)

where B = fo + fi − 1 is known as the total conformity ratio and is a measure of the combined
conformity of both the outer and inner races to the ball.

The contact angle, β, is defined as the angle made by a line, which passes through
the curvature centers of both the outer and inner raceways and that lies in a plane passing
through the bearing rotation axis, with a plane perpendicular to the bearing axis of rotation.
The free-contact angle, βf , (Figure 5(b)) is the contact angle when the line also passes through
the points of contact of the ball and both raceways and no measurable force is applied. From
Figure 5(b), the expression for the free-contact angle can be written as

cos βf =
A − Pd/2

A
. (2.5)

From (2.5), the diametral clearance, Pd, can be written as

Pd = 2A
(
1 − cos βf

)
. (2.6)
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Figure 6: Cross-section of a ball bearing.

Free endplay, Pe, is the maximum axial movement of the inner race with respect to the outer
when both races are coaxially centered and no measurable force is applied. Free endplay
depends on total curvature and contact angle, as shown in Figure 5(b), and can be written as

Pe = 2A sin βf . (2.7)

Considering the geometry of two contacting solids (ellipsoids) in a ball bearing, we can arrive
at the two quantities of some importance in the analysis of contact stresses and deformations.
The curvature sum, 1/R, and curvature difference, Γ, are defined as

1
R

=
1
Rx

+
1
Ry

,

Γ = R

(
1
Rx
− 1
Ry

)

,

(2.8)

where

1
Rx

=
1
rax

+
1
rbx

,

1
Ry

=
1
ray

+
1
rby

,

(2.9)

with rax, rbx, ray, and rby being the radii of curvature for the ball-race contact.
A cross section of a ball bearing operating at a contact angle β is shown in Figure 6.

Equivalent radii of curvature for both inner- and outer-race contacts in, and normal to, the
direction of rolling can be calculated from this figure. Considering x the direction of the
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motion and y the transverse direction, the radii of curvature for the ball-inner-race contact
are

rax = ray =
D

2
,

rbx =
de −D cos β

2 cos β
,

rby = −fiD = −ri.

(2.10)

The radii of curvature for the ball-outer-race contact are

rax = ray =
D

2
,

rbx = −
de +D cos β

2 cos β
,

rby = −foD = −ro.

(2.11)

Let

γ =
D cos β
de

. (2.12)

Then

rbx =
D

2
1 − γ
γ

,

1
R

∣∣∣∣
i

=
1
rax

+
1
rbx

+
1
ray

+
1
rby

=
1
D

(

4 − 1
fi

+
2γ

(
1 − γ

)

)

,

Γi = R

(
1
rax

+
1
rbx
− 1
ray
− 1
rby

)

=
1/fi + 2γ/

(
1 − γ

)

4 − 1/fi + 2γ/
(
1 − γ

) ,

(2.13)

for the ball-inner-race contact, and

rbx = −D
2

1 + γ
γ

,

1
R

∣∣∣∣
o

=
1
rax

+
1
rbx

+
1
ray

+
1
rby

=
1
D

(
4 − 1

fo
−

2γ
1 + γ

)
,

Γo = R

(
1
rax

+
1
rbx
− 1
ray
− 1
rby

)

=
1/fo − 2γ/

(
1 + γ

)

4 − 1/fo − 2γ/
(
1 + γ

) ,

(2.14)

for the ball-outer-race contact.
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3. Contact Stress and Deformations

When two elastic solids are brought together under a load, a contact area develops; the shape
and size of which depend on the applied load, the elastic properties of the materials, and
the curvatures of the surfaces. For two ellipsoids in contact the shape of the contact area is
elliptical, with a being the semimajor axis in the y direction (transverse direction) and b being
the semiminor axis in the x direction (direction of motion).

The elliptical eccentricity parameter, k, is defined as

k =
a

b
. (3.1)

From Harris [5], k can be written in terms of the curvature difference, Γ, and the elliptical
integrals of the first and second kinds K and E, as

J(k) =

√
2K − E(1 + Γ)

E(1 − Γ) , (3.2)

where

K =
∫π/2

0

[
1 −

(
1 − 1

k2

)
sin2ϕ

]−1/2

dϕ,

E =
∫π/2

0

[
1 −

(
1 − 1

k2

)
sin2ϕ

]1/2

dϕ.

(3.3)

A one-point iteration method which has been used successfully in the past [15] is used, where

kn+1 = J(kn). (3.4)

When the ellipticity parameter, k, the elliptic integrals of the first and second kinds, K and E,
respectively, the normal applied load, Q, Poisson’s ratio, ν, and the modulus of elasticity, E,
of the contacting solids, are known, we can write the semimajor and semiminor axes of the
contact ellipse and the maximum deformation at the center of the contact, from the analysis
of Hertz [16], as

a=

(
6k2EQR
πE′

)1/3

,

b=
(

6EQR
πkE′

)1/3

,

(3.5)

δ = K

[
9

2ER

(
Q

πkE′

)2
]1/3

, (3.6)
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where

E′ =
2

(
1 − υ2

a

)
/Ea +

(
1 − υ2

b

)
/Eb

. (3.7)

4. Static Load Distribution under Eccentric Thrust Load

Methods to calculate distribution of load among the balls and rollers of rolling bearings
statically loaded can be found in various papers [5, 17]. The methods have been limited to,
at most, three degrees of freedom in loading and demand the solution of a simultaneous
nonlinear system of algebraic equations for higher degrees of freedom. Solution of such
equations generally necessitates the use of a digital computer. In certain cases, however—for
example, applications with pure radial, pure thrust, or radial and thrust loading with nominal
clearance—the simplified methods will probably provide sufficiently accurate calculational
results.

Having defined a simple analytical expression for the deformation in terms of load in
the previous section, it is possible to consider how the bearing load is distributed among the
rolling elements. Most rolling-element bearing applications involve steady-state rotation of
either the inner or outer race or both; however, the speeds of rotation are usually not so great
as to cause ball or roller centrifugal forces or gyroscopic moments of significant magnitudes.
In analyzing the loading distribution on the rolling elements, it is usually satisfactory to
ignore these effects in most applications. In this section the load-deflection relationships for
ball bearings are given, along with a specific load distribution consisting of an eccentric thrust
load of statically loaded rolling elements.

4.1. Load-Deflection Relationships for Ball Bearings

From (3.6) it can be seen that for a given ball-raceway contact (point loading)

Q = Kδ3/2, (4.1)

where

K = πkE′
√

2ER
9K3

. (4.2)

The total normal approach between two raceways under load separated by a rolling element
is the sum of the approaches between the rolling element and each raceway. Hence

δn = δi + δo. (4.3)
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Figure 7: Ball angular positions in the radial plane that is perpendicular to the bearing’s axis of rotation;
Δψ = 2π/Z, ψj = 2π/Z(j − 1).

Therefore,

Kn =

[
1

1/Ki
2/3 + 1/Ko

2/3

]3/2

, (4.4)

Q = Knδ
3/2
n . (4.5)

4.2. Ball Bearings under Eccentric Thrust Load

Let a ball bearing with a number of balls, Z, symmetrically distributed about a pitch
circle according to Figure 7, be subjected to an eccentric thrust load. Then, a relative axial
displacement, δa, and a relative angular displacement, θ, between the inner and outer ring
raceways may be expected. Let ψ = 0 be the angular position of the maximum loaded ball.

Figure 8 shows the initial and final curvature centers positions at angular position
ψ, before and after loading, whereas the centers of curvature of the raceway grooves are
fixed with respect to the corresponding raceway. If δa and θ are known, then the total axial
displacement, δt, at angular position ψ, is given by

δt
(
ψ
)
= δa + Riθ cosψ, (4.6)

where

Ri =
de
2

+
(
fi − 0.5

)
D cos βf (4.7)

expresses the locus of the centers of the inner ring raceway groove curvature radii.
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Figure 8: Initial and final curvature centers positions at angular position ψ, with and without applied load.

Also,

δmax ≡ δt(0) = δa + Riθ. (4.8)

From (4.6) and (4.8), one may develop the following relationship:

δt = δmax

[
1 − 1

2ε
(
1 − cosψ

)
]

(4.9)

in which

ε =
1
2

(
1 +

δa
Riθ

)
. (4.10)

The extension of the loading zone is defined by

ψl = cos−1
(−δa
Riθ

)
. (4.11)

From Figure 8,

β
(
ψ
)
= cos−1

(
A − Pd/2
A + δn

)
, (4.12)

δt
(
ψ
)
= (A + δn) sin β −A sin βf . (4.13)

From (2.5) and (4.12), the total normal approach between two raceways at angular
position ψ, after the thrust load has been applied, can be written as

δn
(
ψ
)
= A

(
cos βf
cos β

− 1

)

. (4.14)
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From Figure 8 and (4.14) it can be determined that s, the distance between the centers
of the curvature of the inner and outer ring raceway grooves at any rolling-element position
ψ, is given by

s
(
ψ
)
= A + δn = A

cos βf
cos β

. (4.15)

From (4.6), (4.13), and (4.14), yields, for ψ = ψj,

δa + Riθ cosψj −A
sin

(
βj − βf

)

cos βj
= 0, j = 1, . . . , Z. (4.16)

From (4.5), and (4.14) one yields, for ψ = ψj,

Qj = KnjA
3/2

(
cos βf
cos βj

− 1

)3/2

, j = 1, . . . , Z. (4.17)

If the external thrust load, Fa, is applied at a point distant e from the bearing’s axis of
rotation, then for static equilibrium to exist

Fa =
Z∑

j=1

Qj sin βj , (4.18)

M = eFa =
1
2

Z∑

j=1

dcjQj sin βj cosψj, (4.19)

where dcj ≡ de −D cos βj .
Substitution of (4.17) into (4.18) yields

Fa −A3/2
Z∑

j=1

Knj sin βj

(
cos βf
cos βj

− 1

)3/2

= 0. (4.20)

Similarly,

eFa −
A3/2

2

Z∑

j=1

Knjdcj cosψj sin βj

(
cos βf
cos βj

− 1

)3/2

= 0. (4.21)

Equations (4.16), (4.20), and (4.21) are Z + 2 simultaneous nonlinear equations with
unknowns δa, θ, and βj , j = 1, . . . , Z. Since Knj and dcj are functions of final contact angle, βj ,
the equations must be solved iteratively to yield an exact solution for δa, θ, and βj .
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5. Numerical Results

A numerical method (the Newton-Rhapson method) was chosen to solve the simultaneous
nonlinear equations (4.16), (4.20), and (4.21). Choosing the rolling bearing, input must be
given the geometric parameters di, do, D, Z, ri, and ro, in accordance with Figures 3 and 5,
and the elastic properties Ea, Eb, νa, and νb. Next, the following parameters must be obtained:
fi, fo, B, A, ψj(j = 1, . . . , Z), E′, de, Pd, βf ,and Ri.

The interest here is to observe the behavior of an angular-contact ball bearing under
a known thrust load which is to be applied statically to a variable distance (lever arm or
eccentricity), e, from the geometric bearing center line. Then, given a thrust load and the
initial estimates for δa, θ, and βj , j = 1, . . . , Z, for each distance e, varying from zero up to
a given maximum eccentricity, the values 1/R|i, 1/R|o, Γi, Γo, ki, ko, Ki, Ko, Ei, Eo, Ki, Ko,
and Kn are calculated for each ball, according to previous sections, and new values for δa, θ,
and βj are obtained. The new βj values are compared with old ones, and if the difference is
greater than a minimal error, then new values for 1/R|i, 1/R|o, Γi, Γo, ki, ko, Ki, Ko, Ei, Eo, Ki,
Ko, and Kn are calculated for each ball, and again new values for δa, θ, and βj are obtained.
If the difference is lesser than the error then a new value for e is taken. If e is the last valid
value, then a new thrust load value is acquired and the procedure is repeated up to the last
valid thrust load value, when the program ends.

To show an application of the theory developed in this work, a numerical example
is presented here. It was chosen the 218 angular-contact ball bearing that was also used by
Harris[5]. Thus, the results generated here can be compared to a certain degree with Harris
results. The input data for this rolling bearing were the following:

inner raceway diameter: di = 0.10279 m,
outer raceway diameter: do = 0.14773 m,
ball diameter: D = 0.02223 m,
ball number: Z = 16,
inner groove radius: ri = 0.01163 m,
outer groove radius: ro = 0.01163 m,
modulus of elasticity for both balls and races: E = 2.075 × 1011 N/m2,
poisson’s ratio for both balls and races: υ = 0.3.

The remaining parameters have been calculated yielding:

inner race conformity: fi = 0.523166891587944,
outer race conformity: fo = 0.523166891587944,
total conformity ratio: B = 0.046333783175888,
initial curvature centers distance: A=0.00103 m,
effective elastic modulus: E′ = 228021978021.978 N/m2,
angular spacing between rolling elements: Δψ = 22.5◦,
angular position of rolling elements: ψj = 22.5◦(j − 1), j = 1, . . . , 16,
bearing pitch diameter: de = 0.12526 m,
diametral clearance: Pd = 0.00048 m,
free-contact angle: βf = 39.915616407992260◦,
radius of locus of inner raceway groove curvature centers: Ri = 0.063025 m.
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Figure 9: Relative angular misalignment, θ, for 17,800 N thrust load, as a function of the Moment, M.

For each thrust load value, the initial estimates for δa, θ, and βj were the following:

axial deflection: δa = 10−5 m,
misalignment angle: θ = 10−2 rd,
contact angle: βj = 1.1βf , j = 1, . . . , 16.

5.1. Numerical Results for a 17,800 N Thrust Load

Since it is the qualitative behavior of solutions that is the interest, the results are presented
here in graphical form.

Initially, for comparative purposes with the Harris work, a specific thrust load Fa =
17, 800 N was chosen to be applied, and the following graphical results are presented as
functions of the moment, M = Fae:

(i) relative angular displacement, θ (Figure 9),

(ii) partial axial displacement, Riθ cosψ (Figure 10),

(iii) relative axial displacement, δa (Figure 11),

(iv) total relative axial deflection, δt (Figure 12),

(v) loading zone, ψl (Figure 13),

(vi) distance between loci of inner and outer raceway groove curvature centers, s
(Figure 14),

(vii) maximum elastic compression at the ball/inner-race contact, δi (Figure 15),

(viii) maximum elastic compression at the ball/outer-race contact, δo (Figure 16),

(ix) total normal ball deflection, δn (Figure 17),

(x) ball-raceway normal load, Q (Figure 18),

(xi) contact angle, β (Figure 19),

(xii) semimajor axis of the ball/inner-race contact area, ai (Figure 20),
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Figure 11: Axial deflection, δa, for 17,800 N thrust load, as a function of the Moment, M.

(xiii) semiminor axis of the ball/inner-race contact area, bi (Figure 21),

(xiv) semimajor axis of the ball/outer-race contact area, ao (Figure 22),

(xv) semiminor axis of the ball/outer-race contact area, bo (Figure 23),

(xvi) elliptical eccentricity parameter for ball/inner-race contact, ki (Figure 24),

(xvii) elliptical eccentricity parameter for ball/outer-race contact, ko (Figure 25).

The graphics above, with exception of Figures 9, 11, and 13, show one curve for each
ball angular position.

Figures 9 and 10 show the relative angular misalignment, θ, and the partial axial
deflection for each ball, Riθ cosψ, respectively. It is observed that there is an approximately
linear relationship between the misalignment angle, θ, and applied moment, M, for moment
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Figure 13: Loading zone, ψl, for 17,800 N thrust load, as a function of the Moment, M.

values ranging from zero up to about 600 Nm, which corresponds to a distance e of
approximately 33.7 mm. Keeping the load constant and increasing the lever arm, e, above
this value, it can be observed a deeper increase in the misalignment angle and, therefore, in
the resultant axial deflection, Riθ.

From Figure 9 it can be observed that for an applied moment of 900 Nm (e ∼= 50.6 mm)
the angular misalignment can be as high as a quarter of degree.

As already been waited for, from Figure 10 it can be observed that the partial axial
deflection is symmetrical with respect to the horizontal axis (null displacement) and that the
displacement is null for the balls located at ψ = ±90◦.

Figure 11 shows the axial deflection, δa. It is observed that the axial deflection, δa,
is approximately constant for moment values where the relationship between θ and M is
approximately linear, that is, from zero up to about 600 Nm (e ∼= 33.7 mm). For higher
moment values the axial deflection falls abruptly and becomes negative in the vicinity of
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as a function of the Moment, M.

800 Nm (e ∼= 44.9 mm). The deeper increase in θ due to the increase in the lever arm forces
the decrease of δa to preserve the force and moment static balances.

Figure 12 shows the total axial deflection, δt. It can be observed that the total axial
deflection, δt, is the axial deflection, δa, in two situations: under centric thrust load (e = 0),
where all balls have the same axial deflection (3.6011095400455×10−5 m), and under eccentric
thrust load for balls located at ψ = ±90◦. Increasing from zero the lever arm, an almost
linear increase (decrease) in the total axial deflection is observed for the balls whose angular
positions satisfy |ψ| < 90◦ (|ψ| > 90◦). This relation is approximately linear up to vicinity of
M = 600 Nm when the ball located at ψ = 180◦ occurs to be unloaded, that is, δt(ψ = 180◦) = 0
for M = 588.9687 Nm (e = 3.3088 × 10−2 m).

From Figure 12 it is observed that for eccentricity of about 50 mm the total axial
deflection of the most heavily loaded ball can reach one tenth of millimeter.
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Figure 17: Total ball deflection, δn, for 17,800 N thrust load, as a function of the Moment, M.

The Figure 13 shows the loading zone, ψl. The increase of the moment above 587.4 Nm
(or lever arm above 3.3 × 10−2 m) causes the decrease of the loading zone from initial value
ψl = ±180◦, with the successive unloading of the balls pairs located at ψ = ±157.5◦ (M =
609.448 Nm), ψ = ±135◦ (M = 661.1407 Nm), ψ = ±112.5◦ (M = 729.9584 Nm), ψ = ±90◦

(M = 803.9741 Nm), and ψ = ±67.5◦ (M = 873.7125 Nm), respectively. Going ahead cause the
unloading of the balls pair located at ψ=±45o. However, it is not advisable to go beyond M =
900 Nm, once the radial displacements between curvature centers start to acquire micrometer
order values and they cannot more be disregarded.

Figure 13 shows a substantial difference between results found in this work and those
found by Harris. While Harris found a loading zone of 92.86o (p. 252) for an eccentricity of
50.8 mm, this work found a loading zone of 53.66o. Considering the last result as reference,
this represents an error of +73% in the loading angle, meaning that Harris calculation has
underestimated the effect of the moment M.
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Figure 14 shows the distance between loci of inner and outer raceway groove
curvature centers, s. It can be observed that the distance, s, under centric thrust load (e = 0),
is the same for all balls (1.053468971830 × 10−3 m). Increasing from zero the lever arm, an
almost linear increase (decrease) in the distance, s, is observed for the balls whose angular
positions satisfy |ψ| < 90◦ (|ψ| > 90◦). This relation is approximately linear up to vicinity of
M = 600 Nm when the ball located at ψ = 180◦ occurs to be unloaded, that is, s(ψ = 180◦) = A
for M = 588.9687 Nm (e = 3.3088 × 10−2 m).

The increase of the moment above 588.9687 Nm (or lever arm above 3.3088 × 10−2 m)
causes the decrease of the loading zone, as already explained, with the successive unloading
of the ball pairs. At the points where the unloading occurs it is observed that the distance s
falls below of the distance between centers of curvature, A, for the unloaded bearing.

Figures 15 and 16 show the maximum normal elastic compressions at the ball/inner-
race and ball/outer-race contacts, δi and δo, respectively. It can be observed that δi and δo,
under centric thrust load (e = 0), are the same for all balls (1.18852986717367 × 10−5 m for δi
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Figure 20: Semimajor axis of the ball/inner-race contact area, ai, for 17,800 N thrust load, as a function of
the Moment, M.
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Figure 21: Semiminor axis of the ball/inner-race contact area, bi, for 17,800 N thrust load, as a function of
the Moment, M.

and 1.15836731583185×10−5 m for δo) and that the deformation for the maximum loaded ball,
in both cases, can reach values as high as 36μm for moment about 900 Nm.

Figure 17 shows the total normal ball deflection, δn, that can be obtained by summing
the maximum normal elastic compressions on the inner and outer races, δi and δo, or by
subtracting A from s, once δn = s − A > 0 also. It can be observed that δn, under centric
thrust load (e = 0), is the same for all balls (2.3468971830055 × 10−5 m) and that the total
normal elastic deformation for the maximum loaded ball can reach values as high as 70μm
for moment about 900 Nm.

Figure 18 shows the normal ball load, Q. It can be observed that the normal ball
load, Q, under centric thrust load (e = 0), is the same for all balls (1, 681.663561507042 N).
Increasing from zero the lever arm, an almost linear increase (decrease) in the normal ball
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Figure 22: Semimajor axis of the ball/outer-race contact area, ao, for 17,800 N thrust load, as a function of
the Moment, M.
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Figure 23: Semiminor axis of the ball/outer-race contact area, bo, for 17,800 N thrust load, as a function of
the Moment, M.

load is observed for the balls whose angular positions satisfy |ψ| < 90◦ (|ψ| > 90◦). This
relation is approximately linear up to vicinity of M = 600 Nm when the ball located at ψ =
180◦ occurs to be unloaded, that is, Q(ψ = 180◦) = 0 for M = 589.18 Nm (e = 3.31 × 10−2 m).

Figure 18, as well as Figure 13, shows a substantial difference between results found
in this work and those found by Harris. While Harris found a 5, 878 N magnitude for the
maximum normal ball load (p. 252), for an applied load eccentricity of 50.8 mm, this work
found a 9, 445 N maximum normal ball load. This represents an error of −62.2% in the
normal load, meaning that the Harris calculation has underestimated the normal load for
the maximum loaded ball.

Figure 19 shows the contact angle, β. It can be observed that the contact angle, β, under
centric thrust load (e = 0), is the same for all balls (41.417986227161386o). Increasing from
zero the lever arm, an almost linear increase (decrease) in the contact angle is observed for
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Figure 24: Elliptical eccentricity parameter for ball/inner-race contact, ki, for 17,800 N thrust load, as a
function of the Moment, M.
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Figure 25: Elliptical eccentricity parameter for ball/outer-race contact, ko, for 17,800 N thrust load, as a
function of the Moment, M.

the balls whose angular positions satisfy |ψ| < 90◦ (|ψ| > 90◦). This relation is approximately
linear up to vicinity of M = 600 Nm when the ball located at ψ = 180◦ occurs to be unloaded,
that is, β(ψ = 180◦) = βf for M = 589.18 Nm (e = 33.1 mm).

Figure 19, as well as Figure 18 and Figure 13, shows a substantial difference between
results found in this work and to those found by Harris. While Harris has assumed a contact
angle magnitude of 41.6o for all balls (p. 252), under a 50.8 mm applied load eccentricity,
contact angles ranging from 44.31727851159821o to 16.16919216282055o were found in this
work while ψ were varied from ψ = 0◦ to ±180o, respectively. This represents errors between
−6.1% and +157.3% in the contact angles determination, meaning that the Harris calculation
has underestimated (strongly overestimated) the contact angles for balls located at angular
positions satisfying |ψ| < 45◦(|ψ| > 45◦).
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Figure 26: Partial axial displacement for the maximum loaded ball, Riθ, as a function of lever arm, e.

Figures 20 and 22 show the semimajor axes of the ball/inner-race and ball/outer-race
contact areas, ai and ao, respectively. It can be observed that ai and ao, under centric thrust
load (e = 0), are the same for all balls (2.069901480072 mm for ai and 2.025827993682 mm for
ao) and that the major axes for the maximum loaded ball, in both cases, can reach values as
high as 7.4 mm for moment about 900 Nm.

Figures 21 and 23 show the semiminor axes of the ball/inner-race and ball/outer-
race contact areas, bi and bo, respectively. It can be observed that bi and bo, under
centric thrust load (e = 0), are the same for all balls (0.254108993896064 mm for bi and
0.293013306181356 mm for bo) and that the major axes for the maximum loaded ball, in both
cases, can reach values as high as 0.9 mm for moment about 900 Nm.

Figures 24 and 25 show the elliptical eccentricity parameters for ball/inner-race and
ball/outer-race contact, ki and ko, respectively. It can be observed that ki and ko, under centric
thrust load (e = 0), are the same for all balls (8.1457 for ki and 6.9138 for ko). Increasing from
zero the lever arm, an almost linear increase (decrease) in the parameter ki is observed for
the balls whose angular positions satisfy |ψ| > 90◦(|ψ| < 90◦), and an almost linear increase
(decrease) in the parameter ko is observed for the balls whose angular positions satisfy |ψ| <
90◦(|ψ| > 90◦). These relations are approximately linear up to vicinity of M = 600 Nm when
the ball located at ψ = 180◦ occurs to be unloaded. It can be observed that ki(ψ = 180◦) ∼=
8.1631 and ko(ψ = 180◦) ∼= 6.9024 when M = 588.9687 Nm (e = 3.3088 × 10−2 m).

The increase of the moment above 588.9687 Nm (or lever arm above 3.3088 × 10−2 m),
causes the successive unloading of the ball pairs. At the points where the unloading occurs
the values of the parameters ki and ko remain roughly equal to those indicated in the
preceding paragraph for ψ = 180◦. So, it can be observed that the contact ellipse of the
inner race is slightly more eccentric than that of the contact ellipse of the outer race. For
M = 900 Nm, for example, while ki varies numerically from 8.11, for the most heavily loaded
ball, to 8.37, for the minimum loaded ball, ko varies from 6.83 to 6.37, respectively.

5.2. Numerical Results for Thrust Load Ranging from 0 up to 20,000 N

Graphics for various thrust loads also are shown. The following graphics present curves for
thrust loads ranging from 0 up to 20, 000 N as functions of lever arm, e:
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Figure 27: Relative axial displacement, δa, as a function of lever arm, e.
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Figure 28: Total relative axial deflection for the maximum loaded ball, δt(ψ = 0), as a function of lever
arm, e.

(i) partial axial displacement for the maximum loaded ball, Riθ (Figure 26),

(ii) relative axial displacement, δa (Figure 27),

(iii) total relative axial deflection for the maximum loaded ball, δt(ψ = 0) (Figure 28),

(iv) total relative axial deflection for the minimum loaded ball, δt(ψ = 180◦) (Figure 29),

(v) loading zone, ψl (Figure 30),

(vi) distance between loci of inner and outer raceway groove curvature centers for the
maximum loaded ball, s(ψ = 0) (Figure 31),

(vii) distance between loci of inner and outer raceway groove curvature centers for the
minimum loaded ball, s(ψ = 180◦) (Figure 32),

(viii) total normal ball deflection for the maximum loaded ball, δn(ψ = 0) (Figure 33),
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Figure 29: Total relative axial deflection for the minimum loaded ball, δt(ψ = 180◦), as a function of lever
arm, e.
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Figure 30: Loading zone, ψl, as a function of lever arm, e.

(ix) total normal ball deflection for the minimum loaded ball, δn(ψ = 180◦) (Figure 34),

(x) ball-raceway normal load for the maximum loaded ball, Q(ψ = 0) (Figure 35),

(xi) ball-raceway normal load for the minimum loaded ball, Q(ψ = 180◦) (Figure 36),

(xii) contact angle for the maximum loaded ball, β(ψ = 0) (Figure 37),

(xiii) contact angle for the minimum loaded ball, β(ψ = 180◦) (Figure 38),

(xiv) semimajor axis of the ball/inner-race contact area for the maximum loaded ball,
ai(ψ = 0) (Figure 39),

(xv) semiminor axis of the ball/inner-race contact area for the maximum loaded ball,
bi(ψ = 0) (Figure 40),

(xvi) semimajor axis of the ball/outer-race contact area for the maximum loaded ball,
ao(ψ = 0) (Figure 41),
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Figure 31: Distance between loci of inner and outer raceway groove curvature centers for the maximum
loaded ball, s(ψ = 0), as a function of lever arm, e.
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Figure 32: Distance between loci of inner and outer raceway groove curvature centers for the minimum
loaded ball, s(ψ = 180◦), as a function of lever arm, e.

(xvii) semiminor axis of the ball/outer-race contact area for the maximum loaded ball,
bo(ψ = 0) (Figure 42),

(xviii) semimajor axis of the ball/inner-race contact area for the minimum loaded ball,
ai(ψ = 180◦) (Figure 43),

(xix) semiminor axis of the ball/inner-race contact area for the minimum loaded ball,
bi(ψ = 180◦) (Figure 44),

(xx) semimajor axis of the ball/inner-race contact area for the minimum loaded ball,
ao(ψ = 180◦) (Figure 45),

(xxi) semiminor axis of the ball/inner-race contact area for the minimum loaded ball,
bo(ψ = 180◦) (Figure 46),
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Figure 33: Total normal ball deflection for the maximum loaded ball, δn(ψ = 0), as a function of lever arm, e.
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Figure 34: Total normal ball deflection for the minimum loaded ball, δn(ψ = 180◦), as a function of lever
arm, e.

(xxii) elliptical eccentricity parameter of the ball/inner-race contact area for the
maximum loaded ball, ki(ψ = 0) (Figure 47),

(xxiii) elliptical eccentricity parameter of the ball/outer-race contact area for the
maximum loaded ball, ko(ψ = 0) (Figure 48),

(xxiv) elliptical eccentricity parameter of the ball/inner-race contact area for the minimum
loaded ball, ki(ψ = 180◦) (Figure 49),

(xxv) elliptical eccentricity parameter of the ball/outer-race contact area for the minimum
loaded ball, ko(ψ = 180◦) (Figure 50).

Due to the size quite extensive of the paper comments about the figures will be omitted
from now on.
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Figure 35: Ball-raceway normal load for the maximum loaded ball, Q(ψ = 0), as a function of lever arm, e.
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Figure 36: Ball-raceway normal load for the minimum loaded ball, Q(ψ = 180◦), as a function of lever arm,
e.
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Figure 37: Contact angle for the maximum loaded ball, β(ψ = 0), as a function of lever arm, e.
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Figure 38: Contact angle for the minimum loaded ball, β(ψ = 180◦), as a function of lever arm, e.
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Figure 39: Semimajor axis of the ball/inner-race contact area for the maximum loaded ball, ai(ψ = 0), as a
function of lever arm, e.

6. Conclusions

The importance of this work lies in the fact that it uses a new procedure for gettinnng
numerically, accurately, and quickly the static load distribution of a single-row, angular-
contact ball bearings, subjected to a known thrust load which is applied to a variable
distance from the geometric bearing center line. Precise applications, as for example,
space applications, require a precise determination of the static loading. Models available
in literature are approximate and often are not compatible with the desired degree of
accuracy. This work can be extended to determine the loading on high-speed bearings where
centrifugal and gyroscopic forces are not discarded. The results of this work can be used in
the accurate determination of the friction torque of the ball bearings, under any operating
condition of temperature and speed.
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Figure 40: Semiminor axis of the ball/inner-race contact area for the maximum loaded ball, bi(ψ = 0), as a
function of lever arm, e.
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Figure 41: Semimajor axis of the ball/outer-race contact area for the maximum loaded ball, ao(ψ = 0), as a
function of lever arm, e.

Symbols

a: Semimajor axis of the projected contact, m
A: Distance between raceway groove curvature centers, m
b: Semiminor axis of the projected contact, m
B: fo + fi − 1, total curvature
d: Raceway diameter, m
da: Bearing outer diameter, m
db: Bearing inner diameter, m
dc: Contact diameter, m
de: Bearing pitch diameter, m
D: Ball diameter, m
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Figure 42: Semiminor axis of the ball/outer-race contact area for the maximum loaded ball, bo(ψ=0), as a
function of lever arm, e.
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Figure 43: Semimajor axis of the ball/inner-race contact area for the minimum loaded ball, ai(ψ = 180◦),
as a function of lever arm, e.

e: Eccentricity of loading, m
E: Modulus of elasticity, N/m2

E′: Effective elastic modulus, N/m2

E: Elliptic integral of second kind
f : Raceway groove radius ÷D
F: Applied load, N
k: a/b
K: Load-deflection factor, N/m3/2

K: Elliptic integral of first kind
M: eFa
Pd: Diametral clearance, m
Pe: Free endplay, m
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Figure 44: Semiminor axis of the ball/inner-race contact area for the minimum loaded ball, bi(ψ = 180◦),
as a function of lever arm, e.
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Figure 45: Semimajor axis of the ball/outer-race contact area for the minimum loaded ball, ao(ψ = 180◦),
as a function of lever arm, e.

Q: Ball-raceway normal load, N
r: Raceway groove curvature radius, solids curvature radius, m
s: Distance between loci of inner and outer raceway groove curvature centers, m
R: Curvature radius, radius of locus of raceway groove curvature centers, m
Z: Number of rolling elements
β: Contact angle, rad, o

βf : Free-contact angle, rad, o

γ : D cos β/de
Γ: Curvature difference
δ: Deflection or contact deformation, m
Δψ: Angular spacing between rolling elements, rad, o

ε: Load distribution factor
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Figure 46: Semiminor axis of the ball/outer-race contact area for the minimum loaded ball, bo(ψ = 180◦),
as a function of lever arm, e.
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Figure 47: Elliptical eccentricity parameter of the ball/inner-race contact area for the maximum loaded
ball, ki(ψ = 0), as a function of lever arm, e.

θ: Bearing misalignment angle, rad, o

υ: Poisson’s ratio
ϕ: Auxiliary angle
ψ: Azimuth angle, rad, ◦.

Subscripts:

a refers to solid a or axial direction.
b refers to solid b.
x, y refers to coordinate system.
i refers to inner raceway.
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Figure 48: Elliptical eccentricity parameter of the ball/outer-race contact area for the maximum loaded
ball, ko(ψ = 0), as a function of lever arm, e.
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Figure 49: Elliptical eccentricity parameter of the ball/inner-race contact area for the minimum loaded ball,
ki(ψ = 180◦), as a function of lever arm, e.

j refers to rolling-element position.
n refers to direction collinear with normal load, integer number.
o refers to outer raceway.
t refers to total axial deformation.
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Figure 50: Elliptical eccentricity parameter of the ball/outer-race contact area for the minimum loaded ball,
ko(ψ = 180◦), as a function of lever arm, e.
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