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1. Introduction

Modeling a real process is generally a complex and difficult task. Even if in numerous cases, a
linear model can capture the main dynamical characteristics of a process. In some situations,
it is necessary to take into account model uncertainties in order to design an efficient control
law.

There exists an extensive literature dealing with this problem which is in fact the main
problem in robust control design [1–8].

Among the numerous solutions allowing taking into account model uncertainties, a
way which has been frequently investigated in literature consists in adding to the linear part
of the model a nonlinear one which captures model uncertainties and frequently referred in
literature as nonlinear systems with separated nonlinearity.

Nonlinear systems with separated nonlinearity are a class of nonlinear systems
composed of a linear constant part to which another nonlinear function part is added. This
function depends on both time and state and satisfies a quadratic constraint [9–16]. This
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class of nonlinear system can be considered as a generalized model for linear systems with
parametric uncertainties where uncertainties can be norm bounded [2, 17] or polytopic
[9, 10, 18, 19].

Many papers have investigated robust stability, analysis, and synthesis using
essentially Lyapunov theory which has proved to be efficient in this context. Recent
proposed approaches [9–13] are based on convex optimization problems involving linear
matrix inequality (LMI) where the objective is to maximize the bounds on the nonlinearity
that systems can tolerate without unstabilities. In particular, sufficient conditions where
developed in the context of static state feedback and static or dynamic output feedback
controllers [9–13, 15].

Even if the static output feedback stabilization (SOF) problem is considered as NP-
hard [20] and still one of the most important open questions in the control theory, it
concentrates the efforts of many researchers. SOF gains, which stabilize the system, are not
easy to find due to the nonconvexity of the SOF formulation. In some papers the design of
SOF controllers for a class of discrete-time nonlinear systems is proposed [11, 15, 17]. In this
paper, we propose a new approach for robust static output feedback stabilization of a class
of discrete-time nonlinear systems using LMI techniques. In fact, our approach is based on
the introduction of a relaxation scheme to the SOF problem similar to [15, 21–23]. Our major
objective is to maximize the admissible bounds on the nonlinearity guaranteeing the stability
of system, with a prescribed degree μ. The main contribution is the possibility of decoupling
the Lyapunov matrix to the SOF gain leading to less restrictive conditions.

The problem of performance is also treated in the context of H∞ settings. A new H∞
norm characterization is proposed for this class of nonlinear discrete time systems in terms
of LMI formulation.

The paper is organized as follows. Section 2 presents robust stability condition for
the class of nonlinear discrete time systems. Then, we develop our main results for robust
stabilization by SOF. In Section 3, the problem of robust H∞ synthesis via SOF is presented.
Section 4 presents numerical examples for robust stabilization and H∞ synthesis to illustrate
the potential of the proposed conditions.

Notation 1. For conciseness the following notations are used: sym(A) = A +AT,diag(A,B) =

[A 0

0 B
], [A B

• C
] = [

A B

BT C
], and P = PT > 0 is a symmetric and positive definite.

2. Preliminaries

In this section, we consider nonlinear discrete-time system with the following state-space
representation:

x(k + 1) = Ax(k) + f(k, x), (2.1)

where x(k) ∈ Rn is the state vector of the system. A ∈ Rn×n is a constant matrix and f(k, x)
a nonlinear function in both arguments k and x satisfying f(k, 0) = 0. This means that the
origin is an equilibrium point of the system.

The nonlinear function f is bounded by the following quadratic constraints:

fT (k, x)f(k, x) ≤ α2xTMTMx, (2.2)



Mathematical Problems in Engineering 3

where α > 0 is the bounding parameter of the nonlinear function f andM is a constant matrix
of appropriate dimensions.

The parameter α can be defined as a degree of robustness, because its maximization
leads to an increase of robustness against uncertain perturbations. Note that constraint (2.2)
is equivalent to

[
x

f

]T[−α2MTM 0

0 I

][
x

f

]
≤ 0. (2.3)

Remark 2.1. The nonlinear function f(k, x), which satisfies the quadratic constraint (2.2), can
be considered as parameter uncertainty [17].

In the sequel, we will use the following definition to present the concept of robust
stability of the system (2.1), (2.2).

Definition 2.2. System (2.1) is robustly stable with degree α > 0 if the equilibrium x = 0 is
globally asymptotically stable for all f(k, x) satisfying constraint (2.2).

In this section, we develop a method for studying robust stability of system
(2.1). Before, we introduce some instrumentals tools which will be used in the proof of
characterization of stability of system (2.1).

Lemma 2.3 (S-procedure lemma [1]). Let Ω0(x) and Ω1(x) be two arbitrary quadratic forms over
Rn, then Ω0(x) < 0 for all x ∈ Rn − {0} satisfying Ω1(x) ≤ 0 if and only if there exist τ ≥ 0:

Ω0(x) − τΩ1(x) < 0, ∀x ∈ Rn − {0}. (2.4)

Proof. See [1].

Lemma 2.4 (Projection lemma [1]). Given a symmetric matrix ψ ∈ Rn×n, and two matrices P , Q
of column dimensions n, there exists X such that the following LMI holds:

ψ + sym
(
PTXTQ

)
< 0, (2.5)

if and only if the projection inequalities with respect to X are satisfied:

NPψNT
p < 0, NT

QψNQ < 0, (2.6)

whereNP andNQ denote arbitrary bases of the nullspaces of P and Q, respectively.

Proof. See [1].
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Lemma 2.5. LetΦ a symmetric matrix andN, J be matrices of appropriate dimensions. The following
statements are equivalent:

(i) Φ < 0 and Φ +NJT + JNT < 0,

(ii) there exists a matrix G such that

[
Φ J + NG

JT +GTNT −G −GT

]
< 0. (2.7)

Proof. The proof is obtained remarking that (2.7) can be developed as follows:

[
Φ J +NG

JT +GTNT −G −GT

]
=

[
Φ J

JT 0

]
+ sym

{[
0

I

]
GT[NT −I

]}
< 0, (2.8)

and by applying lemma 2.

2.1. Stability Characterization

We first introduce the following theorem which gives a robust stability conditions for system
(2.1). In fact, it is described by a convex optimization problem where we try to maximize the
nonlinear bounding parameter without loss of the stability of system.

Theorem 2.6. System (2.1) is robustly stable with degree α > 0 if there exist a positive definite
symmetric matrix Q and a positive scalar β = 1/

√
α such that:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize β⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Q 0 QAT QMT

• −I I 0

• • −Q 0

• • • −βI

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
< 0.

(2.9)

Proof. See [13].

Remark 2.7. The stability condition given by Theorem 2.6 is equivalent to the one introduced
in [11] and [13].

A new condition for robust stability is proposed in the following theorem.
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Theorem 2.8. System (2.1) is stable with degree α > 0 if there exist a positive definite symmetric
matrix Q, a matrix G of appropriate dimensions, and a positive scalar β = 1/

√
α, such that the

following optimization problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize β⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q 0 μQ 0 Q

• −I I 0 0

• • −Q 0
(
A − μI

)
G

• • • −βI MG

• • • • −G −GT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

(2.10)

is feasible for any prescribed scalar μ ∈] − 1 1[.

Proof. Inequality (2.9) can be expressed as follows:

⎡
⎢⎢⎢⎢⎢⎣

−Q 0 QAT QMT

• −I I 0

• • −Q 0

• • • −βI

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

−Q 0 μQ 0

• −I I 0

• • −Q 0

• • • −βI

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
φ

+ sym

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

0

0

A − μI
M

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
N

[
Q 0 0 0

]
︸ ︷︷ ︸

J

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0.

(2.11)

It is not difficult to proof that φ < 0 for any μ ∈] − 1 1[. Now writing:

(i) N =

⎡
⎢⎣

0

0

A−μI

M

⎤
⎥⎦,

(ii) J = [Q 0 0 0]T ,

and by lemma 2, there exists a matrix G of appropriate dimensions such that inequality is
satisfied.

Remark 2.9. The two optimization problems (2.9) and (2.10) are equivalent. In the case of
stability analysis or state feedback control synthesis, no improvement is obtained by problem
(2.10). The main advantage of problem (2.10) will appear when dealing with static output
feedback. In that case, we will see that it theoretically improves the obtained results.

2.2. Static Output Feedback Control

In this section, we investigate the static output feedback stabilization problem for nonlinear
discrete systems.
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We consider the nonlinear discrete-time system described as follows:

x(k + 1) = Ax(k) + f(k, x, u) + Bu(k),

y(k) = Cx(k),
(2.12)

where u(k) ∈ Rm is the control input, y(k) ∈ Rp is the measured output, and B ∈ Rn×m and
C ∈ Rp×n are constant matrices. We assume that the pair (A,B) is stabilizable and C is full
rank matrices. Also f(k, x, u) is a nonlinear function which satisfies the following quadratic
constraints:

fT (k, x, u)f(k, x, u) ≤ α2
(
xTFTFx + uTHTHu

)
, (2.13)

where α > 0 is the bounding parameter of the function f and F and H are constant matrices
of appropriate dimensions.

The objective is to find a static output feedback control law such as

u(k) = Ky(k), (2.14)

where K ∈ Rm×p.
The closed loop system is given by the following state space representation:

x(k + 1) = (A + BKC)x(k) + f(k, x, u), (2.15)

and function f satisfies:

fT (k, x, u)f(k, x, u) ≤ α2xT
(
FTF + (HKC)THKC

)
x. (2.16)

Note that in this case, the constraint (2.16) is equivalent to

[
x

f

]T⎡⎣−α2
(
FTF + (HKC)THKC

)
0

0 I

⎤
⎦
[
x

f

]
≤ 0. (2.17)

To establish a robust stabilization theory for system (2.12) with (2.13) by SOF, we give
in the following theorem, an optimization problem which allows to stabilize the linear part
of system (2.15) with (2.17) and at the same time to maximize the value of parameter α.
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Theorem 2.10. System (2.12) is asymptotically stable by static output feedback with degree α > 0 if
there exist a positive definite symmetric matrix Q, a matrix R∈m×p, and a positive scalar β = 1/

√
α

such that the following optimization problem is solvable:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize β⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q 0 (AQ + BRC)T QFT (HRC)T

• −I I 0 0

• • −Q 0 0

• • • −βI 0

• • • • −βI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

(2.18)

where

Q = V

[
Q1 0

0 Q2

]
V T . (2.19)

The static output feedback gain is given by

K = RUC0Q
−1
1 C−1

0 UT, (2.20)

with U ∈ Rp×p and V ∈ Rn×n are unitary matrices, and C0 ∈ Rp×p matrix which are obtained by
using the singular value decomposition of the matrix C:

C = U
[
C0 0

]
V T . (2.21)

Proof. According to the Theorem 2.6, system (2.15) is robustly stable if there exist a positive
definite symmetric matrix Q and a positive scalar β = 1/

√
α such that the following

optimization problem is solvable:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize β⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Q 0 QÃT QMT

• −I I 0

• • −Q 0

• • • −βI

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
< 0.

(2.22)
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Now we defin

(i) Ã = A + BKC,

(ii) M = ( F

HKC
),

(iii) Q is replaced by (2.19) with: Q1 ∈ Rp×p, Q2 ∈ R(n−p)×(n−p).

Equation (2.22) becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize β⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q 0 Q(A + BKC)T QFT QCTKTHT

• −I I 0 0

• • −Q 0 0

• • • −βI 0

• • • • −βI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0.

(2.23)

Unfortunately, (2.23) is not convex in K and Q and cannot be solved by the LMI tools. We can
introduce some transformations to simplify the KCQ term of the inequality (2.23) by using
(2.19) and (2.21) as follows:

KCQ = KU
[
C0 0

]
V TV

[
Q1 0

0 Q2

]
V T

= KUC0Q1C
−1
0 U−1︸ ︷︷ ︸

R

U
[
C0 0

]
V T︸ ︷︷ ︸,

C

(2.24)

where R ∈ Rm×p.
With this transformation we obtain the optimization problem given in Theorem 2.10.

Remark 2.11. The optimization problem given by Theorem 2.10 presents a sufficient condition
for the robust stabilization by SOF of discrete-time nonlinear system (2.12). In fact to solve
the BMI problem, we impose a diagonal structure to Lyapunov matrix Q as in [24] and we
obtain a LMI convex problem.

2.3. Main Results

In this section, we introduce a new approach for robust stabilization by SOF of nonlinear
discrete time system (2.12). The following results present solutions to static output feedback
problem in which an improved sufficient condition is presented. In fact, this approach is
derived from Theorem 2.8.

Theorem 2.12. The system (2.12) is robustly stable by static output feedback with degree α > 0, for
an arbitrary prescribed number μ in ] − 1 1[ if there exist a positive definite symmetric matrix Q,
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matrices R ∈ Rm×p, G ∈ Rn×n, and a positive scalar β = 1/
√
α such that the following optimization

problem is solvable:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize β⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q 0 μQ 0 0 Q

• −I I 0 0 0

• • −Q 0 0 AG + BRC − μG

• • • −βI 0 FG

• • • • −βI HRC

• • • • • −G −GT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,
(2.25)

where

G = V

[
G1 0

G2 G3

]
V T . (2.26)

The static output feedback gain is given by

K = RUC0G
−1
1 C−1

0 UT, (2.27)

withU,V , and C0 are given in (2.21).

Proof. According to Theorem 2.8, the closed loop system (2.15) is robustly stable if there exist
a positive definite symmetric matrix Q, a matrix G of appropriate dimensions, and a positive
scalar β = 1/

√
α such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize β⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q 0 μQ 0 Q

• −I I 0 0

• • −Q 0
(
Ã − μI

)
G

• • • −βI MG

• • • • −G −GT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

(2.28)

where the following hold:

(i) Ã = A + BKC,

(ii) M = ( F

HKC
),

(iii) G replaced by (2.26) where G1 ∈ Rp×p, G2 ∈ R(n−p)×p, G3 ∈ R(n−p)×(n−p),

with U,V , and C0 are given by (2.21).
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Then, inequality (2.28) becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q 0 μQ 0 0 Q

• −I I 0 0 0

• • −Q 0 0 AG + BKCG − μG
• • • −βI 0 FG

• • • • −βI HKCG

• • • • • −G −GT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0. (2.29)

Unfortunately, (2.29) is not convex and cannot be solved by the LMI tools.
For this reason, we introduce some transformations to simplify the KCG term of the

inequality (2.29) by using (2.26) and (2.21) as follows:

KCG = KU
[
C0 0

]
V TV

[
G1 0

G2 G3

]
V T

= KUC0G1C
−1
0 U−1︸ ︷︷ ︸

R

U
[
C0 0

]
V T︸ ︷︷ ︸

C

, (2.30)

where R ∈ Rm×p.
With this transformation, we obtain the optimization problem given by Theorem 2.12.

The following lemma gives a connection of the results of Theorem 2.10 with the one of
Theorem 2.12.

Lemma 2.13. If the SOF stabilization problem is solvable by Theorem 2.10, then it is solvable by
Theorem 2.12.

Proof. If we consider the optimization problem (2.25) with G = Q and μ = 0, we obtain
the optimization problem (2.18) with Q satisfying (2.19). Therefore, if (2.25) is feasible, then
(2.19) is feasible too.

3. Nonlinear Discrete-Time H∞ Norm Characterization

Stability is the minimum requirement and in practice a performance level has to be
guaranteed. Performance objectives can be achieved via H∞ norm optimization. In this
section, we study the H∞ control problem for the following nonlinear discrete-time system:

x(k + 1) = Ax(k) + Bw(k) + f(k, x),

z(k) = Cx(k) +Dw(k),
(3.1)
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where w(k) ∈ Rq is the exogenous disturbance and z(k) ∈ Rr is the controlled output.
A,B,C, and D are known constant matrices of appropriate dimensions. f(k, x) is a nonlinear
function satisfying the following quadratic constraints:

⎡
⎢⎢⎣
x

w

f

⎤
⎥⎥⎦

T⎡
⎢⎢⎣
−α2MTM 0 0

0 0 0

0 0 I

⎤
⎥⎥⎦
⎡
⎢⎢⎣
x

w

f

⎤
⎥⎥⎦ ≤ 0. (3.2)

We note Twz the transfer matrix from inputw to output zwhen f(k, x) = 0 is expressed
by

Twz = C(sI −A)−1B +D. (3.3)

Theorem 3.1. System (3.1) is robustly stable with ‖Twz‖∞ < γ for a prescribed constant value γ > 0,
if there exist a positive definite symmetric matrix Q and positive scalars τ > 0 and β = 1/

√
α such

that the following optimization problem is feasible:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min β⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q 0 0 QAT QMT QCT

• −τγ2I 0 τBT 0 τDT

• • −I I 0 0

• • • −Q 0 0

• • • • −βI 0

• • • • • −τI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0.
(3.4)

Proof. Define the Lyapunov function:

V (x) = xT (k)Px(k), (3.5)

where P = PT > 0.
By using the dissipative theory, we show that

V (k + 1) − V (k) + zT (k)z(k) − γ2wT (k)w(k) < 0, (3.6)

where γ > 0 is a prescribed scalar such that

‖Twz‖∞ < γ∞ < γ, (3.7)

where γ∞ is the corresponding bounding norm bound when f = 0.
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Evaluating (3.6) leads to

⎡
⎢⎢⎣
xT

wT

fT

⎤
⎥⎥⎦
⎡
⎢⎢⎣
ATPA − P + CTC ATPB + CTD ATP

BTPA +DTC BTPB +DTD − γ2I BTP

PA PB P

⎤
⎥⎥⎦
⎡
⎢⎢⎣
xT

wT

fT

⎤
⎥⎥⎦
T

< 0. (3.8)

Now applying the S-procedure Lemma to (3.8) with (3.2), there exits τ > 0 such that

⎡
⎢⎢⎣
ATP̃A − P̃ + τ−1CTC + α2MTM ATP̃B + τ−1CTD ATP̃

BT P̃A + τ−1DTC BTP̃B + τ−1DTD − τ−1γ2I BT P̃

P̃A P̃B P̃ − I

⎤
⎥⎥⎦ < 0, (3.9)

where P̃ = P/τ .
By Schur complement, (3.9) is equivalent to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P 0 0 AT MT CT

• −τ−1γ2I 0 BT 0 DT

• • −I I 0 0

• • • −P−1 0 0

• • • • −βI 0

• • • • • −τI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (3.10)

where β = α−2.
Multiplying by diag(Q, τ, I, I, I) with Q = P̃−1 the both sides of (3.10), we obtain the

optimization problem (3.4).

Now, we introduce the following theorem which can be seen as an alternate
characterization of upper bounds of the H∞ norm of.

Theorem 3.2. System (3.1) is robustly stable with ‖Twz‖∞ < γ for a prescribed constant value γ > 0,
if there exist a positive definite symmetric matrixQ, a matrixG of appropriate dimensions, and positive
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scalars τ > 0 and β = 1/
√
α such that for any prescribed scalar μ in ] −1 1 [ , the following optimization

problem is feasible:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min β⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q 0 0 μQ 0 0 Q

• −τγ2I 0 τBT 0 τDT 0

• • −I I 0 0 0

• • • −Q 0 0
(
A − μI

)
G

• • • • −βI 0 MG

• • • • • −τI CG

• • • • • • −G −GT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0.
(3.11)

Proof. Inequality (3.4) can be written as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q 0 0 QAT QMT QCT

• −τγ2I 0 τBT 0 τDT

• • −I I 0 0

• • • −Q 0 0

• • • • −βI 0

• • • • • −τI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q 0 0 μQ 0 0

• −τγ2I 0 τBT 0 τDT

• • −I I 0 0

• • • −Q 0 0

• • • • −βI 0

• • • • • −τI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ sym

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

A − μI
M

C

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
Q 0 0 0 0 0

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0.

(3.12)

By lemma 2, denoting

φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q 0 0 μQ 0 0

• −τγ2I 0 τBT 0 τDT

• • −I I 0 0

• • • −Q 0 0

• • • • −βI 0

• • • • • −τI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, for any μ ∈

]
−1 1

[
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N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

A − μI
M

C

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, J =

[
Q 0 0 0 0 0

]
,

(3.13)

there exists a matrix G of appropriate dimensions such that (3.11) holds where γ, β, and τ are
scalars previously defined.

3.1. Static Output Feedback H∞ Synthesis

In this section, we consider the static output feedback stabilization problem for the following
nonlinear discrete system (3.14):

x(k + 1) = Ax(k) + Buu(k) + Bww(k) + f(k, x, u),

z(k) = Czx(k) +Dzuu(k) +Dzww(k),

y(k) = Cyx(k),

(3.14)

where u(k) ∈ Rm is the control input, w(k) ∈ Rq is the exogenous disturbance, z(k) ∈ Rr is
the controlled output, and y(k) ∈ Rp is the measured output. Also, Bu, Bw,Cz,Dzu,Dzw and
Cy are known constant matrices of appropriate dimensions.

The system closed by SOF is written as

x(k + 1) = Aclx(k) + Bclw(k) + f(k, x, u),

z(k) = Cclx(k) +Dclw(k),
(3.15)

where the following hold:

Acl = A + BuKCy,

Bcl = Bw,

Ccl = Cz +DzuKCy,

Dcl = Dzw.

(3.16)

The objective of this section is to design static output feedback H∞ controllers for
nonlinear discrete time system (3.14).

Theorem 3.3. System (3.14) is robustly static output feedback stabilizable with ‖Twz‖∞ < γ for a
prescribed constant value γ > 0 if there exist a positive definite symmetric matrix Q, a matrix R of
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appropriate dimensions, and positive scalars τ > 0 and β = 1/
√
α such that the following optimization

problem is feasible:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min β⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q 0 0 QAT + (BuRCy)
T QFT (HRCy)

T QCT
z + (DzuRCy)

T

• −τγ2I 0 τBTw 0 0 τDT
zw

• • −I I 0 0 0

• • • −Q 0 0 0

• • • • −βI 0 0

• • • • • −βI 0

• • • • • • −τI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,
(3.17)

where

Q = V

[
Q1 0

0 Q2

]
V T . (3.18)

The static output feedback gain is then given by

K = RUC0Q
−1
1 C−1

0 UT, (3.19)

whereU,V , and C0 are given in (2.21).

Proof. According to Theorem 3.1, system (3.14) is robustly stable with ‖Twz‖∞ < γ for a
prescribed constant value γ > 0 if there exist a positive definite symmetric matrix Q and
positive scalars τ > 0 and β = 1/

√
α such that the following optimization problem is feasible:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min β⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q 0 0 QAT
cl
QMT QCT

cl

• −τγ2I 0 τBT
cl

0 τDT
cl

• • −I I 0 0

• • • −Q 0 0

• • • • −βI 0

• • • • • −τI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0.
(3.20)
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Now:

(i) Acl, Bcl, Ccl and Dcl are replaced by (3.16),

(ii) M = (
F

HKCy
),

(iii) Q is replaced by (3.18) where : Q1 ∈ Rp×p, Q2 ∈ R(n−p)×(n−p).

After same direct developments the result follows.

3.2. An Improved Approach of Static Output Feedback Synthesis for H∞
Robust Control

In this paragraph, an H∞ robust control for nonlinear systems (3.14) improving the previous
approach is proposed.

Theorem 3.4. System (3.14) is robustly SOF stabilisable with ‖Twz‖∞ < γ for a prescribed constant
value γ > 0 if there exist a positive definite symmetric matrix Q, matrices G and R of appropriate
dimensions, and positive scalars τ > 0, and β = 1/

√
α such that the following optimization problem

is feasible for any prescribed scalar μ in ] − 1 1[:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q 0 0 μQ 0 0 0 Q

• −τγ2I 0 τBTw 0 0 τDT
zw 0

• • −I I 0 0 0 0

• • • −Q 0 0 0 AG − μG + BuRCy

• • • • −βI 0 0 FG

• • • • • −βI 0 HRCy

• • • • • • −τI CzG +DzuRCy

• • • • • • • −G −GT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.21)

where

G = V

[
G1 0

G2 G3

]
V T . (3.22)

The static output feedback gain is given by

K = RUC0G
−1
1 C−1

0 UT, (3.23)

with R ∈ Rm×p,U,V, and C0 are given in (2.21).

Proof. According to the Theorem 3.3, the system (3.14) is robustly stable with ‖Twz‖∞ < γ for
a prescribed degree γ > 0 if there exist a positive definite symmetric matrix Q, a matrix G of
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appropriate dimensions, and positive scalars τ > 0 and β = 1/
√
α, for any prescribed scalar μ

in ] − 1 1[, such that the following optimization problem is feasible:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min β⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q 0 0 μQ 0 0 Q

• −τγ2I 0 τBT
cl

0 τDT
cl

0

• • −I I 0 0 0

• • • −Q 0 0
(
Acl − μI

)
G

• • • • −βI 0 MG

• • • • • −τI CclG

• • • • • • −G −GT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,
(3.24)

where

(i) Acl, Bcl, Ccl, and Dcl are replaced by (3.16),

(ii) M = (
F

HKCy
),

(iii) G replaced by (3.22), where G1 ∈ Rp×p, G2 ∈ R(n−p)×p.

The optimization problem (3.24) is expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min β < 0⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q 0 0 μQ 0 0 0 Q

• −τγ2I 0 τBTw 0 0 τDT
zw 0

• • −I I 0 0 0 0

• • • −Q 0 0 0 AG + BuKCyG − μG

• • • • −βI 0 0 FG

• • • • • −βI 0 HKCyG

• • • • • • −τI CzG +DzuKCy

• • • • • • • −G −GT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0.
(3.25)

For this reason, we express differently the KCyG term of the inequality (3.25), by using (3.22)
and (2.21), in the same way as in (2.30). Consequently, we obtain

KCyG = RCy. (3.26)

With this transformation, we obtain the optimization problem given in Theorem 3.4.
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l

m

Figure 1: Inverted pendulum scheme.

4. Numerical Examples

We present in this section two numerical examples to illustrate the proposed theory for SOF
synthesis.

Our approach Theorem 2.12 is compared to the methods presented in [11].

Example 4.1 (see [5]). We consider the nonlinear discrete-time system of inverted pendulum
(see Figure 1).

The system can be described by

x(k + 1) = Ax(k) + B
(
u(k) + α siny(t)

)
,

y(k) = Cx(k),
(4.1)

where x(k) = [x1(k) x2(k)]
T , x1(k) and x2(k) being, respectively, the angular displacement

and velocity; u(k) represents the field current of the DC motor; the matrices A ∈ R2×2, B ∈
R2×1, and C ∈ R1×2are given by:

A =

[
1 0.0952

0 0.9048

]
; B =

[
0.048

0.952

]
; C =

[
1 0

]
. (4.2)

The nonlinear function f is given by the following expression:

f(k, x) = αB siny (k) = αB sin x1(k). (4.3)

This function satisfies

fT (k, x)f(k, x) = α2BTB sin2x1(k)

= 0.9α2 sin2x1(k)

≤ α2xT
[

0.95 0

0 0

][
0.95 0

0 0

]
x.

(4.4)

In this case, we take F = [ 0.95 0

0 0
]; H = 0.
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Table 1: Numerical Evaluation for Example 4.1.

Approach αmax K

Theorem 2.10 condition 0.8254 · 10−4 −1.9987
Theorem 2.12 condition for μ = 0.7 0.06688 −0.3101

Output y

40003500300025002000150010005000

Sample

−5

−4

−3

−2

−1

0

1

2

3

4

5
y
=
x

1

Figure 2: Output y = x1.

The nonlinear system is unstable. The matrixA is unstable which means that the linear
part of systems is unstable. Therefore, we apply the approach given by Theorems 2.10 and
2.12 to stabilize system by SOF. We summarize in Table 1 the obtained results.

Figures 2 and 3 show the output trajectory obtained respectively by applying
Theorems 2.10 and 2.12 to system (3.26) with α = αmax.

We can see a drastic improvement obtained by Theorem 2.12.

Example 4.2. We consider now the nonlinear discrete-time system:

x(k + 1) =

⎡
⎢⎢⎣
−0.0725 0.1957 1.5931

0.0301 0.0404 0.6084

0.3764 −0.1635 0.9024

⎤
⎥⎥⎦x(k) +

⎡
⎢⎢⎣

1.2123 0.2895

0.6174 0.0651

0.9379 0.5110

⎤
⎥⎥⎦u(k) + f(k, x(k), u(k)),

y(k) =

[
0.9313 −0.7534 −0.0335

1 2 0.5

]
x(k),

(4.5)

with the nonlinear function f satisfying the constraint (2.17), where F = I3 and H = I2. The
results obtained byapproaches of Theorem 2.12 and in [11] are given in Table 2.

The new approach (Theorem 2.12) improves the results obtained by [11].
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Output y
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Figure 3: Output y = x1.

Table 2: Numerical Evaluation for Example 4.2.

Approach αmax K

[11] 0.1954
[ −0.1329 −0.1268

−0.4309 −0.0405

]
New approach, (2.25), Theorem 2.12 for μ = 0 0.3084

[ −0.0019 −0.2766

−1.1542 0.1067

]
New approach, (2.25), Theorem 2.12 for μ = −0.35 0.3329

[ 0.0357 −0.3141

−0.9812 0.0924

]

Example 4.3. We consider the nonlinear discrete-time system (3.14) with

A =

⎡
⎢⎢⎢⎢⎢⎣

0.8189 0.0863 0.0900 0.0813

0.2524 1.0033 0.0313 0.2004

−0.0545 0.0102 0.7901 −0.2580

−0.1918 −0.1034 0.1602 0.8604

⎤
⎥⎥⎥⎥⎥⎦, Bu=

⎡
⎢⎢⎢⎢⎢⎣

0.0045 0.0044

0.1001 0.0100

0.0003 −0.0136

−0.0051 0.0926

⎤
⎥⎥⎥⎥⎥⎦, Bw=

⎡
⎢⎢⎢⎢⎢⎣

0.0953 0 0

0.0145 0 0

0.0862 0 0

−0.0011 0 0

⎤
⎥⎥⎥⎥⎥⎦,

Cz =

⎡
⎢⎢⎣

1 0 −1 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎦, Dzu =

⎡
⎢⎢⎣

0 0

1 0

0 1

⎤
⎥⎥⎦, Cy =

[
1 0 0 0

0 0 1 0

]
, Dyw =0,

(4.6)

with the nonlinear function f satisfying the constraint (3.2), where F = I4 and H = I4.
In Table 3, we present numerical result for H∞ performance via SOF by applying

Theorem 3.3 and for different values of γ which satisfy (3.7).
In Table 4, we present numerical result for H∞ performance via SOF by applying

Theorem 3.4 and for different values of γ which satisfy (3.7).
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Table 3: Numerical Evaluation for Example4.3 by Theorem 3.3.

Approach αmax K

Approach, (3.17), Theorem 3.3 for γ∞ = 1.9918, γ = 2.2361 0.0032
[ −2.0416 −0.1796

0.6545 −1.0362

]
Approach, (3.17), Theorem 3.3 for γ∞ = 1.9918, γ = 5 0.0288

[ −2.1323 −0.0808

1.1624 −1.2381

]

Table 4: Numerical Evaluation for Example 4.3 by Theorem 3.4.

Approach αmax K

Approach, (3.21), Theorem 3.4 for γ∞ = 1.9918, γ = 2.2361, μ = 0.22 0.3643
[ −0.2993 −0.1328

−0.0685 −0.0743

]
Approach, (3.21), Theorem 3.4 for γ∞ = 1.9918, γ = 5, μ = 0.2400 0.4087

[ −0.3376 −0.1185

−0.0660 −0.0737

]

5. Conclusion

In this paper, the stabilization problem by static output feedback (SOF) for a particular class
of nonlinear discrete time systems is investigated. A new sufficient condition is elaborated by
using Lyapunov theory and formulated by LMI constraints. We obtain a convex optimization
problem for maximizing the bound of the nonlinearity preserving the stability of the systems.

Finally, the proposed controller design method was extended to incorporate H∞
synthesis. An optimization problem, which is linear both in the admissible nonlinearity
bound and the disturbance attenuation, is developed. Numerical comparisons with existing
methods in literature illustrate the improvement obtained by our approaches. All of them can
also be extended to the dynamic output feedback.

Other classes of nonlinear discrete time nonlinear systems exist and present some
interesting characteristic from a practical point of view. For example, the ones where the linear
part is affected by polytopic uncertainties. It would be interesting to extend the results of this
paper to those classes. This will be exploited in a near future.
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