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1. Introduction

Wavelet theory has been studied extensively in both theory and applications since 1980’s
(see [1–3]). One of the basic advantage of wavelets is that an even can be simultaneously
described in the frequency domain as well as in the time domain. This feature permits
a multiresolution analysis of data with different behaviors on different scales. The main
advantage of wavelets is their time-frequency localization property. Many signals can be
efficiently represented by wavelets.

The classical MRA wavelets are probably the most important class of orthonormal
wavelets. Because they guarantee the existence of fast implementation algorithm, many of the
famous examples often used in applications belong to this class. However, there are useful
filters, such as m(ω) = (1/2)(1 + e3iω), that do not produce orthonormal basis; nevertheless,
they do produce systems that have the reconstruction property as well as many other useful
features. It is natural, therefore, to develop a theory involving more general filters that can
produce systems having these properties.

A tight wavelet frame is a generalization of an orthonormal wavelet basis by
introducing redundancy into a wavelet system [3]. By allowing redundancy in a wavelet
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system, one has much more freedom in the choice of wavelets. Tight wavelet frames
have some desirable features, such as near translation invariant wavelet frame transforms,
and it may be easier to recognize patterns in a redundant transform. For advantages and
applications of tight wavelet frames, the reader is referred to [4–15] and many references
therein. Recently, the theory of high dimensional wavelet is widely studied by the people,
such as [16, 17].

In [18], authors discussed wavelet multipliers, scaling function multipliers, and
lowpass filter multipliers in L2(Rn). In [19], authors introduced a class of generalized lowpass
filter that allowed them to define and construct the MRA Parseval frame wavelets. This led
them to an associated class of generalized scaling functions that were not necessarily obtained
from a multiresolution analysis. Also, they generalized notions of the wavelet multipliers in
[18] to the case of wavelet frame and got several properties of the multipliers of Parseval
frame wavelets.

In this paper, we characterize all generalized lowpass filter and MRA Parseval frame
wavelets (PFWs) in L2(Rn)with matrix dilations of the form (Df)(x) =

√
2f(Ax), whereA is

an arbitrary expanding n×nmatrix with integer coefficients, such that |detA| = 2. Firstly, we
study some properties of the generalized wavelets, scaling functions, and filters in L2(Rn).
Our result is a generalization of the construction of PFWs from generalized lowpass filters
that is introduced in [19]. Though we follow [19] as a blueprint, it is well known that the
situation in higher dimension is so complex that we have to recur to some special matrices
to solve problem. Thus, our ways are different from original ones. And we borrow some
thoughts and technique in [16]. Then, we give some characterizations of themultiplier classes
associated with Parseval frame wavelets in L2(Rn).

Let us now describe the organization of the material that follows. Section 2 is of a
preliminary character: it contains various results on matrices belonging to the class E(2)

n

and some facts about a Parseval frame wavelet. In Section 3, we study the pseudoscaling
functions, the generalized lowpass filters, and the MRA PFWs and give some important
characterizations about them. In Section 4, we describe the multiplier classes associated with
Parseval frame wavelets in L2(Rn). At last, we give an example to prove our theory.

2. Preliminaries

Let us now establish some basic notations.
We denote by Tn the n-dimensional torus. By Lp(Tn) we denote the space of all Zn-

periodic functions f (i.e., f is 1-periodic in each variable) such that
∫
Tn |f(x)|pdx < +∞. The

standard unit cube [−(1/2), 1/2)n will be denoted by C. The subsets of Rn invariant under Zn

translations and the subsets of Tn are often identified.
We use the Fourier transform in the form

f̂(ω) =
∫

Rn
f(x)e−2πi<x,ω>dx, (2.1)

where 〈·, ·〉 denotes the standard inner product in Rn.
For f, g ∈ L2(Rn)we denote the function [f, g](ω) as follows:

[
f, g

]
(ω) =

∑

k∈Zn

f(ω + k)g(ω + k). (2.2)
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In particular, for f ∈ L2(Rn), we will write σf(ω) :=
∑

k∈Zn |f̂(ω + k)|2, which is named as

the bracket function of f . For σf(ω) =
∑

k∈Zn |f̂(ω + k)|2, we let Ωf be the Zn-translation
invariant subset of Rn defined, modulo a null set, by Ωf = supp σf = {ω ∈ Rn : f̂(ω +
k)/= 0, for some k ∈ Zn}.

The Lebesgue measure of a set S ⊆ Rn will be denoted by |S|. When measurable sets X
and Y are equal up to a set of measure zero, we write X .= Y .

Then we introduce some notations and the existing results about expanding matrices.
LetE(2)

n denote the set of all expandingmatricesA such that |detA| = 2. The expanding
matrices mean that all eigenvalues have magnitude greater than 1. For A ∈ E

(2)
n , we denote

by B the transpose of A : B = At. It is obvious that B ∈ E(2)
n .

The following elementary lemma [16, Lemma2.2] provides us with a convenient
description of BZn for an arbitrary A ∈ E(2)

n , and it will be used in Section 3.

Lemma 2.1. Let B ∈ E
(2)
n be any integer matrix such that |detB| = 2. Then the group Zn/BZn is

isomorphic to B−1Zn/Znand the order of Zn/BZn is equal to 2. In particular, if α ∈ Zn/BZn and
β = B−1α, then Zn = BZn ∪ (BZn + α) and B−1Zn = Zn ∪ (Zn + β).

Our standard example that will be frequently used is the quincunxmatrixQ =
(

1 1
−1 1

) ∈
E
(2)
n . Observe that Q acts on R2 as rotation by π/4 composed with dilation by

√
2. In the

quincunx case, our standard choice will be α = (1, 0), β = (1/2, 1/2).
In this paper, we will work with two families of unitary operators on L2(Rn). The

first one consists of all translation operators Tk : L2(R)n → L2(Rn), k ∈ Zn, defined by
(Tkf)(x) = f(x − k). The second one consists of all integer powers of the dilation operator
DA : L2(Rn) → L2(Rn) defined by (Df)(x) =

√
2f(Ax)with A ∈ E(2)

n .
Let us now fix an arbitrary matrixA ∈ E(2)

n . For a function ψ ∈ L2(Rn), we will consider
the affine system Ψ defined by

Ψ =
{
ψj, k(x) | ψj, k(x) = 2j/2ψ

(
Ajx − k

)
, j ∈ Z, k ∈ Zn

}
. (2.3)

Let us recall the definition of a Parseval frame and a Parseval frame wavelet.

Definition 2.2. We say that a countable family {fj}, j ∈ J , in a separable Hilbert space H, is a
Parseval frame (PF) for H if the equality ‖f‖2 = ∑

j∈J |〈f, fj〉|2 is satisfied for all f ∈ H.

Definition 2.3. We say that ψ ∈ L2(Rn) is a Parseval frame wavelet (briefly: PFW) if the system
(2.3) is a Parseval frame for L2(Rn).

Then we recall a result from [20] that characterizes Parseval frame wavelets associated
with more general matrix dilations. We state the special case of that theorem appropriate to
the discussion in this paper.

Lemma 2.4 ([20, Theorem6.12]). Let A be an arbitrary matrix in E(2)
n , B = At, and ψ ∈ L2(Rn).

Then the system (2.3) is a PFW if and only if both the equality

∑

j∈Z
|ψ̂(Bjω)|2 = 1, a.e. (2.4)
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and the equality

+∞∑

j=0

ψ̂
(
Bjω

)
ψ̂
(
Bj(ω + Bk + α)

)
= 0, a.e., ∀ k ∈ Zn, α ∈ Zn/BZn (2.5)

are satisfied.

In the following, we will give some definitions which will be used in this paper. In fact,
they are some generalizations of the notations in [19].

Definition 2.5. A measurable Zn-periodic function m on Rn is called a generalized filter if it
satisfies

|m(ω)|2 + |m(
ω + β

)|2 = 1 a.e.ω, (2.6)

where β is defined in Lemma 2.1.

We will denote by F̃ the set of generalized filters and put F̃+ = {m ∈ F̃ : m ≥ 0}.
Observe thatm ∈ F̃ ⇒ |m| ∈ F̃+.

Definition 2.6. A function ϕ ∈ L2(Rn) is called a pseudoscaling function if there exists a filter
m ∈ F̃ such that

ϕ̂(Bω) = m(ω)ϕ̂(ω) a.e. ω. (2.7)

Notice thatm is not uniquely determined by the pseudo-scaling function ϕ. Therefore,
we shall denote by F̃ϕ the set of allm ∈ F̃ such thatm satisfies (2.7) for ϕ. For example, if ϕ = 0,
then, F̃ϕ = F̃. If ϕ is a scaling function of an orthonormal MRAwavelet, then F̃ϕ is a singleton;
its only element is the lowpass filter m associated with ϕ. Notice that for a pseudo-scaling
function ϕ, the function |ϕ̂| is also a pseudo-scaling function, and ifm ∈ F̃, then |m| ∈ F̃|ϕ̂|.

Suppose thatm ∈ F̃+. Since 0 ≤ m(ω) ≤ 1, a.e. ω, the function

ϕ̂m(ω) =:
+∞∏

j=1

m
(
B−jω

)
(2.8)

is well defined a.e.; moreover, we have

ϕ̂m(Bω) = m(ω)ϕ̂m(ω), a.e. ω. (2.9)

Following [16], the function ϕ̂m defined by (2.9) belongs to L2(Rn), and the function ϕ̂m is a
pseudo-scaling function such thatm ∈ F̃ϕm .

Consequently, if m ∈ F̃ is an arbitrary generalized filter, then the function ϕ̂|m| is a
pseudo-scaling function and |m| ∈ F̃ϕ|m| .
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Definition 2.7. Form ∈ F̃+, define

N0(m) =
{
ω ∈ Rn : lim

j→+∞
ϕ̂m

(
B−jω

)
= 0

}
. (2.10)

We say that m ∈ F̃ is a generalized low-pass filter if |N0(|m|)| = 0. The set of all generalized
low-pass filters is denoted by F̃0.

Then, we will give the definition of MRA PFW.

Definition 2.8. APFW ψ is anMRAPFW if there exists a pseudo-scaling function ϕ andm ∈ F̃ϕ
and a unimodular function s ∈ L2(Tn) such that

ψ̂(Bω) = e2πωis(Bω)m
(
ω + β

)
ϕ̂(ω), a.e. ω. (2.11)

Let us conclude this introductory section by noting that many of the results that follow
can be proved for dilations by expanding integer matrices with arbitrary determinant. Some
of these extensions are obtained easily with essentially the same proofs; others require subtler
andmore involved arguments. But, for the sake of simplicity, we restrict ourselves to the class
E
(2)
n .

3. MRA Parseval Frame Wavelets

The main purpose of this section is to study the pseudo-scaling functions, the generalized
filters, and the MRA PFWs in L2(Rn). We give some important characterizations about them.

In the following we firstly give several lemmas in order to prove our main results.

Lemma 3.1. Suppose that ϕ is a pseudo-scaling function andm ∈ F̃ϕ. If

lim
j→+∞

∣∣∣ϕ̂
(
B−jω

)∣∣∣ = 1, a.e. ω, (3.1)

then,

∣∣ϕ̂(ω)
∣∣ =

∣∣∣∣∣∣

+∞∏

j=1

m
(
B−jω

)
∣∣∣∣∣∣
, a.e. ω, (3.2)

and |N0(|m|)| = 0.

Proof. By (2.7), we have

∣∣ϕ̂(ω)
∣∣ =

∣∣∣∣∣∣

n∏

j=1

m
(
B−jω

)
∣∣∣∣∣∣

∣∣∣ϕ̂
(
B−jω

)∣∣∣, a.e. ω. (3.3)
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Using (2.9), we obtain that |ϕ̂(ω)| = ϕ̂|m| and |N0(|m|)| = 0 is clearly satisfied. Thus, the
functionm ∈ F̃ is a generalized low-pass filter.

Lemma 3.2. If f ∈ L1(Rn), then, for a.e. ω ∈ Rn, limj→+∞|f(Bjω)| = 0.

Proof. Assuming that f ∈ L1(Rn) and applying the monotone convergence theoremwe obtain

∫

Rn

∑

j∈N

∣
∣
∣f
(
Bjω

)∣∣
∣dω =

∑

j∈N

∫

Rn

∣
∣
∣f
(
Bjω

)∣∣
∣dω

=
∑

j∈N
2−j

∫

Rn

∣
∣f(ξ)dξ

∣
∣ = ‖f‖1 < +∞.

(3.4)

It follows that for a.e. ω ∈ Rn,
∑

j∈N |f(Bjω)| is finite. Therefore, for a.e. ω ∈ Rn,
limj→+∞|f(Bjω)| = 0.

Then, we will give a characterization of the generalized lowpass filter.

Theorem 3.3. Suppose ψ is an MRA PFW and ϕ is a pseudo-scaling function satisfying (2.11).
Then,m defined by (2.11) is a generalized lowpass filter.

Proof. Since ψ is an MRA PFW, from (2.4), (2.6), and (2.11), we can obtain

1 =
∑

j∈Z

∣∣∣ψ̂
(
Bjω

)∣∣∣
2

=
∑

j∈Z

∣∣∣m
(
Bj−1ω + β

)∣∣∣
2∣∣∣ϕ̂

(
Bj−1ω

)∣∣∣
2

= lim
n→+∞

n∑

j=−n

∣∣∣m
(
Bj−1ω + β

)∣∣∣
2∣∣∣ϕ̂

(
Bj−1ω

)∣∣∣
2

= lim
n→+∞

n∑

j=−n

[
1 −

∣∣∣m
(
Bj−1ω

)∣∣∣
2
]∣∣∣ϕ̂

(
Bj−1ω

)∣∣∣
2

= lim
n→+∞

{∣∣∣ϕ̂
(
B−n−1ω

)∣∣∣
2 − ∣∣ϕ̂(Bnω)

∣∣2
}
.

(3.5)

Since ϕ ∈ L2(Rn), Lemma 3.2 implies limn→+∞|ϕ̂(Bnω)|2 = 0 for a.e. ω. This shows that for
a.e. ω, limn→+∞|ϕ̂(B−nω)| = 1, thus, by Lemma 3.1,m is a generalized lowpass filter.

The following theorem provides a way of constructing MRA PFWs from generalized
lowpass filters.

In order to obtain main result in this part, we firstly introduce a result in [16,
Lemma2.8].
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Lemma 3.4. Let B ∈ Mn(Z) be an expanding matrix. Let μ be a Zn-periodic, unimodular function.
Then there exists a unimodular function ν that satisfies

μ(ω) = ν(Bω)ν(ω), a.e. ω. (3.6)

Theorem 3.5. Suppose that m is a generalized lowpass filter. Then, there exist a pseudo-scaling
function ϕ and an MRA PFW ψ such that they satisfy (2.11).

Proof. Suppose thatm is a generalized lowpass filter. Consider first the signum function μ for
m:

μ(ω) =

⎧
⎪⎨

⎪⎩

m(ω)
|m(ω)| , m(ω)/= 0,

1, m(ω)/= 0.
(3.7)

Clearly, μ is a measurable unimodular function such that, for all ω,

m(ω) = μ(ω)|m(ω)|. (3.8)

By Lemma 3.4, there exists a unimodular measurable function ν such that

ν(Bω)ν(ω) = μ(ω), a.e. ω. (3.9)

Now take the function ϕ̂|m| constructed from |m| by (2.9), and put

ϕ̂(ω) := ν(ω)ϕ̂|m|(ω). (3.10)

Obviously, ϕ ∈ L2(Rn). Using (2.9), (3.6), (3.10), and the definition of the signum function μ,
we find

ϕ̂(Bω) = ν(Bω)ϕ̂|m|(Bω)

= ν(Bω)|m(ω)|ϕ̂|m|(ω)

= ν(Bω)|m(ω)|ν(ω)ϕ̂(ω)
= μ(ω)|m(ω)|ϕ̂(ω)
= m(ω)ϕ̂(ω).

(3.11)

Thus, ϕ is a pseudo-scaling function.
For any unimodular function s ∈ L2(Tn), we define

ψ̂(Bω) = e2πωis(Bω)m
(
ω + β

)
ϕ̂(ω), a.e. ω. (3.12)
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We affirm that ψ(x) is an MRA PFW. Lemma 2.4 shows that it is enough to prove that ψ̂
satisfies (2.4) and (2.5).

From the fact that m is a generalized lowpass filter, we can deduce that (3.1) holds.
Using Lemma 3.2, we obtain

∑

j∈Z

∣
∣
∣ψ̂

(
Bjω

)∣∣
∣
2
=
∑

j∈Z

∣
∣
∣m

(
Bj−1ω + β

)∣∣
∣
2∣∣
∣ϕ̂

(
Bj−1ω

)∣∣
∣
2

= lim
n→+∞

n∑

j=−n

∣
∣
∣m

(
Bj−1ω + β

)∣∣
∣
2∣∣
∣ϕ̂

(
Bj−1ω

)∣∣
∣
2

= lim
n→+∞

n∑

j=−n

[
1 −

∣
∣
∣m

(
Bj−1ω

)∣∣
∣
2
] ∣
∣
∣ϕ̂

(
Bj−1ω

)∣∣
∣
2

= lim
n→+∞

{∣∣∣ϕ̂
(
B−n−1ω

)∣∣∣
2 − ∣∣ϕ̂(Bnω)

∣∣2
}

= lim
n→+∞

∣∣∣ϕ̂
(
B−n−1ω

)∣∣∣
2
.

(3.13)

This computation shows that the first characterizing condition (2.4) in Lemma 2.4 is satisfied
precisely when (3.1) holds.

Let us now prove that the function ψ given by above satisfies (2.5).
Let us fix ω and q = Bk + α, k ∈ Zn, α ∈ Zn/BZn, and write

+∞∑

j=0

ψ̂
(
Bjω

)
ψ̂
(
Bj

(
ω + q

))
= ψ̂(ω)ψ̂

((
ω + q

))
+

+∞∑

j=1

ψ̂
(
Bjω

)
ψ̂
(
Bj

(
ω + q

))
. (3.14)

To compute the first term on the right-hand side of (3.14), by the fact e2πiB
−1α = e2πiβ =

−1 ,and (2.6), we have

ψ̂(ω)ψ̂
(
ω + q

)
= e2πiB

−1ωs(ω)m
(
B−1ω + β

)
ϕ̂
(
B−1ω

)

× e−2πiB−1(ω+q)s
(
ω + q

)
m
(
B−1(ω + q

)
+ β

)
ϕ̂
(
B−1(ω + q

))

= e−2πiB
−1q|s(ω)|2m

(
B−1ω

)
ϕ̂
(
B−1ω

)
m(B−1ω + k + B−1α)ϕ̂(B−1(ω + q))

= e−2πiB
−1αϕ̂(ω)m

(
B−1(ω + q

))
ϕ̂
(
B−1(ω + q

))

= −ϕ̂(ω)ϕ̂(ω + q
)
.

(3.15)
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To compute the second term on the right-hand side of (3.14), by (2.6), (2.7), and (2.11),
we have

+∞∑

j=1

ψ̂
(
Bjω

)
ψ̂
(
Bj

(
ω + q

))
=

+∞∑

j=1

e2πiB
j−1ωs

(
Bjω

)
m
(
Bj−1ω + β

)
ϕ̂
(
Bj−1ω

)

× e−2πiBj−1(ω+q)s(Bj(ω + q
))
m
(
Bj−1

(
ω + q

)
+ β

)
ϕ̂
(
Bj−1

(
ω + q

))

=
+∞∑

j=1

e−2πiB
j−1q

∣
∣
∣m

(
Bj−1ω + β

)∣∣
∣
2
ϕ̂
(
Bj−1ω

)
ϕ̂
(
Bj−1

(
ω + q

))

=
+∞∑

j=1

(
1 −

∣
∣
∣m

(
Bj−1ω

)∣∣
∣
2
)
ϕ̂
(
Bj−1ω

)
ϕ̂
(
Bj−1

(
ω + q

))

=
+∞∑

j=1

{
ϕ̂
(
Bj−1ω

)
ϕ̂
(
Bj−1

(
ω + q

)) − ϕ̂
(
Bjω

)
ϕ̂
(
Bj

(
ω + q

))}

= ϕ̂(ω)ϕ̂
(
ω + q

) − lim
p→+∞

ϕ̂(Bpω)ϕ̂
(
Bp

(
ω + q

))

= ϕ̂(ω)ϕ̂
(
ω + q

)
.

(3.16)

This shows that the expression in (3.14) is equal to 0. Hence, ψ̂ satisfies (2.5), and ψ is
a PFW.

4. The Multiplier Classes Associated with PFWs

In this section, we will describe the multiplier classes associated with PFWs in L2(Rn). We
firstly give their definitions.

Definition 4.1.

(1) A PFWmultiplier ν is a function such that ψ̃ = (ψ̂ν)̆ is a PFWwhenever ψ is a PFW.

(2) An MRA PFW multiplier is a function ν such that ψ̃ = (ψ̂ν)̆ is an MRA PFW
whenever ψ is an MRA PFW.

(3) A pseudo-scaling function multiplier is a function ν such that ϕ̃ = (ϕ̂ν)̆ is a pseudo-
scaling function associated with an MRA PFW whenever ϕ has the same property.

(4) A generalized lowpass filter multiplier is a function ν such that m̃ = mν is a
generalized lowpass filter wheneverm is a generalized lowpass filter.

At first, we will obtain a property of PFW multiplier.

Property 4.2. If a measurable function ν is a PFW multiplier, then, ν is unimodular.

Proof. Let ν be a PFW multiplier; that is, there exist PFWs ψ and ψ̃ such that ̂̃ψ = ψ̂ν.
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Let ψ ∈ L2(Rn) be any wavelet satisfying |ψ̂(ω)| > 0 for a.e. ω. By assumption, for
every l ≥ 1, we easily deduce that (ψ̂νl )̆ is a PFW and, thus, satisfies (2.4):

∑

j∈Z
|ν(Bjω)|2l|ψ̂(Bjω)|2 = 1, a.e. ω ∈ Rn. (4.1)

In particular, for a.e. ω and every l ∈N,

|ν(ω)|l∣∣ψ̂(ω)∣∣ ≤ 1. (4.2)

This is only possible if |ν(ω)| ≤ 1 a.e. since |ψ̂(ω)| almost never vanishes. Using (2.4) for PFWs
ψ and ψ̃ such that ̂̃ψ = ψ̂ν, we easily obtain

∑

j∈Z

∣∣∣ψ̂
(
Bjω

)∣∣∣
2
(
1 −

∣∣∣ν
(
Bjω

)∣∣∣
2
)

= 1, a.e. ω ∈ Rn. (4.3)

which is only possible if all terms vanish. Thus, ν(ω) = 1 a.e.

The next theorem gives a characterization of PFW multiplier in L2(Rn).

Theorem 4.3. If a measurable function ν is unimodular and ν(Bω)ν(ω) is Zn-periodic, then, this
measurable functionν is a PFW multiplier.

Proof. PFW is characterized as an element of L2(Rn) satisfying (2.4) and (2.5) in Lemma 2.4.
Let ψ be a PFW, so that (2.4) and (2.5) hold. Let us assume that ν is unimodular and

ν(Bω)ν(ω) is a Zn-periodic function, necessarily unimodular. Let ̂̃ψ = ψ̂ν For the function
ψ̃, (2.4) obviously holds from the fact that ν is a unimodular function and |ψ̂ν| = |ψ̂|. In the
following, for the function ψ̃, let us consider (2.5). Let k ∈ Zn, α ∈ Zn/BZn, and let j > 0.
Then

̂̃ψ
(
Bjω

)
̂̃ψ
(
Bj(ω + Bk + α)

)
= ψ̂

(
Bjω

)
ψ̂
(
Bj(ω + Bk + α)

)
ν
(
Bjω

)
ν
(
Bj(ω + Bk + α)

)
. (4.4)

If j ≥ 1, according to Lemma 3.4, there exists a unimodular function μ that satisfies

μ(ω) = ν(Bω)ν(ω), a.e. ω. (4.5)
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By Zn-periodicity and unimodularity of μ, we have

ν
(
Bjω

)
ν
(
Bj(ω + Bk + α)

)

=
μ
(
Bj−1ω

)
μ
(
Bj−1(ω + Bk + α)

)

ν
(
Bj−1ω

)
ν
(
Bj−1(ω + Bk + α)

)

= μ
(
Bj−1ω

)
μ
(
Bj−1(ω + Bk + α)

)
ν
(
Bj−1ω

)
ν
(
Bj−1(ω + Bk + α)

)

= μ
(
Bj−1ω

)
μ
(
Bj−1(ω)

)
ν
(
Bj−1ω

)
ν
(
Bj−1(ω + Bk + α)

)

= ν
(
Bj−1ω

)
ν
(
Bj−1(ω + Bk + α)

)
.

(4.6)

Then, we can repeat the above argument until we obtain

ν
(
Bj−1ω

)
ν
(
Bj−1(ω + Bk + α)

)
= ν(ω)ν(ω + Bk + α), for j ≥ 2. (4.7)

By the equalities (4.4), (4.7), and summing over j ≥ 0, we obtain

+∞∑

j=0

̂̃ψ
(
Bjω

)
̂̃ψ
(
Bj(ω + Bk + α)

)
= ν(ω)ν(ω + Bk + α)

+∞∑

j=0

+∞∑

j=0

ψ̂
(
Bjω

)
ψ̂
(
Bj(ω + Bk + α)

)
. (4.8)

Since the above equation of the right-hand side is 0 by (2.5) in Lemma 2.4, we conclude
that ψ̃ also satisfies (2.5).

Hence, from Lemma 2.4, ψ̃ is a PFW, thus, ν is a PFW multiplier.

Remark 4.4. It is proved in [19, Theorem3.2] that if a measurable function ν is a PFW
multiplier, ν(2ω)ν(ω) is Z-periodic. However, it still is a unsolved question whether
this conclusion holds in L2(Rn). We will discuss it in the future. The next result give a
characterization of the MRA PFW multipliers. In order to obtain this result, we firstly
introduce a result in [16, Lemma2.8].

Lemma 4.5. Let B ∈ Mn(Z) be an expanding matrix such that |detB| = 2. Let α ∈ Zn/BZn

and β = B−1α. Suppose that s is a Zn- periodic, unimodular function on Rn. Then there exists a
Zn-periodic, unimodular function t on Rn such that

s(Bω) = t(ω)t
(
ω + β

)
t(Bω). (4.9)

Theorem 4.6. A measurable function ν is an MRA PFW multiplier if and only if ν is unimodular,
and ν(Bω)ν(ω) is Zn-periodic.

Proof. (if) Let ν be unimodular, and let

s(ω) = ν(Bω)ν(ω) (4.10)
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be Zn-periodic, necessarily unimodular. We now use Lemma 4.5 to obtain a unimodular, Zn-
periodic function t such that

s(Bω) = t(ω)t
(
ω + β

)
t(Bω). (4.11)

Let

μ(ω) = ν(ω)t
(
B−1ω

)
t
(
B−1ω + β

)
. (4.12)

Then μ is unimodular, and

μ(Bω)μ(ω) = ν(Bω)ν(ω)t(ω)t
(
ω + β

)
t
(
B−1ω

)
t
(
B−1ω + β

)

= s(ω)
(
t(ω)t

(
B−1ω

)
t
(
B−1ω + β

))
t
(
ω + β

)

= s(ω)s(ω)t
(
ω + β

)

= t
(
ω + β

)

(4.13)

is a Zn-periodic function. In the above computation, we have used (4.9) and (4.10) as well as
the unimodularity and the periodicity of t.

Let ψ be anMRA PFW, and let ϕ be an associated pseudo-scaling function withm ∈ F̃ϕ
such that (2.11) holds. Let

m̃(ω) = m(ω)t
(
ω + β

)
,

̂̃ϕ(ω) = ϕ̂(ω)μ(ω).
(4.14)

Then, we have

̂̃ϕ(ω) = ϕ̂(Bω)μ(Bω)

= m(ω)ϕ̂(ω)t
(
ω + β

)
μ(ω)

= m̃(ω) ̂̃ϕ(ω),

(4.15)

where the second equation is deduced by (4.13) and the definition of pseudo-scaling function.
It is obvious that

|m̃(ω)|2 + |m̃(ω + β)|2 = 1 a.e. ω ∈ Rn. (4.16)

Thus, we obtain m̃(ω) ∈ F̃ϕ̃.
Let

̂̃ψ(ω) = ψ̂(ω)ν(ω). (4.17)
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Since ψ is a PFW, we can apply Lemma 2.4 to deduce that ψ̃ is a PFW. It follows, that ψ̃ is an
MRA PFW, since

e2πiωs(Bω)m̃
(
ω + β

)̂̃ϕ(ω) = e2πiωs(Bω)m
(
ω + β

)
t
(
ω + 2β

)̂̃ϕ(ω)μ(ω)

= ψ̂(Bω)t
(
ω + 2β

)
μ(ω)

= ψ̂(Bω)t
(
ω + 2β

)
μ(Bω)t

(
ω + β

)

= ν(Bω)ψ̂(Bω)

= ̂̃ψ(Bω),

(4.18)

where we have used (4.13) and the definition of μ.
(only if) The Haar wavelet is, in particular, an MRA TFW; we can then proceed as

in the proof of Property 4.2 to show the unimodularity of ν. The proof that ν(Bω)ν(ω) is
Zn-periodic is similar to Theorem2 in [18], and we omit it.

Thus, we complete the proof.

The next theorem characterizes the class of the generalized lowpass filter multipliers.
Note that the generalized lowpass filters are the functions m ∈ F̃ϕ for some pseudo-scaling
function ϕ satisfying Definition 2.5, that is, m ∈ F̃ϕ and |N0(m)| = 0. We will use this fact in
the following result.

Theorem 4.7. A measurable function ν is a generalized lowpass filter multiplier if and only if ν is
unimodular and Zn-periodic.

Proof. (if) Suppose that ν is unimodular and Zn-periodic, andm(ω) is a generalized lowpass
filter.

Let

m̃(ω) = m(ω)ν(ω). (4.19)

Then, from the definition of the generalized lowpass filter, we have m ∈ F̃ϕ and |N0(m)| = 0.
Therefore, according to the function ν being unimodular and Zn-periodic, it is obvious that
these properties are also true for m̃(ω).

(only if) We proceed similarly in the proof of the two previous theorems.
Let ψ ∈ L2(Rn) be anywavelet satisfying |ψ̂(ω)| > 0 for a.e.ω, andm the corresponding

lowpass filter. Then, it follows that |m(ω)| > 0 a.e. ω ∈ Rn.
Let

m̃(ω) = m(ω)ν(ω). (4.20)

By the assumption that the measurable function ν is a generalized lowpass filter multiplier,
we have m̃ ∈ F̃. In particular, m̃ is Zn-periodic, and so ν is also Zn-periodic.
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Applying ν repetitively, we obtain

|ν(ω)|l|m(ω)| ≤ 1, for a.e. ω, l ≥ 1. (4.21)

This implies that |ν(ω)| ≤ 1 a.e. Unimodularity follows, since both m and m̃ are in F̃
and, thus, satisfy

|m̃(ω)|2 + ∣
∣m̃

(
ω + β

)∣∣2 = 1 = |m(ω)|2 + ∣
∣m

(
ω + β

)∣∣2. (4.22)

In a conclusion, ν is unimodular and Zn-periodic.
The above results provide description of PFW, MRA PFW, and generalized lowpass

filter multipliers. These classes are identical with the respective multiplier classes of wavelets.
This fact is basically a consequence of the fact that all of these multiplier operations
necessarily preserve the L2(Rn) norm of the PFW ψ(ω).

Let us introduce a notation for the next theorem. For a measurable function ν, let E =
{ω : ν(ω)/= 0} and μ(ω) = (ν(Bω))/(ν(ω)) on E.

The following result shows that the situation for pseudo-scaling function multipliers
is completely different from others.

Theorem 4.8. ν is a pseudo-scaling function multiplier if and only if

(1) |ν(Bω)| ≤ |ν(ω)| a.e. and limj→∞|ν(Bjω)| = 1 a.e.;

(2) μ(ω) extends to a Zn-periodic function;

(3) If ξ, η ∈ E, and ξ − η is an odd multiple of β, then |μ(ω)| = |ν(ω)| = 1.

Proof. (if) Let ϕ be a pseudo-scaling function satisfying (2.6), and suppose that ν satisfies
(1)–(3).

Let

̂̃ϕ(ω) = ϕ̂(ω)ν(ω). (4.23)

Using condition (1), we see that ϕ̃ satisfies

lim
j→∞

∣∣∣̂̃ϕ
(
Bjω

)∣∣∣ = lim
j→∞

∣∣∣ν
(
Bjω

)∣∣∣ lim
j→∞

∣∣∣ϕ̂
(
Bjω

)∣∣∣ = 1. (4.24)

Let us now examine the scale equation ̂̃ϕ(Bω) = m̃(ω) ̂̃ϕ(ω) from (4.15).
We claim that there exists m̃ ∈ F̃ such that

ν(Bω)m(ω) = ν(ω)m̃(ω). (4.25)

If ω ∈E, then, by (1), Bω ∈E and, thus, (4.25) is satisfied automatically.
If ω ∈ E, then (4.25) is equivalent to

m̃(ω) =
ν(Bω)
ν(ω)

m(ω). (4.26)
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The condition (2) implies that m̃(ω) defined on E by (4.26) is Zn-periodic on E. We
will now define a Zn-periodic extension of m̃(ω) to Rn satisfying

|m̃(ω)|2 + |m̃(ω + β)|2 = 1. (4.27)

Let us consider [−1, 1]n. Define m̃(ω) on (part of)[−1, 1]n by the following: if ω+k ∈ E
for some k ∈ Zn, then

m̃(ω) = m̃(ω + k). (4.28)

The definition is consistent with the Zn periodicity ofm on E. Let ξ, η ∈ E, and ξ−η = β. Then
one of the following conditions must hold:

(a) ∃k, l ∈ Zn, such that ξ + k ∈ E and η + l ∈ E;
(b) ∃k ∈ Zn such that ξ + k ∈ E and for any l ∈ Zn, η + l∈E;
(c) For any k, l ∈ Zn, such that ξ + k∈E and η + l∈E.
In (a) case, (ξ + k) − (η + l) is an odd multiple of β , so by (3), 1 = |μ(ξ + k)| = |μ(η + l)|.

Thus, we have

|m̃(ξ)| = |m̃(ξ + k)| = |m(ξ + k)| = |m(ξ)|. (4.29)

Similarly, we can deduce |m̃(η)| = |m(η)|. Sincem ∈ F, this implies

|m̃(ξ)|2 + ∣∣m̃
(
η
)∣∣2 = 1. (4.30)

We have either ξ + β = η or η + β = ξ, and so (4.27) holds.
In (b) case we extend the definition of m̃(ω) to the set of all such η ∈ [−1, 1]n by

m̃
(
η
)
=
√
1 − |m̃(ξ)|2, (4.31)

and so we get (4.27).
In (c) case, we let m̃(ζ) = 1 if ζ ∈ B−1[−1, 1]n, and m̃(ζ) = 0 if ζ ∈ [−1, 1]n \ B−1[−1, 1]n,

whenever ζ = ξ or η.
We have thus extended m̃(ω) to the entire interval [−1, 1]n so that (4.27) holds if ξ and

η are in [−1, 1]n. We now extend m̃(ω) to Rn by Zn-periodicity.
Clearly, m̃ ∈ F̃, and (4.15) is satisfied.
(only if) Let ϕ be the Shannon scaling function in L2(Rn); that is, ϕ̂(ω) = χ[−1,1)n(ω).

Then

̂̃ϕ(ω) = ϕ̂(ω)ν(ω) = ν(ω), ω ∈ [−1, 1)n. (4.32)

By (2.6) for ̂̃ϕ(ω), we have

lim
j→∞

∣∣∣ν
(
Bjω

)∣∣∣ = 1. (4.33)
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This establishes (2), since the right-hand side is Zn-periodic, The remain proof is
similar to ones in [19], and so we omit them. Then, we will provide an example to prove
our results.

Example 4.9. Let A be the quincunx matrix Q =
(
1 −1
1 1

) ∈ E
(2)
n , then we get B = Qt =

(
1 1
−1 1

) ∈
E
(2)
n . Furthermore, we have B−1C ⊆ C and BjC ⊆ Bj+1C, for all j ∈N,whereC is the standard

unit square in R2.
Let us define

ϕ̂(ω) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2
, ω ∈ B−1C \ B−2C,

1, ω ∈ B−2C,

0, ω ∈ B−1C,

m(ω) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, ω ∈ B−1C \ B−2C,

1
2
, ω ∈ B−2C \ B−3C,

1, ω ∈ B−3C.

(4.34)

Now we extendm(ω) to C such that the equality |m(ω)|2 + |m(ω + β)|2 = 1 is satisfied
for all ω ∈ C, where we take β = (1/2, 1/2) and extendm(ω) to R2 by Z2-periodicity.

From the definitions of the functions ϕ and m, we easily deduce that ϕ is a pseudo-
scaling function, andm is a generalized lowpass filter.

Finally, we define

ψ̂(Bω) = e2πiωm
(
ω + β

)
ϕ̂(ω). (4.35)

Therefore, by Theorem 3.5, we know that we get an MRA Parseval frame wavelet.
However, from [17], we know that this MRA Parseval frame wavelet is not a Parseval

frame wavelet associated to MRA, which does not permit fast algorithm.

5. Conclusion

In this paper, we characterize all generalized lowpass filter andMRAParseval framewavelets
in L2(Rn) with matrix dilations of the form (Df)(x) =

√
2f(Ax), where A is an arbitrary

expanding n × n matrix with integer coefficients, such that |detA| = 2. We study some
properties of the multipliers of generalized wavelets, scaling functions, and filters in L2(Rn).
Our result is a generalization of the construction of PFWs from generalized low-pass filters
that is introduced in [19]. However, our ways are different from original ones. Then, we
describe the multiplier classes associated with Parseval frame wavelets in L2(Rn) and give an
example to prove our theory.
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[15] M. Paluszyński, H. Šikić, G. Weiss, and S. Xiao, “Tight frame wavelets, their dimension functions,

MRA tight frame wavelets and connectivity properties,” Advances in Computational Mathematics, vol.
18, no. 2–4, pp. 297–327, 2003, Frame.
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