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Nonlinearities in spacecraft attitude determination problem has been studied intensively during
the past decades. Traditionally, multiplicative extended Kalman filter MEKF algorithm has been a
good solution for most nominal space missions. But in recent years, advances in space missions
deserve a revisit of the issue. Though there exist a variety of advanced nonlinear filtering
algorithms, most of them are prohibited for actual onboard implementation because of their
overload computational complexity. In this paper, we address this difficulty by developing a new
algorithm framework based on the marginal filtering principle, which requires only 4 sigma points
to give a complete 6-state attitude and angular rate estimation. Moreover, a new strategy for sigma
point construction is also developed to further increase the efficiency and numerical accuracy.
Incorporating the presented framework and novel sigma points, we proposed a new, nonlinear
attitude and rate estimator, namely, the Marginal Geometric Sigma Point Filter. The new algorithm
is of the same precision as traditional unscented Kalman filters, while keeping a significantly lower
computational complexity, even when compared to the reduced sigma point algorithms. In fact, it
has truly rivaled the efficiency of MEKF, even when simple closed-form solutions are involved in
the latter.

Copyright q 2009 C. Fan and Z. You. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Nonlinearities in spacecraft attitude determination problem have been studied intensively
during the past decades. Since the early 1980’s, multiplicative extended Kalman filtering
(MEKF) algorithm [1] has proven to be a successful solution for engineering application. The
MEKF algorithm has a very low computing cost and performs quite well in most nominal
space missions where the spacecraft’s angular rate is slow and the nonlinearities are not so
impactive.
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In recent years, advances in space missions, such as the greater agility demand and
the application of lower cost sensors, deserve a revisit of the nonlinearity issue. Although
a variety of advanced nonlinear filtering algorithms exist, only few of them are close to the
restrict numerical expense requirements of actual onboard implementations. In the existing
methods, the well-known sigma point Kalman filters (SPKFs) [2, 3] have approven to
be among the most efficient ones. SPKF bases on a Gaussian distribution approximation
technique, namely, the unscented transformation (UT), where a deterministic set of weighted
points (known as the sigma points) are used to make probabilistic inference [4]. Eliminating
the complex Jacobian matrix derivations, SPKF algorithms are much easier to implement and
have better performance than traditional widely used EKF algorithms; so they have found
widespread application in a variety of fields. In recent years, spacecraft attitude estimation
problems have also been addressed by SPKF approaches in literature and engineering
practice [5–7].

In spite of being efficient among nonlinear filters, baseline SPKF still seems
computational costly for engineering implementation. If we denote m as the number of
sigma points required, then for an n-dimension random state vector x, standard unscented
transformation needs a set of m = 2n + 1 points to capture the state’s statistical distribution
properties. More seriously, when we develop a complete SPKF estimator for the n-
dimensional state model, the actual m needed is no longer 2n + 1—it easily becomes
4n or even larger, because standard SPKF algorithm requires a state augmentation to
include all the propagation and measurement noise terms, hence leading to an unacceptable
increase in computational burden. For avoidance of state augment, iterated and trapezoidal
approximation approaches [5, 8] have been developed. Both approaches are suitable for
additive noise case only, and they are able to reduce m back to 2n + 1. To further reduce the
complexity, strategies for introducing fewer sigma points are exploited, known as the reduced
sigma point filters. Several simplex points selection strategy have been developed, including
the n + 2 point minimal-skew simplex points [9], the spherical simplex points [10, 11], and
some enhanced higher-order extensions [12]. Each of the above sigma point sets involves
a zero-valued “central point,” which is usually endowed with a negative weight so as to
minimize higher order effects, known as the scaled UT technique [13]. In recent years, new
sigma point selection strategy involving no central-point is introduced, such as the Schmidt
orthogonalization-based simplex set [14], which includes n + 1 equally weighted points. It
is also proved that [15] such negative weight-free, equally weighted sigma point sets are
numerically more stable and accurate as well as having a better efficiency. In fact, both central-
point elimination and equal weight assignment improve the symmetry property of the sigma
point set, and a better symmetry property provides a better numerical behavior, as it has a
better capability to suppress the impact of the round off errors. In this article, we address the
construction strategies to make a best symmetric structure in simplex sigma point set.

Anyhow, applications of simplex sets have reduced the required sigma points to
50% of the traditional nonaugmented algorithms and have made a significant improvement
in numerical efficiency. In fact, the numerical efficiency of simplex SPKF algorithm is
able to rival or even exceed its EKF counterpart if general formed Riccati equations and
numerical integration process are involved in the latter. However, for typical quaternion-
based spacecraft attitude problems, since simple analytical solutions and sparse matrices
exist for MEKF’ covariance propagation and measurement updates, general simplex SPKF
algorithm still compares unfavorably with MEKF in efficiency.

Clearly, to develop a competitive algorithm alternative to the MEKF for practical
applications, we need a still further reduction of m. Recently, a new sigma point selection
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strategy for a class of “partially linear” transformation problems has been proposed, namely,
the marginal unscented transformation [16]. By exploiting the linear substructures in system
model and margining out the corresponding variables, the marginal UT algorithms only
needs a set of sigma points that adequately describes the statistics property of the nonlinear
part of the states. It provides a possible approach to further shrink the size of the sigma
point set. As attitude dynamics also has linear substructures in gyro bias drift model and
the observation equations, it is imaginable that we can also address the attitude and rate
estimator design with similar ideas.

The main contributions of this article include two parts. First, we have derived in
detail a marginal version of SPKF algorithm for typical 6-state attitude determination system.
The new algorithm uses merely 4 sigma points to give a complete attitude and angular rate
estimation; hence it is able to achieve a high numerical efficiency that truly rivals the MEKF.
Second, we have proposed a new set of simplex sigma points for Euclidean Geometric space,
named the Geometric Simplex sigma point set. The new set has a symmetric structure, a lower
computational expense and is numerically more accurate. It would be of use in a variety of
3-dimensional modeled dynamic problems.

The organization of this paper proceeded as follows. First, we established a general
6-state stellar-inertial spacecraft attitude kinemics and measurement model and analyzed
the partially linear structure in the system. Then a marginal SPKF estimator is derived in
detail. Next, we looked into the asymmetrical properties of existing sigma point construction
algorithms and proposed the Geometric simplex set. Finally, we incorporated the proposed
sigma point set into the marginal filtering framework to configure a complete attitude
estimator, named the Marginal Geometric Sigma Point Filter, and inspected its performance
in simulation with comparisons to the traditional MEKF and Spherical Simplex SPKF.

2. Models and Traditional Filtering Frameworks

2.1. Attitude Dynamics and the MEKF Framework

For spacecraft attitude estimation, quaternion has been the most widely used attitude
parameterization. The quaternion is given by a 4-dimension vector defined as q = [qT , q4]

T ,
with q ≡ [q1, q2, q3]T = n̂ sin(φ/2) and q4 = cos(φ/2), where n̂ is Euler axis and φ is the
rotation angle. Quaternion parameter satisfies a single constraint given by qTq = 1. The
kinematics equation is given by

q̇ =
1
2
Ω(ω)q, (2.1)

where ω is the angular rate vector given from the gyro’s measurement ωmeas by
compensating the gyro bias b:

ω = ωmeas − b − ηARW, (2.2)

where ηARW is a zero-mean Gaussian angular random walk noise with a covariance of
σ2

ARWI3. b is often modeled as a rate random walk process with white noise ηRRW and a
covariance of σ2

RRWI3:

ḃ = ηRRW. (2.3)
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From (2.1)∼(2.3), we can derive the discrete-time version of the above models with
numerical integration. In fact, numerically simpler closed-form solution exists for (2.1) if
we approximately consider the direction of ω as a constant vector during the propagation
interval T for each filtering circle from tk−1 to tk:

̂qk/k−1 = ̂qk−1 ⊗ ̂q
ω

k−1, (2.4)

where

̂q
ω

k−1 =

⎡

⎢

⎣

̂φ
T

k−1

2

sin
(

̂φk−1/2
)

cos
(

̂φk−1/2
) , cos

̂φk−1

2

⎤

⎥

⎦

T

(2.5)

with

ω̂k−1 = ωmeas
k−1 − ̂bk−1,

̂φk−1 = ω̂k−1T, ̂φk−1 =
∣

∣

∣

̂φk−1

∣

∣

∣.
(2.6)

The approximation is tenable as far as the period T is small enough, which is usually well
satisfied in practice, and a second-order accuracy is guaranteed.

In actual calculation process, (2.5) seems too complex, and a 2nd-order approximation
is enough. To associate the quaternion q(φ) = [n̂T sin(φ/2), cos(φ/2)]T to its pertinent
rotation vector φ = n̂φ in a straightforward way, we can choose an arbitrarily 3-dimensional
attitude parameter as the media. In this paper, we choose the Modified Rodrigues Parameters
(MRPs) recommended in [17] to give a 2nd-order, trigonometric function, and square-root
function-free approximation of (2.5):

φ(δq) =
4δq

(

1 + δq4
) ,

δq(φ) =

[

8φT ,
(

16 − φ2)
]T

(

16 + φ2
)

(2.7)

with φ2 = φTφ. Clearly, such MRP-based expression is quite economic for computation. Then
the discrete-time propagation equations can be written as follows:

̂q
ω

k−1 =

[

8̂φ
T

k−1,
(

16 − ̂φ2
k−1

)

]T

(

16 + ̂φ2
k−1

) ,

̂bk/k−1 = ̂bk−1.

(2.8)

To cope with the unit-length constraint of quaternion, local error states (also known
as the local disturbance states) are introduced into filter design. We describe the local
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attitude error as a 3-dimensional rotation vector a and the local gyro bias error as another 3-
dimensional vector Δb. Then the actual state vector processed by the filter is the 6-dimension
disturbance state:

x =
[

aT ,ΔbT
]T
. (2.9)

For clarity, we hence address the original states ̂q and b as the “global states,” which would
mainly serve as singular-point-free reference and storage for the filter. The global states and
the local error state are affiliated as

q = ̂q ⊗ δq(â),

b = ̂b + Δb,
(2.10)

where δq is the local error quaternion corresponding to â. Again we choose to use the MRP
approximation, as

a(δq) =
4δq

(

1 + δq4
) ,

δq(a) =

[

8aT ,
(

16 − a2)]T

(16 + a2)

(2.11)

with a2 = aTa. Clearly, such an MRPs-based expression is free from any square-root or
trigonometric functions, economic in computation.

After all generality, the observation model in this article is established as an automatic
star sensor with quaternion measurements qmeas

k . But in actual practice this information is
presented to the Kalman filter in a more convenient way as in terms of a 3-dimensional
parameter. Again we choose to use the MRP parameter, and then the star sensor’s observation
model is simply defined as the local error between the predicted and observed attitudes:

zmeas
k = h(x̂k) = a

(

δqmeas
k

)

+ vk, (2.12)

where

δqmeas
k = ̂q

−1
k/k−1 ⊗ q

meas
k , (2.13)

and vk is the measurement noise covariance modeled as

Rk = σ2
r I3. (2.14)

With the above models, we can derive an MEKF estimator as in [1] and briefly reviewed
in blocked matrix form in Table 4. Note that the most computational cost parts of the
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algorithm involve the covariance propagation, measurement update, and the Kalman filter
gain computing, namely,

PXk/k−1 = Θk−1PXk−1Θ
T
k−1 +Qk, (2.15)

Kk = PXk/k−1H
T
k

(

HkPXk/k−1H
T
k + Rk

)−1
, (2.16)

PXk = (I6 −KkHk)PXk/k−1, (2.17)

where PX
k

is the estimation of x’s covariance,Kk is the Kalman filter gain, Hk is the observation
matrix, and Θk and Qk are, respectively, the transition matrix and the propagation noise
matrix, as

Θk−1 =

[

Φk−1 Ψk−1

03×3 I3

]

, Qk =

⎡

⎣

QA
k

(

QBA
k

)T

QBA
k QB

k

⎤

⎦. (2.18)

General problem would involve numerical integration of Riccati equations to evaluate
the Θk matrix in (2.15), and complex derivations to evaluate the Hk matrix in (2.16) and
(2.17). Fortunately, it is also found that simple analytical solutions exist for Φk−1, Ψk−1 (see
Table 4) [18], and Qk [19] as

QA
k = T

(

σ2
ARW +

(

1
3

)

σ2
RRWT

2
)

I3,

QBA
k = −

(

1
2

)

σ2
RRWT

2I3,

QB
k = σ2

RRWTI3.

(2.19)

Moreover, Hk involves sparse and unit matrices as

Hk = [I3, 03×3]. (2.20)

Hence the MEKF algorithm is numerically very efficient. The computational complex of a
typical stellar-inertial MEKF attitude estimator is evaluated in Table 4.

2.2. Traditional Sigma Point Filtering Framework

We consider now the application of SPKF to the system discussed above. A set of m sigma
points are chosen to approximate the statistic distribution of the 6-dimension disturbance
state x = [aT ,ΔbT]T :

χ(i) =
[

α(i)T ,β(i)T
]T
, i = 1, 2, . . . , m, (2.21)
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where (i) is the index, α(i), β(i) represent the attitude and bias error, respectively, each point
is assigned with a weight W (i), and all the weights satisfy the normalization constraint:

m
∑

i=1

W (i) = 1. (2.22)

For clarity, write the sigma points and their associated weight in matrix form, as

� =
[

χ(1),χ(2), . . . ,χ(m)
]

=

[

�

�

]

=

[

α(1),α(2), . . . ,α(m)

β(1),β(2), . . . ,β(m)

]

,

� =
[

W (1),W (2), . . . ,W (m)
]

,

Λ� = diag
(

�
)

.

(2.23)

For unbiased distribution of x ∈ �n , � is constructed as

� = SX�, (2.24)

where SX is an arbitrary square-root matrix of PX with SX(SX)T = PX = �cov(x, x), also
denoted as SX =

√
PX . � = [u(1), . . . ,u(m)] ∈ �n×m is a base set of sigma points, and it can

be defined in several different rules, depending on the sigma point construction strategy we
use. Anyhow, � has an unbiased mean and a unit covariance:

� ·� T = 0,

� ·ΛW ·�T = Im.
(2.25)

The construction strategy of � is also the dominating differentiation between different SPKF
algorithms. With the definitions above, the set X is able to capture the statistics of x’s
distribution precisely up to 2nd-order.

The SPKF attitude estimator is as follows. At the beginning time of each filtering step
tk−1, the local error state is reset to zero:

x̂k−1 =
[

âTk−1,Δ̂b
T
k−1

]T
= [03×1, 03×1]T . (2.26)

Then we construct the sigma points of Xk−1. As in [5], we would like to use the trapezoidal
approximation to avoid state augmentation; so actually SXk−1 is computed as

SXk−1 =

√

PX
k−1 +Q

X

k−1, (2.27)



8 Mathematical Problems in Engineering

where

Q
X

k−1 =

⎡

⎣

Q
A

k−1, 03×3

03×3,Q
B

k−1

⎤

⎦ =

⎡

⎢

⎢

⎣

T

2

(

σ2
ARW −

T2

6
σ2

RRW

)

I3, 03×3

03×3,
T

2
σ2

RRWI3

⎤

⎥

⎥

⎦

, (2.28)

and it is equivalent to have the Qk in (2.18) implicitly propagated together with the sigma
points [5].

Next, propagate the m sigma points as follows:

φ
β(i)
k−1 =

(

ω̂k−1 − β(i)
k−1

)

T,

qβ(i)
k−1 =

[

8φβ(i)T
k−1 ,
(

16 − φβ(i)2
k−1

)]T

(

16 + φβ(i)2
k−1

) ,

(2.29)

where φβ(i)
k−1 = |φβ(i)

k−1|, and

qα(i)
k−1 =

[

8α(i)T
k−1 ,
(

16 − α(i)2
k−1

)]T

(

16 + α(i)2
k−1

) ,

qα(i)
k/k−1 =

(

̂q
ω

k−1

)−1
⊗ qα(i)

k−1 ⊗ q
β(i)
k−1.

(2.30)

Thereby we have the propagated sigma points �k/k−1 and �k/k−1, respectively, as

α
(i)
k/k−1 = α

(

qα(i)
k/k−1

)

=
4qα(i)

k/k−1
(

1 + qα(i)4k/k−1

) , (2.31)

β
(i)
k/k−1 = β

(i)
k−1. (2.32)

Note we have propagated the attitude-related sigma points α(i) directly without adhering it
to the global state ̂qk−1 as in [5]; so a decrease of computational complexity is achievable. This
approach stands as far as the time interval of T is guaranteed to be small enough in order that
both α(i) and φ(i) can be taken as small rotation vectors, and the MRP approximation is valid.
Then the predicted mean of x is

x̂k/k−1 = �k/k−1�
T . (2.33)
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Now we compute the predicted measurements. Noting that the sigma points have already
implicitly changed their reference from ̂qk−1 to ̂qk/k−1 during propagation, so the predicted
star sensor quaternion measurements are

̂q
χ(i)
k/k−1 = ̂qk/k−1 ⊗ δq

α(i)
k/k−1. (2.34)

Following (2.12) and (2.13), it is straight forward to derive the observation model for the
SPKF as

ζ
(i)
k/k−1 = α

(i)
k/k−1. (2.35)

Denoted in matrix form as � = [ζ(1), ζ(2), . . . , ζ(m)], then we can get the predicted
measurement �̂k/k−1 as

�̂k/k−1 = Zk/k−1 ·WT . (2.36)

Next we compute the covariance predictions. If we take x̂k/k−1 as a bias of the sigma
points, then to appropriately compute the covariance, we must remove this bias at first. Hence
the covariance prediction process would involve two steps:

�k/k−1 = �k/k−1 − 11×m ◦ x̂k/k−1, (2.37)

PXk/k−1 = Xk/k−1 ·ΛW ·Xk/k−1
T , (2.38)

where “◦” denotes the Kronecker product, and 11×m = [1, 1, . . . , 1]1×m. Similarly, we give the
unbiased measurement points set as

Zk/k−1 = Zk/k−1 − 11×m ◦ �̂k/k−1 (2.39)

the innovation covariance and cross covariance matrix are then, respectively,

PZk/k−1 = Zk/k−1 ·Λ� ·Zk/k−1
T + Rk,

PXZk/k−1 = Xk/k−1 ·Λ� ·Zk/k−1
T

(2.40)

and the measurement update procedure is

Kk = PXZk/k−1

(

PZk/k−1

)−1
, (2.41)

x̂k = x̂k/k−1 +Kk

(

�̂
meas
k − �̂k/k−1

)

, (2.42)

PXk = PXk/k−1 −KkPZk/k−1(Kk)T . (2.43)
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Finally, update the global states ̂q and ̂b as

̂qk = ̂qk/k−1 ⊗ δq(âk),

̂bk = ̂bk/k−1 + Δ̂bk.
(2.44)

Above is the framework of an SPKF version attitude estimator. A blocked-form
procedure summary is listed in Table 5. It is not difficult to evaluate the computational
complexity of the SPKF estimator. Even when reduced-point algorithms, such as the spherical
simplex unscented Kalman filter, are adopted, the computing effort is still a double of the
MEKFs, as listed in Table 3.

3. Marginal Geometric Sigma Point Filters

3.1. Marginal Sigma Point Filtering Framework for Spacecraft Attitude and
Rate Estimations

Now we look into some special structures of the above estimator. First, noting (2.32), we
find that the bias-related sigma points � = [β(1), . . . ,β(m)] remain unchanged during the
whole process of the propagation, indicating that their mean would also remain unchanged
as Δ̂bk/k−1 = Δ̂bk−1 = 03×1. In other words, no information has been introduced into the
state Δb’s mean and covariance cov(Δb,Δb) during the propagation. Therefore, once we are
able to capture the information of â, cov(a, a) and cov(b, a), we have already obtained all the
information available during time propagation.

Then noting (2.35), we find only the attitude-related sigma points �k/k−1 are explicitly
used to construct the measurement predictions �k/k−1. We can write a formal expression of
this transform as

� = h(x) = γ(a). (3.1)

In fact, (3.1) belongs to a special class of nonlinear transformation, namely, the partially linear
transformation [16]. Clearly, for the measurement update process, the random variable �’s
mean � , cov(�, �), and cross covariance cov(a, �) are all independent of Δb, and it is proved
that the cross covariance cov(Δb, �) is also independent of cov(Δb,Δb) up to the 2nd-order.

The above discussions leads to the following conclusion: as long as we can construct a
set of sigma points that matches the given mean estimations of â, Δ̂b, and the covariances
of PA = �cov(a, a) and PBA = �cov(Δb, a), it is enough to capture the first two moments’
statistics properties of the random state x with a precision up to 2nd-order. Before moving
on to construct such a sigma point set, we should also note from (2.26), (2.37) and (2.39) that
with the reset and de-bias steps embeding the filter, actually we are on the assumption that
we have an unbiased distribution as x = [aT ,ΔbT]T = [0T3×1, 0

T
3×1]

T .
So now our goal becomes to construct a minimum set of sigma points, which is able

to fully capture all the available information given as (a) unbiased mean estimation, that is,
a = 03×1, Δb = 03×1, and (b) the covariance estimation as PA = cov(a, a) PBA = cov(Δb, a).
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To match the unbiased mean, we have

� ·WT =Wm

(

α(1) + α(2) + · · · + α(m)
)

= 0, (3.2)

� ·WT =Wm

(

β(1) + β(2) + · · · + β(m)
)

= 0. (3.3)

As stated in [9], to fully capture the mean of an n-dimensional state vector, at least m = n + 1
points are needed. Noting both a and Δb ∈ �3 , the minimum mwhich satisfies both (3.2) and
(3.3) is m = 4.

To further reduce the computational expense and make a better symmetry property,
assign equal weights W for all the sigma points. Then we have

m
∑

i=1

Wi = mW = 1. (3.4)

Clearly,

W =
1
m

=
1
4
, (3.5)

W =
(

1
m

)

11×m, ΛW =
(

1
m

)

Im. (3.6)

To match a’s covariance estimation PA = �cov(a, a) with outer products approximation,
we have

�ΛW(�)T =
(

1
m

)

�(�)T = PA. (3.7)

Again we make use of a base set U� ∈ �3×m to help matching PA. Denoting U� =
[ua(1),ua(2),ua(3),ua(4)], the following relationship should be satisfied:

U� ·WT = 0, (3.8)

U� · ΛW · (U�)T = I3. (3.9)

Substituting (3.5) and (3.6), it is straightforward to get

m
∑

i=1

ua(i) = 0, (3.10)

U� · (U�)T = mI3. (3.11)

As m = 4, U� must be a simplex set. In spite of the constraints in (3.8) and (3.9), we still
have the freedom to choose an arbitrary realization of U� . Later we will propose a novel set
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derived from a heuristic geometry approach. Now supposing that U� is given, then we may
construct � simply as

� = SA ·U� , (3.12)

where SA is an arbitrary matrix square-root of PA fulfilling SA(SA)T = PA. It is
straightforward to validate (3.12) as substituting it to (3.7):

�ΛW(�)T =
(

1
m

)

SA ·U�
(

SAU�
)T

=
(

1
m

)

SA ·
(

U�(U�)T
)

·
(

SA
)T

=
(

1
m

)

SA · (mI3) ·
(

SA
)T

= PA.

(3.13)

To match the cross covariance PBA is

BΛW(�)T =
(

1
m

)

B(�)T = PBA. (3.14)

Here we propose a simple and convenient algorithm to compute B. Define SBA
k−1 = PBA(SA)−T ,

which we could get with the low computational cost Gaussian elimination:

SBAk−1 = PBA
(

SA
)−T

=
PBA
k−1

(

SAk−1

)T
. (3.15)

Then we have

B = SBAk−1U� . (3.16)

Proof of (3.15) is straightforward as substituting it to (3.14):

BΛ� (�)T =
(

1
m

)

(

SBAk−1U�
)(

SAU�
)T

=
(

1
m

)

SBAk−1 ·
(

U�(U�)T
)

·
(

SA
)T

=
(

1
m

)

PBA
(

SA
)−T
· (mI3) ·

(

SA
)T

= PBA
(

SA
)−T
·
(

SA
)T

= PBA.

(3.17)
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Thereupon, we have constructed a desired set of marginal sigma points as in (3.12) and (3.16).
Note that it is enough to use merely one base set U� to construct the full-length Sigma point
set � = [�T ,BT]T . So hereafter we would suppress the superscript of U� as U.

Looking into (2.38), we find

PX =

[

PA, PAB

PBA, PB

]

=

⎡

⎣

PA,
(

PBA
)T

PBA, PB

⎤

⎦. (3.18)

With the proposed sigma points, the propagation and innovation steps of Δb’s covariance
estimation PB are no longer necessary. Eliminating the PB-related term and making use of the
symmetric structure of the matrix, it is enough to have PA and PBA propagated. Accordingly,
it is only necessary to have the same matrices updated. There by, we will replace (2.38) and
(2.43) with

PAk/k−1 = �k/k−1 ·ΛW · (�k/k−1)T ,

PBAk/k−1 = Bk/k−1 ·ΛW · (�k/k−1)T ,

PAk = PAk/k−1 − P
AZ
k/k−1

(

PZk/k−1

)−1(

PAZk/k−1

)T

= PAAk/k−1 −K
AZ
k

(

PAZk/k−1

)T
,

PBAk = PBAk/k−1 − P
BZ
k/k−1

(

PZk/k−1

)−1(

PAZk/k−1

)T

= PBAk/k−1 −K
BZ
k

(

PAZk/k−1

)T
.

(3.19)

To avoid state augmentation, we would like to have the propagation noise terms
incorporated into the filter with trapezoidal approximation. However, as PB is no longer used,
we have to seek for alternate approach. Denote

S
QA

k−1 =
√

Q
A

k−1 =

√

√

√

√

(

T2

2

)

·
(

σ2
ARW −

(

T2

6

)

σ2
RRW

)

· I3,

S
QB

k−1 =
√

Q
B

k−1 =

⎛

⎝σRRW

√

T

2

⎞

⎠ · I3.

(3.20)

Then similar to [11], we can add the noise terms directly to the sigma points with the help of
U:

�k−1 = SAk−1U + SQAk−1U =
(

SAk−1 + SQAk−1

)

U, (3.21)

Bk−1 = SBAk−1U − SBQU =
(

SBAk−1 − S
B
Q

)

U. (3.22)
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Table 1: Simplex base sets for 3-dimensional space.

Sigma set U ∈ �n×m for n = 3

U = (0.5/
√

Wm)

⎡

⎣

0, −1/
√

2, 1/
√

2, 0, 0

0, −1/
√

6, −1/
√

6, 2/
√

6, 0

0, −1/
√

12, −1/
√

12, −1/
√

12, 3/
√

12

⎤

⎦

Spherical simplex

m = 5 0 < W0 < 1, Wm = (1 −W0)/(n + 1)

U = (1/
√
W)

⎡

⎢

⎣

1/
√

2, −1/
√

2, 0, 0

1/
√

6, 1/
√

6, −1/
√

3/2, 0

1/
√

12, 1/
√

12, 1/
√

12, −1/
√

4/3

⎤

⎥

⎦

Schmidt orthogonal

m = 4 W = 1/(n + 1) = 1/4

U =

⎡

⎣

+1, +1 −1 −1

+1, −1 −1 +1

+1, −1 +1 −1

⎤

⎦

Geometric simplex

m = 4 W = 1/(n + 1) = 1/4

Table 2: Residues of numerical mean estimation.

S

⎡

⎣

10−1 , 0, 0;

10−2 , 10−1 , 0;

10−3 , 10−4 , 10−1

⎤

⎦

⎡

⎣

10−2 , 0, 0;

10−3 , 10−2 , 0;

10−4 , 10−5 , 10−2

⎤

⎦

⎡

⎣

10−4 , 0, 0;

10−5 , 10−4 , 0;

10−6 , 10−7 , 10−4

⎤

⎦

Mean

SS 2.151464 × 10−18 1.319254 × 10−19 5.591741 × 10−22

SO 1.734723 × 10−18 6.505213 × 10−19 1.694066 × 10−21

GS 0 (precise) 0 (precise) 0 (precise)

Covariance

SS 3.878960 ×10−18 4.065758 × 10−19 8.271806 × 10−24

SO 4.249187 ×10−18 3.030437 × 10−19 7.018860 × 10−24

GS 1.734723 ×10−18 0 (precise) 2.339620 × 10−24

SS: Spherical simplex set. SO: Schmidt orthogonal set. GS: Geometric simplex set.

Note in (3.22) that the sign before SBQ is negative. The reason is that with a given covariance
estimation P and its square-root S, it is equivalent for us to choose either S or –S when
constructing the sigma points. Both “directions” work because the given mean is unbiased.
But when we add noise terms directly to the sigma points as in (3.22), we must guarantee
that SBAk−1 and SBQ have a common sign. Recalling (25) as

QBA
k−1 = −

(

1
2

)

σ2
RRWT

2I3, (3.23)

here the negative sign in the right side of (3.23) clearly indicates opposite signs between SBAk−1
and SBQ.
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Table 3: Comparisons of total arithmetic operations.

Algorithm Phase Multiplies Adds Square
roots

MEKF

Propagation 350 270 2
Measurement update 260 185 1
One full filter step∗ 610 455 3
One observation circle† 1680 1265 9

MGSPF

Propagation 350 285 5
Measurement update 380 280 1
One full filter step 750 565 6
One observation circle 1860 1480 21

SSUKF

Propagation 810 565 8
Measurement update 455 370 1
One full filter step 1265 935 9
One observation circle 3695 2630 33

∗Including 1 propagation step and 1 measurement update step.
†Including several propagation steps and 1 measurement update step. In this case we take a typical value as 4 propagations
for each 1 update.

3.2. The Geometric Simplex Sigma Points

Construction of the base set U plays an important role in simplex sigma point algorithms.
Existing strategies had mainly focused on the design of general operation flow for getting a
base set for any arbitrary dimension n. In [9, 10], direction-extending technique is developed
and used to build the minimal-skew and spherical simplex set. While in [14], Schmidt
orthogonalization is employed to develop a new set. Table 2 demonstrates both the spherical
simplex set [10] and the Schmidt orthogonal simplex set [14] for n = 3. Close comparison
could reveal that both sets are equivalent after a sign shift except for the existence of an
additional central point in the spherical simplex set. Both sets are easy to be extended to
higher dimension space, and because all the points are equally weighted and equidistantly
placed on a hyper sphere, they are numerically stable over the increase of n.

However, both sets lack numerical accuracy, and they are complex to compute, as
irrational numbers

√
2,
√

6, and so on exist. Further, they do not have symmetric structures. A
fully symmetric set needs that for every point u(i) ∈U, we can get another point u(j) ∈ U, i /= j
simply by element permutation or sign-changing point of the generator point u(i) [15].
Clearly, except for the first dimension (or describing in matrix language, the first row of
U), not even element level symmetry is guaranteed in the spherical or Schmidt orthogonal
simplex sets.

In order to make a better symmetry property, we propose a new base set of sigma
points here as in the 3rd row of Table 1 and Figure 1. It is straight forward to find that both
(3.10) and (3.11) are completely satisfied. For clarity, we name this new set as “the Geometric
Simplex Set,” for it has a nice symmetrical structure as a tetrahedron in the 3-dimensional
Euclidean space (Figure 1). The proposed new sigma point set has several benefits.

(i) The new set is more intuitive to comprehend and apply, especially for the 3-
dimensional Euclidean space, the true space where we are, and the true space in which a
variety of dynamical problems as guidance, navigation, and so on take place.
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Table 4: Pseudocode and computational expense evaluation of the MEKF with closed-form solutions.

Algorithm × + √

Initialize

x̂0 = [âT0 ,Δ̂b
T
0 ]

T
= 06×1, ̂q0 = [0T3×1, 1]

T
, ̂b0 = 03×1

PA0 = ε2
aI3, PB0 = ε2

b
I3,

QA
k
= T(σ2

ARW + (1/3)σ2
RRWT

2)I3

QBA
k

= −(1/2)σ2
RRWT

2I3, QB
k
= σ2

RRWTI3

Propagation

ω̂k−1 = ωmeas
k−1 − ̂bk−1, ω̂k−1 = |ω̂k−1|, ̂φk−1 = ω̂k−1T 6 5 1

̂q
ω

k−1 = [8̂φ
T

k−1, (16 − ̂φ2
k−1)]

T

/(16 + ̂φ2
k−1) 6 2

n̂ = ω̂k−1/ω̂k−1 3

Φk−1 = I3 − sin ̂φk−1[n̂×] + (1 − cos ̂φk−1)[n̂×]2

≈ I3 − ( ̂φk−1 − ( ̂φ3
k−1/6))[n̂×] + ( ̂φ2

k−1/2)[n̂×]2
49 30

Ψk−1 = (T/2)I3 − ((1 − cos ̂φk−1)/ω̂k−1)[n̂k−1×]

+(( ̂φk−1 − sin ̂φk−1)/ω̂k−1)[n̂k−1×]2

≈ (T/2)I3 − ( ̂φ2
k−1/2ω̂k−1)[n̂k−1×] + ( ̂φ3

k−1/6ω̂k−1)[n̂k−1×]2

51 30

PAk/k−1 = Φk−1PAk−1Φ
T
k−1 +Ψk−1PBk−1Ψ

T
k−1 108 81

+Ψk−1PBAk−1Φ
T
k−1 + (Ψk−1PBAk−1Φ

T
k−1)

T
+QA

k
54 57

PBA
k/k−1 = PBA

k−1Φ
T
k−1 + PB

k−1Ψ
T
k−1 +QBA

k
54 48

PB
k/k−1 = PB

k−1 +QB
k

3

̂qk/k−1 = ̂qk−1 ⊗ ̂q
ω

k−1, ̂qk/k−1 = ̂qk/k−1/‖̂qk/k−1‖ 22 15 1

̂bk/k−1 = ̂bk−1

353 271 2

Measurement
update

PZ
k/k−1 = HkPXk/k−1H

T
k
+ Rk = PA

k/k−1 + Rk 3

PAZ
k/k−1 = PA

k/k−1H
T
k
= PA

k/k−1

PBZ
k/k−1 = PBA

k/k−1H
T
k
= PBA

k/k−1

KAZ
k

= PA
k/k−1(P

Z
k/k−1)

−1, KBZ
k

= PBA
k/k−1(P

Z
k/k−1)

−1 114 58

δqmeas
k = ̂q

−1
k/k−1 ⊗ q

meas
k 16 12

�
meas
k

= 4qmeas
k

/(1 + q4
meas
k

), γmeas
k

= �̂
meas
k

5 4

âk = KAZ
k

γmeas
k

, Δ̂bk = KBZ
k

γmeas
k

18 9

PA
k
= PA

k/k−1 −K
AZ
k

(PAZ
k/k−1)

T 27 27

PBA
k

= PBA
k/k−1 −K

BZ
k

(PAZ
k/k−1)

T 27 27

PB
k
= PB

k/k−1 −K
BZ
k/k−1(P

BZ
k/k−1)

T 27 27

̂qk = ̂qk/k−1 ⊗ δ̂q(âk), ̂qk = ̂qk/‖̂qk‖ 22 15 1

̂bk = ̂bk/k−1 + Δ̂bk 3

256 185 1
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Table 5: Pseudocode and computational expense evaluation of the MGSPF algorithm.

Algorithm × + √

Initialize

x̂0 = [âT0 ,Δ̂b
T
0 ]

T
= 06×1, ̂q0 = [0T3×1, 1]

T , ̂b0 = 03×1

PA0 = ε2
aI3, PBA0 = εaεbI3 m = 4

S
QA

k−1 = T
√

((6σ2
ARW − T2σ2

RRW)/12)I3 S
QB

k−1 = (σRRW
√

T/2)I3

Propagation

SA
k−1 =

√

PA
k−1, SBA

k−1 = PBA
k−1/(S

A
k−1)

T 25 13 3

�k−1 = (SA
k−1 + SQA

k−1)UGS, Bk−1 = (SBA
k−1 − S

QB
k−1)UGS 0 54

ω̂k−1 = ωmeas
k−1 − ̂bk−1, ω̂k−1 = |ω̂k−1|, ̂φk−1 = ω̂k−1T 6 5 1

̂q
ω

k−1 = [8̂φ
T

k−1, (16 − ̂φ2
k−1)]

T

/(16 + ̂φ2
k−1) 6 2

For i = 1 : m, φ
β(i)
k−1 = (ω̂k−1 − β(i)

k−1)T 3m 3m

qβ(i)
k−1 = [8φβ(i)T

k−1 , (16 − φβ(i)2
k−1 )]

T
/(16 + φβ(i)2

k−1 ) 6m 2m

qα(i)
k−1 = [8α(i)T

k−1 , (16 − α(i)2
k−1)]

T
/(16 + α(i)2

k−1) 6m 2m

qα(i)
k/k−1 = (̂q

ω

k−1)
−1
⊗ qα(i)

k−1 ⊗ q
β(i)
k−1 32m 24m

α
(i)
k/k−1 = 4qα(i)

k/k−1/(1 + q4
α(i)
k/k−1) end 5m 1m

Bk/k−1 = Bk−1, Zk/k−1 = �k/k−1

âk/k−1 = (1/m)�k/k−1 · 11×m 1×m, Δ̂bk/k−1 = Δ̂bk−1 = 03×1 3 3(m − 1)

�k/k−1 = �k/k−1 − 11×m ◦ âk/k−1 3m

PA
k/k−1 = (1/m)�k/k−1(�k/k−1)

T 6 + 6m 6(m − 1)

PBA
k/k−1 = (1/m)Bk/k−1(�k/k−1)

T 9 + 9m 9(m − 1)

̂qk/k−1 = ̂qk−1 ⊗ ̂q
ω

k−1, ̂qk/k−1 = ̂qk/k−1/‖̂qk/k−1‖ 22 15 1

̂bk/k−1 = ̂bk−1

For m = 4 351 285 5

Measurement
update

�̂k/k−1 = (1/m)Zk/k−1•1m×1 3 3(m − 1)

Zk/k−1 = Zk/k−1 − 11×m ◦ �̂k/k−1 3m

PZ
k/k−1 = (1/m)Zk/k−1Zk/k−1

T + Rk 6 + 6m 9(m − 1) + 3

PAZ
k/k−1 = (1/m)ak/k−1Zk/k−1

T 9 + 9m 9(m − 1)

PBZ
k/k−1 = (1/m)Bk/k−1Zk/k−1

T 9 + 9m 9(m − 1)

KAZ
k

= PA
k/k−1(P

Z
k/k−1)

−1, KBZ
k

= PBA
k/k−1(P

Z
k/k−1)

−1 114 58

δqmeas
k = q−1

k/k−1 ⊗ q
meas
k 16 12

�
meas
k

= 4qmeas
k

/(1 + q4
meas
k

), γmeas
k

= �̂
meas
k

− �̂k/k−1 5 4

âk = KAZ
k

γmeas
k

, Δ̂bk = KBZ
k

γmeas
k

18 12

PA
k
= PA

k/k−1 −K
AZ
k

(PAZ
k/k−1)

T
27 27

PBA
k

= PBA
k/k−1 −K

BZ
k

(PAZ
k/k−1)

T
27 27

PB
k
= PB

k/k−1 −K
BZ
k/k−1(P

BZ
k/k−1)

T
27 27

̂qk = ̂qk/k−1 ⊗ δq(âk), ̂qk = ̂qk/‖̂qk‖ 22 15 1

̂bk = ̂bk/k−1 + Δ̂bk 3

For m = 4 379 278 1



18 Mathematical Problems in Engineering

(ii) Lower computation expense and better round-off error behavior. The new set is
free from calculating any irrational numbers. Furthermore, as it is only constituted of ±1,
we can replace the multiplication operations in (3.12), (3.16) with simple sign changes. By
elimination of both irrational number and multiplication, we made (3.12), (3.16) precise, and
free from round-off errors.

(iii) The Geometric simplex set has a better symmetrical structure, which would
help to further increase the numerical accuracy, including (a) single dimension symmetry
completely fulfilled (or in matrix language, each row of U is constituted with symmetrically
distributed elements). (b) interdimensional symmetry (or per mutational symmetry) partly
fulfilled. Define the generator point as u = [1, 1,−1]T , and construct new points from u by
permutation and sign-changing, altogether we can make 8 points occupying the 8 vertices of
the unit cube in Figure 1. Note U has included 4 of them with a symmetric structure, which is
enough to capture the random state’s first two order moments (mean and variance). Actually,
the other 4 points can be found in −U, and clearly, for an unbiased problem, choosing either
U or −U is equivalent.

Numerical Demonstration

Suppose that we have already obtained a 3-dimensional unbiased state a, covariance P, and
its coresponding square-root matrix S. Then we are going to generate a set of sigma points
with a base set U as � = S ·U. As had been claimed, theoretically we should have

�
a =Wm

(

α(1) + · · · + α(m)
)

= 0,

�
P = � ·ΛW · (�)T = S · ST ,

(3.24)

where
�
a and

�
P represent the result by numerical computation. Then we can take the norm of

the residues |�a − 0| and |diag(
�
P − P)| as a criterion of a sigma set’s numerical accuracy. Three

typical base sets, namely, the Spherical Simplex set, the Schmidt Orthogonal set and the new
proposed Geometry Simplex set are compared over a series of different S matrices with their
diagonal elements ranked form 102 ∼ 10−6.

The numerical experiment is programmed with double precision float numbers in
MATLAB, and some typical results are listed in Table 2. As can be seen, numerical behaviors
of the Geometric simplex set are quite encouraging. On mean computation, both spherical
and Schmidt sets introduced a residue error at the scale of about 10−16 of the diagonal
elements of S, while the geometric set’s computed residue had always been precisely 0. On
covariance computation, the new set’s accuracy is also significantly superior. Biased sets are
also studied and the result is similar.

3.3. The Highly Efficient New Filter

Incorporating the Geometric Simplex sigma point set into the Marginal SPKF framework, we
would have a new nonlinear SPKF estimator for attitude estimation, namely, the Marginal
Geometric Sigma Point Filter (MGSPF) algorithm, summarized in Table 5. As a sigma point
filtering algorithm, the MGSPF has a significant increase in numerical efficiency, while it still
guarantees a same order precision as the traditional SPKF algorithms. A general comparison
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Figure 1: Geometry simplex sigma points in 3-dimensional Euclidean space.

of computation expense is taken between the MEKF and MGSPF algorithms as listed in Tables
4 and 5, and the result is summarized in Table 3.

For the computing effort of the propagation phase, there is little difference between
MGSPF and MEKF, both are about half of the SSUKFs. For measurement update phase, the
MGSPF takes some more arithmetic operations, but still only 80% of the SSUFK. In fact, if
we take into account that in most actual implementations, there exist more propagation steps
than observation steps, the total computational expense of MEKF and MGSPF would be very
close. It is clear that the MGSPF has achieved a truly rivalizing efficiency as the MEKF, even
when simple analytical closed-form solutions are included in the MEKF, and they are almost
50% of the SSUKF.

4. Simulations

In this section we apply the proposed Marginal Geometric Sigma Point Filter (MGSPF)
algorithm to the typical stellar-inertial spacecraft attitude determination system with
numerical simulations. To give a comparison, the multiple extended Kalman filter (MEKF)
and a nonaugmented spherical simplex unscented Kalman filter (SSUKF) with trapezoidal
approximation of the propagation noise are also simulated.

Parameters of the simulated model are set as follows. The spacecraft’s initiation
attitude is q0 = [0.1, 0.15, 0.2, 1]T , or expressed in 3-1-2 Euler Angles as [14◦,15◦,21◦]. The
initial angular velocity is ω0 = [0.05◦/s, 0.1◦/s, 0.15◦/s]T , and it runs a sinusoidal maneuver
at an Amplitude of 0.5◦/s and periods of 100 s, 120 s, and 125 s for each axis. The gyroscope
is modeled as initial bias 3.4◦/s, drift instability (also known as the flicker noise) 0.001◦/s;
angular random walk (ARW) 1× 10−3◦/s1/2, rate random walk 1.4× 10−3◦/s3/2, and sampling
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Figure 2: Estimation error history of the attitude.
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Figure 3: Estimation error history of the gyroscope bias.

frequency 20 Hz. The star sensor is simulated with 1σ accuracy as cross boresight 10 arc-
seconds and around boresight 30 arc-seconds, and the sensor’s update-rate is 5 Hz.
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Figure 4: Influence of the bias noise parameter in MGSPF.

The initial states of all filters are set equivalently as x̂0 = [âT0 ,Δ̂b
T
0 ]

T
= 06×1, ̂q0 =

[0T3×1, 1]
T , and ̂b0 = 03×1. The initial covariance PX0 is set with the attitude-related elements

PA0 =(10◦)2I3, and bias-related elements PB0 = (0.1◦/s)2 I3. For MGSPF, as PB0 is no longer used,

we equivalently set a PBA0 =
√

PA0 P
B
0 . Specific elements in Rk and Qk are chosen through

tuning, set as σr = 2 × 10−7, σARW = 4.5 × 10−4, and σRRW = 4 × 10−4, respectively, for all three
filters.

The simulation results of attitude estimation error and and gyro bias estimation error
are, respectively, illustrated in Figures 2 and 3. As the star sensor has a high precision and
a 5 Hz Data Update Rate, the three filters’ steady-state accuracies are close to each other;
so we mainly focus on the initial stage of the estimation process. As shown in Figure 2, of
the attitude estimation error, to converge to a value below 0.001◦, MEKF takes more than 60
star observations, SSUKF takes about 40, while the MGSPF takes only about 20. Meanwhile,
as in Figure 3 of the gyro bias estimation, to achieve an estimation precision of 0.001◦/s,
MEKF takes more than 50 star samples, SSUKF takes 30, and the MGSPF takes about 20.
This indicates that the MGSPF algorithm, once properly implemented, provides a better
performance than MEKF at a similar numerical expense, while it is able to achieve, if not
better, at least a comparable performance to traditional sigma point filters, at a significant
lower expense.

We now address the issue of tuning. The main difference between MGSPF and
traditional sigma point filters in parameter selection is mainly reflected in the usage of σRRW;
so we focus on the effect of different σRRW on the performance of MGSPF. As illustrated in
Figure 4, a larger σRRW has the advantage of enabling a faster convergence or can also be said
as an enhancement of the filter’s tracking ability. On the other hand, a large σRRW also has a
drawback of instable parameter estimation in steady state; that is, the estimation of Δb will
“jump”. An optimized value of σRRW would be a tradeoff between the two. In addition, as
the sigma points are created from the covariance matrices which are added with the noise
terms arisen from σRRW, the scale of σRRW should be kept in a reasonable range that would
not obscure the information contained in the covariances.
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5. Conclusion

A new, minimum sigma points algorithm for spacecraft attitude and angular rate estimation
has been developed. By marginalizing out the linear substructures within the random walk
gyro bias model and the attitude involving, only observation model, the new algorithm needs
only 4 sigma points to give a complete 6-state attitude and angular rate estimation. The
algorithm’s computational expense is only 50% of the traditional SSUKF algorithm. It has
truly rivaled the MEKF algorithm’s computing speed even when simple analytical closed-
form solutions are included. Yet it is still able to achieve the same accuracy as traditional
unscented Kalman filters.

A new, symmetrical, and numerically more efficient simplex sigma set has been
presented. The new set is completely free from irrational numbers and is free from any
multiplication operations during sigma point construction. The new set introduces almost
none of round-off error for mean reference and smaller error for covariance reference. It
would be of use for the implementation in a variety of 3-dimensional Euclidean space
involving dynamical problems such as positioning and attitude estimation problems.

With the remarkable reduction in computational expense, the sigma point Kalman
filter would gain a significant upgrading in its competitiveness as a candidate algorithm for
actual onboard implementation.
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