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1. Introduction

Recently, Ivanov [1] investigated the integrability of a class of nonlinear dispersive wave
equations:

ut − uxxt + ∂x
(
κu + αu2 + βu3

)
= νuxuxx + γuuxxx, (1.1)

where and α, β, γ, κ, ν are real constants.
The important cases of (1.1) are as follows. The hyperelastic-rod wave equation

ut − uxxt + 3uux = γ(2uxuxx + uuxxx) (1.2)

has been recently studied as a model, describing nonlinear dispersive waves in cylindrical
compressible hyperelastic rods [2–7]. The physical parameters of various compressible
materials put γ in the range from –29.4760 to 3.4174 [2, 4].

The Camassa-Holm equation

ut − uxxt + 3uux = 2uxuxx + uuxxx (1.3)
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describes the unidirectional propagation of shallow water waves over a flat bottom [8, 9]. It is
completely integrable [1] and admits, in addition to smooth waves, a multitude of travelling
wave solutions with singularities: peakons, cuspons, stumpons, and composite waves [9–12].
The solitary waves of (1.2) are smooth if κ > 0 and peaked if κ = 0 [9, 10]. Its solitary waves
are stable solitons [13, 14], retaining their shape and form after interactions [15]. It models
wave breaking [16–18].

The Degasperis-Procesi equation

ut − uxxt + 4uux = 3uxuxx + uuxxx, (1.4)

models nonlinear shallow water dynamics. It is completely integrable [1] and has a variety
of travelling wave solutions including solitary wave solutions, peakon solutions and shock
waves solutions [19–26].

The Fornberg-Whitham equation

ut − uxxt + ux + uux = uuxxx + 3uxuxx (1.5)

appeared in the study qualitative behaviors of wave-breaking [27]. It admits a wave of
greatest height, as a peaked limiting form of the travelling wave solution [28], u(x, t) =
A exp(−1/2|x − 4/3t|), where A is an arbitrary constant. It is not completely integrable [1].

The regularized long-wave or BBM equation

ut − uxxt + ux + uux = 0 (1.6)

and the modified BBM equation

ut − uxxt + ux + 3u2ux = 0 (1.7)

have also been investigated by many authors [29–37].
Many efforts have been devoted to study (1.2)–(1.4), (1.6), and (1.7), however, little

attention was paid to study (1.5). In [38], we constructed two types of bounded travelling
wave solutions u(ξ)(ξ = x − ct) to (1.5), which are defined on semifinal bounded domains
and called kink-like and antikink-like wave solutions. In this paper, we continue to study
the travelling wave solutions to (1.5). Following Vakhnenko and Parkes’s strategy in [39],
we obtain some periodic and solitary wave solutions u(ξ) to (1.5) which are defined on
(−∞,+∞). The travelling wave solutions obtained in this paper are obviously different from
those obtained in our previous work [38]. To the best of our knowledge, these solutions are
new for (1.5). Our work may help people to know deeply the described physical process and
possible applications of the Fornberg-Whitham equation.

The remainder of the paper is organized as follows. In Section 2, for completeness
and readability, we repeat Appendix A in [39], which discusses the solutions to a first-
order ordinary differential equaion. In Section 3, we show that, for travelling wave solutions,
(1.5) may be reduced to a first-order ordinary differential equation involving two arbitrary
integration constants a and b. We show that there are four distinct periodic solutions
corresponding to four different ranges of values of a and restricted ranges of values of b.
A short conclusion is given in Section 4.
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2. Solutions to a First-Order Ordinary Differential Equaion

This section is due to Vakhnenko and Parkes (see Appendix A in [39]). For completeness and
readability, we repeat it in the following.

Consider solutions to the following ordinary differential equation

(
ϕϕξ

)2 = ε2f
(
ϕ
)
, (2.1)

where

f
(
ϕ
)
=
(
ϕ − ϕ1

)(
ϕ − ϕ2

)(
ϕ3 − ϕ

)(
ϕ4 − ϕ

)
, (2.2)

and ϕ1, ϕ2, ϕ3, ϕ4 are chosen to be real constants with ϕ1 ≤ ϕ2 ≤ ϕ ≤ ϕ3 ≤ ϕ4.
Following [40] we introduce ζ defined by

dξ

dζ
=
ϕ

ε
, (2.3)

so that (2.1) becomes

(
ϕζ
)2 = f

(
ϕ
)
. (2.4)

Equation(2.4) has two possible forms of solution. The first form is found using result
254.00 in [41]. Its parametric form is

ϕ =
ϕ2 − ϕ1nsn2(w | m)

1 − nsn2(w | m)
,

ξ =
1
εp

(
wϕ1 +

(
ϕ2 − ϕ1

)
Π(n;w | m)

)
,

(2.5)

with w as the parameter, where

m =

(
ϕ3 − ϕ2

)(
ϕ4 − ϕ1

)
(
ϕ4 − ϕ2

)(
ϕ3 − ϕ1

) , p =
1
2

√(
ϕ4 − ϕ2

)(
ϕ3 − ϕ1

)
, w = pζ, (2.6)

n =
ϕ3 − ϕ2

ϕ3 − ϕ1
. (2.7)

In (2.5) sn(w | m) is a Jacobian elliptic function, where the notation is as used in [42, Chapter
16], and the notation is as used in [42, Section 17.2.15].
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The solution to (2.1) is given in parametric form by (2.5) withw as the parameter. With
respect to w, ϕ in (2.5) is periodic with period 2K(m), where K(m) is the complete elliptic
integral of the first kind. It follows from (2.5) that the wavelength λ of the solution to (2.1) is

λ =
2
εp

∣∣ϕ1K(m) +
(
ϕ2 − ϕ1

)
Π(n | m)

∣∣, (2.8)

where Π(n | m) is the complete elliptic integral of the third kind.
When ϕ3 = ϕ4, m = 1, (2.5) becomes

ϕ =
ϕ2 − ϕ1n tanh2 w

1 − n tanh2 w
,

ξ =
1
ε

(
wϕ3

p
− 2 tanh−1(√n tanhw

))
.

(2.9)

The second form of solution of (2.5) is found using result 255.00 in [41]. Its parametric
form is

ϕ =
ϕ3 − ϕ4nsn2(w | m)

1 − nsn2(w | m)
,

ξ =
1
εp

(
wϕ4 −

(
ϕ4 − ϕ3

)
Π(n;w | m)

)
, (2.10)

where m, p,w are as in (2.6), and

n =
ϕ3 − ϕ2

ϕ4 − ϕ2
. (2.11)

The solution to (2.1) is given in parametric form by (2.10) with w as the parameter.
The wavelength λ of the solution to (2.1) is

λ =
2
εp

∣∣ϕ4K(m) −
(
ϕ4 − ϕ3

)
Π(n | m)

∣∣. (2.12)

When ϕ1 = ϕ2, m = 1, (2.10) becomes

ϕ =
ϕ3 − ϕ4n tanh2 w

1 − n tanh2 w
,

ξ =
1
ε

(
wϕ2

p
+ 2 tanh−1(√n tanhw

))
.

(2.13)
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3. Periodic and Solitary Wave Solutions to Equation (1.5)

Equation (1.5) can also be written in the form

(ut + uux)xx = ut + uux + ux. (3.1)

Let u = ϕ(ξ) + c with ξ = x − ct be a travelling wave solution to (3.1), then it follows that

(
ϕϕξ

)
ξξ = ϕϕξ + ϕξ. (3.2)

Integrating (3.2) twice with respect to ξ, we have

(
ϕϕξ

)2 =
1
4

(
ϕ4 +

8
3
ϕ3 + aϕ2 + b

)
, (3.3)

where a and b are two arbitrary integration constants.
Equation (3.3) is in the form of (2.1) with ε = 1/2 and f(ϕ) = (ϕ4 + 8/3ϕ3 + aϕ2 + b).

For convenience we define g(ϕ) and h(ϕ) by

f
(
ϕ
)
= ϕ2g

(
ϕ
)
+ b, where g

(
ϕ
)
= ϕ2 +

8
3
ϕ + a,

f ′
(
ϕ
)
= 2ϕh

(
ϕ
)
, where h

(
ϕ
)
= 2ϕ2 + 4ϕ + a,

(3.4)

and define ϕL, ϕR, bL, and bR by

ϕL = −1
2

(
2 +
√

4 − 2a
)
, ϕR = −1

2

(
2 −
√

4 − 2a
)
,

bL = −ϕ2
Lg

(
ϕL

)
=
a2

4
− 2a +

8
3
+

2
3
(2 − a)

√
4 − 2a,

bR = −ϕ2
Rg

(
ϕR

)
=
a2

4
− 2a +

8
3
− 2

3
(2 − a)

√
4 − 2a.

(3.5)

Obviously, ϕL, ϕR are the roots of h(ϕ) = 0.
In the following, suppose that a < 2 and a/= 0 such that f(ϕ) has three distinct

stationary points: ϕL, ϕR, 0 and comprise two minimums separated by a maximum. Under
this assumption, (3.3) has periodic and solitary wave solutions that have different analytical
forms depending on the values of a and b as follows.

(1) a < 0
In this case ϕL < 0 < ϕR and f(ϕL) < f(ϕR). For each value a < 0 and 0 < b < bR (a

corresponding curve of f(ϕ) is shown in Figure 1(a)), there are periodic inverted loop-like
solutions to (3.3) given by (2.5) so that 0 < m < 1, and with wavelength given by (2.8); see
Figure 2(a), for an example.
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Figure 1: The curve of f(ϕ). (a) a = −50, b = 233; (b) a = −50, b = 374.1346; (c) a = 1.5, b = −0.05; (d)
a = 1.5, b = 0; (e) a = 16/9, b = −0.1; (f) a = 16/9, b = 0; (g) a = 1.9, b = −0.24; (h) a = 1.9, b = −0.2010.

The case a < 0 and b = bR (a corresponding curve of f(ϕ) is shown in Figure 1(b))
corresponds to the limit ϕ3 = ϕ4 = ϕR so that m = 1, and then the solution is an inverted
loop-like solitary wave given by (2.9) with ϕ2 ≤ ϕ < ϕR and

ϕ1 = −1
6

(
2 + 3

√
4 − 2a + 2

√
4 + 6

√
4 − 2a

)
,

ϕ2 = −1
6

(
2 + 3

√
4 − 2a − 2

√
4 + 6

√
4 − 2a

)
;

(3.6)

see Figure 3(a), for an example.
(2) 0 < a < 16/9
In this case ϕL < ϕR < 0 and f(ϕL) < f(0). For each value 0 < a < 16/9 and bR < b < 0 (a

corresponding curve of f(ϕ) is shown in Figure 1(c)), there are periodic hump-like solutions
to (3.3) given by (2.5) so that 0 < m < 1, and with wavelength given by (2.8); see Figure 2(b),
for an example.

The case 0 < a < 16/9 and b = 0 (a corresponding curve of f(ϕ) is shown in
Figure 1(d)) corresponds to the limit ϕ3 = ϕ4 = 0 so that m = 1, and then the solution can
be given by (2.9) with ϕ1 and ϕ2 given by the roots of g(ϕ) = 0, namely

ϕ1 = −4
3
− 1

3

√
16 − 9a, ϕ2 = −4

3
+

1
3

√
16 − 9a. (3.7)

In this case we obtain a weak solution, namely, the periodic upward-cusp wave

ϕ = ϕ
(
ξ − 2jξm

)
,

(
2j − 1

)
ξm < ξ <

(
2j + 1

)
ξm, j = 0,±1,±2, . . . , (3.8)
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Figure 2: Periodic solutions to (3.3) with 0 < m < 1. (a) a = −50, b = 233 som = 0.7885; (b) a = 1.5, b = −0.05
so m = 0.6893; (c) a = 16/9, b = −0.1 so m = 0.8254; (d) a = 1.9, b = −0.24 so m = 0.6121.

where

ϕ(ξ) =
(
ϕ2 − ϕ1tanh2

(
ξ

4

))
cosh2

(
ξ

4

)
, (3.9)

ξm = 4 tanh−1

√
ϕ2

ϕ1
, (3.10)

see Figure 3(b), for an example.
(3) a = 16/9
In this case ϕL < ϕR < 0 and f(ϕL) = f(0). For a = 16/9 and each value bR < b < 0

(a corresponding curve of f(ϕ) is shown in Figure 1(e)), there are periodic hump-like
solutions to (3.3) given by (2.10) so that 0 < m < 1, and with wavelength given by (2.12);
see Figure 2(c), for an example.

The case a = 16/9 and b = 0 (a corresponding curve of f(ϕ) is shown in Figure 1(f))
corresponds to the limit ϕ1 = ϕ2 = ϕL = −4/3 and ϕ3 = ϕ4 = 0 so that m = 1. In this case
neither (2.9) nor (2.13) is appropriate. Instead we consider (3.3) with f(ϕ) = 1/4ϕ2(ϕ + 4/3)2

and note that the bound solution has −4/3 < ϕ ≤ 0. On integrating (3.3) and setting ϕ = 0 at
ξ = 0 we obtain a weak solution

ϕ =
4
3

exp
(
−1

2
|ξ|
)
− 4

3
, (3.11)

that is, a single peakon solution with amplitude 4/3, see Figure 3(c).
(4) 16/9 < a < 2
In this case ϕL < ϕR < 0 and f(ϕL) > f(0). For each value 16/9 < a < 2 and bR <

b < bL (a corresponding curve of f(ϕ) is shown in Figure 1(g)), there are periodic hump-like
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Figure 3: Solutions to (3.3) with m = 1. (a) a = −50, b = 374.1346; (b) a = 1.5, b = 0; (c) a = 16/9, b = 0; (d)
a = 1.9, b = −0.2010.

solutions to (3.3) given by (2.10) so that 0 < m < 1, and with wavelength given by (2.12); see
Figure 2(d), for an example.

The case 16/9 < a < 2 and b = bL (a corresponding curve of f(ϕ) is shown in
Figure 1(h)) corresponds to the limit ϕ1 = ϕ2 = ϕL so that m = 1, and then the solution is
a hump-like solitary wave given by (2.13) with ϕL < ϕ ≤ ϕ3 and

ϕ3 =
1
6

(
−2 + 3

√
4 − 2a − 2

√
4 − 6

√
4 − 2a

)
,

ϕ4 =
1
6

(
−2 + 3

√
4 − 2a + 2

√
4 − 6

√
4 − 2a

)
,

(3.12)

see Figure 3(d), for an example.
On the above, we have obtained expressions of parametric form for periodic and

solitary wave solutions ϕ(ξ) to (3.3). So in terms of u = ϕ(ξ) + c, we can get expressions
for the periodic and solitary wave solutions u(ξ) to (1.5).

4. Conclusion

In this paper, we have found expressions for new travelling wave solutions to the Fornberg-
Whitham equation. These solutions depend, in effect, on two parameters a and m. For m = 1,
there are inverted loop-like (a < 0), single peaked (a = 16/9), and hump-like (16/9 < a < 2)
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solitary wave solutions. For m = 1, 0 < a < 16/9 or 0 < m < 1, a < 2, and a/= 0, there are
periodic hump-like wave solutions.
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