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1. Introduction

In 1993, Rosenau and Hyman [1] introduced a genuinely nonlinear dispersive equation, a
special type of KdV equation, of the form

ut + a(un)x + (un)xxx = 0, n > 1, (1.1)

where a is a constant and both the convection term (un)x and the dispersion effect term
(un)xxx are nonlinear. These equations arise in the process of understanding the role of
nonlinear dispersion in the formation of structures like liquid drops. Rosenau and Hyman
derived solutions called compactons to (1.1) and showed that while compactons are the
essence of the focusing branch where a > 0, spikes, peaks, and cusps are the hallmark of the
defocusing branch where a < 0 which also supports the motion of kinks. Further, the negative
branch, where a < 0, was found to give rise to solitary patterns having cusps or infinite slopes.
The focusing branch and the defocusing branch represent two different models, each leading
to a different physical structure. Many powerful methods were applied to construct the exact
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solutions to (1.1), such as Adomain method [2], homotopy perturbation method [3], Exp-
function method [4], variational iteration method [5], and variational method [6, 7]. In [8],
Wazwaz studied a generalized forms of (1.1), that is mK(n, n) equations and defined by

un−1ut + a(un)x + b(u
n)xxx = 0, n > 1, (1.2)

where a, b are constants. He showed how to construct compact and noncompact solutions
to (1.2) and discussed it in higher-dimensional spaces in [9]. Chen et al. [10] showed
how to construct the general solutions and some special exact solutions to (1.2) in higher-
dimensional spatial domains. He et al. [11] considered the bifurcation behavior of traveling
wave solutions to (1.2). Under different parametric conditions, smooth and nonsmooth
periodic wave solutions, solitary wave solutions, and kink and antikink wave solutions were
obtained. Yan [12] further extended (1.2) to be a more general form

um−1ut + a(un)x + b
(
uk

)
xxx

= 0, nk /= 1. (1.3)

And using some direct ansatze, some abundant new compacton solutions, solitary wave
solutions and periodic wave solutions to (1.3) were obtained. By using some transformations,
Yan [13] obtained some Jacobi elliptic function solutions to (1.3). Biswas [14] obtained 1-
soliton solution of equation with the generalized evolution term

(
ul
)
t
+ a(um)ux + b(un)xxx = 0, (1.4)

where a, b are constants, while l,m, and n are positive integers. Zhu et al. [15] applied the
decomposition method and symbolic computation system to develop some new exact solitary
wave solutions to the K(2, 2, 1) equation

ut +
(
u2
)
x
−
(
u2
)
xxx

+ uxxxxx = 0, (1.5)

and the K(3, 3, 1) equation

ut +
(
u3
)
x
−
(
u3
)
xxx

+ uxxxxx = 0. (1.6)

Recently, Xu and Tian [16] introduced the osmosis K(2, 2) equation

ut +
(
u2
)
x
−
(
u2
)
xxx

= 0, (1.7)

where the positive convection term (u2)x means the convection moves along the motion
direction, and the negative dispersive term (u2)xxx denotes the contracting dispersion. They
obtained the peaked solitary wave solution and the periodic cusp wave solution to (1.7).
In [17], the authors obtained the smooth soliton solutions to (1.7). In this paper, following
Vakhnenko and Parkes’s strategy [18, 19] we continue to investigate the traveling wave
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solutions to (1.7) and obtain soliton and periodic wave solutions. Our work in this paper
covers and extends the results in [16, 17] and may help people to know deeply the described
physical process and possible applications of the osmosis K(2, 2) equation.

The remainder of this paper is organized as follows. In Section 2, for completeness
and readability, we repeat [19, Appendix A], which discusses the solutions to a first-order
ordinary differential equaion. In Section 3, we show that, for traveling wave solutions,
(1.7) may be reduced to a first-order ordinary differential equation involving two arbitrary
integration constants a and b. We show that there are four distinct periodic solutions
corresponding to four different ranges of values of a and restricted ranges of values of b.
A short conclusion is given in Section 4.

2. Solutions to a First-Order Ordinary Differential Equaion

This section is due to Vakhnenko and Parkes (see [19, Appendix A]). For completeness and
readability, we state it in the following.

Consider solutions to the following ordinary differential equation:

(
ϕϕξ

)2 = ε2f
(
ϕ
)
, (2.1)

where

f
(
ϕ
)
=
(
ϕ − ϕ1

)(
ϕ − ϕ2

)(
ϕ3 − ϕ

)(
ϕ4 − ϕ

)
, (2.2)

and ϕ1, ϕ2, ϕ3, ϕ4 are chosen to be real constants with ϕ1 ≤ ϕ2 ≤ ϕ ≤ ϕ3 ≤ ϕ4.
Following [20] we introduce ζ defined by

dξ

dζ
=
ϕ

ε
, (2.3)

so that (2.1) becomes

(
ϕζ
)2 = f

(
ϕ
)
. (2.4)

Equation (2.4) has two possible forms of solution. The first form is found using result
254.00 in [21]. Its parametric form is

ϕ =
ϕ2 − ϕ1nsn2(w | m)

1 − nsn2(w | m)
,

ξ =
1
εp

(
wϕ1 +

(
ϕ2 − ϕ1

)∏
(n;w | m)

)
,

(2.5)
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with w as the parameter, where

m =

(
ϕ3 − ϕ2

)(
ϕ4 − ϕ1

)
(
ϕ4 − ϕ2

)(
ϕ3 − ϕ1

) , p =
1
2

√(
ϕ4 − ϕ2

)(
ϕ3 − ϕ1

)
, w = pζ, (2.6)

n =
ϕ3 − ϕ2

ϕ3 − ϕ1
. (2.7)

In (2.5) sn(w | m) is a Jacobian elliptic function, where the notation is as used in [22, Chapter
16]. Π(n;w | m) is the elliptic integral of the third kind and the notation is as used in [22,
Section 17.2.15].

The solution to (2.1) is given in parametric form by (2.5) withw as the parameter. With
respect to w, ϕ in (2.5) is periodic with period 2K(m), where K(m) is the complete elliptic
integral of the first kind. It follows from (2.5) that the wavelength λ of the solution to (2.1) is

λ =
2
εp

∣∣∣ϕ1K(m) +
(
ϕ2 − ϕ1

)∏
(n | m)

∣∣∣, (2.8)

where Π(n | m) is the complete elliptic integral of the third kind.
When ϕ3 = ϕ4, m = 1, (2.5) becomes

ϕ =
ϕ2 − ϕ1n tanh2w

1 − n tanh2w
,

ξ =
1
ε

(
wϕ3

p
− 2tanh−1(√n tanhw

))
.

(2.9)

The second form of the solution to (2.4) is found using result 255.00 in [21]. Its
parametric form is

ϕ =
ϕ3 − ϕ4nsn2(w | m)

1 − nsn2(w | m)
,

ξ =
1
εp

(
wϕ4 −

(
ϕ4 − ϕ3

)∏
(n;w | m)

)
,

(2.10)

where m, p,w are as in (2.6), and

n =
ϕ3 − ϕ2

ϕ4 − ϕ2
. (2.11)

The solution to (2.1) is given in parametric form by (2.10) with w as the parameter.
The wavelength λ of the solution to (2.1) is

λ =
2
εp

∣∣∣ϕ4K(m) −
(
ϕ4 − ϕ3

)∏
(n | m)

∣∣∣. (2.12)
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When ϕ1 = ϕ2, m = 1, (2.10) becomes

ϕ =
ϕ3 − ϕ4n tanh2w

1 − n tanh2w
,

ξ =
1
ε

(
wϕ2

p
+ 2tanh−1(√n tanhw

))
.

(2.13)

3. Solitary and Periodic Wave Solutions to (1.7)

Equation (1.7) can also be written in the form

ut + 2uux − 6uxuxx − 2uuxxx = 0. (3.1)

Let u = ϕ(ξ) + c with ξ = x − ct be a traveling wave solution to (3.1), then it follows that

−cϕξ + 2ϕϕξ − 6ϕξϕξξ − 2ϕϕξξξ = 0, (3.2)

where ϕξ is the derivative of function ϕ with respect to ξ.
Integrating (3.2) twice with respect to ξ yields

(
ϕϕξ

)2 =
1
4

(
ϕ4 − 4c

3
ϕ3 + aϕ2 + b

)
, (3.3)

where a and b are two arbitrary integration constants.
Equation (3.3) is in the form of (2.1) with ε = 1/2 and f(ϕ) = (ϕ4 − (4c/3)ϕ3 +aϕ2 + b).

For convenience we define g(ϕ) and h(ϕ) by

f
(
ϕ
)
= ϕ2g

(
ϕ
)
+ b, where g

(
ϕ
)
= ϕ2 − 4c

3
ϕ + a,

f ′
(
ϕ
)
= 2ϕh

(
ϕ
)
, where h

(
ϕ
)
= 2ϕ2 − 2cϕ + a,

(3.4)

and define ϕL, ϕR, bL, and bR by

ϕL =
1
2

(
c −
√
c2 − 2a

)
, ϕR =

1
2

(
c +
√
c2 − 2a

)
,

bL = −ϕ2
Lg

(
ϕL

)
=
a2

4
− 1

2
c2a +

c4

6
− 1

6

(
c3 − 2ac

)√
c2 − 2a,

bR = −ϕ2
Lg

(
ϕL

)
=
a2

4
− 1

2
c2a +

c4

6
+

1
6

(
c3 − 2ac

)√
c2 − 2a.

(3.5)

Obviously, ϕL, ϕR are the roots of h(ϕ) = 0.
Without loss of generality, we suppose the wave speed c > 0. In the following, suppose

that a < c2/2 and a/= 0 for each value c > 0, such that f(ϕ) has three distinct stationary points:
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Figure 1: The curve of f(ϕ) for the wave speed c = 2. (a) a = −40, b = 200; (b) a = −40, b = 226.0424; (c)
a = 1.5, b = −0.05; (d) a = 1.5, b = 0; (e) a = 16/9, b = −0.1; (f) a = 16/9, b = 0; (g) a = 17/9, b = −0.24; (h)
a = 17/9, b = −0.1842.

ϕL, ϕR, 0 and comprise two minimums separated by a maximum. Under this assumption,
(1.7) has periodic and solitary wave solutions that have different analytical forms depending
on the values of a and b as follows.

(1) a < 0

In this case ϕL < 0 < ϕR and f(ϕL) > f(ϕR). For each value a < 0 and 0 < b < bL (a
corresponding curve of f(ϕ) is shown in Figure 1(a)), there are periodic loop-like solutions to
(3.3) given by (2.10) so that 0 < m < 1, and with wavelength given by (2.12). See Figure 2(a)
for an example.

The case a < 0 and b = bL (a corresponding curve of f(ϕ) is shown in Figure 1(b))
corresponds to the limit ϕ1 = ϕ2 = ϕL so that m = 1, and then the solution is a loop-like
solitary wave given by (2.13) with ϕ2 ≤ ϕ < ϕR and

ϕ3 =
1
2

√
c2 − 2a +

c

6
− 1

3

√
c2 + 3c

√
4 − 2a,

ϕ4 =
1
2

√
c2 − 2a +

c

6
+

1
3

√
c2 + 3c

√
4 − 2a.

(3.6)

See Figure 3(a) for an example.

(2) 0 < a < 4c2/9
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Figure 2: Periodic solutions to (3.3) with 0 < m < 1 and the wave speed c = 2. (a) a = −40, b = 200 so
m = 0.8978; (b) a = 1.5, b = −0.05 so m = 0.6893; (c) a = 16/9, b = −0.1 so m = 0.8254; (d) a = 17/9,
b = −0.24 so m = 0.8412.

In this case 0 < ϕL < ϕR and f(ϕR) < f(0). For each value 0 < a < 4c2/9 and bL <
b < 0 (a corresponding curve of f(ϕ) is shown in Figure 1(c)), there are periodic valley-like
solutions to (3.3) given by (2.10) so that 0 < m < 1, and with wavelength given by (2.12). See
Figure 2(b) for an example.

The case 0 < a < 4c2/9 and b = 0 (a corresponding curve of f(ϕ) is shown in
Figure 1(d)) corresponds to the limit ϕ1 = ϕ2 = 0 so that m = 1, and then the solution can
be given by (2.13) with ϕ3 and ϕ4 given by the roots of g(ϕ) = 0, namely,

ϕ3 =
2c
3
−

√
4c2

9
− a, ϕ4 =

2c
3

+

√
4c2

9
− a. (3.7)

In this case we obtain a weak solution, namely, the periodic downward-cusp wave

ϕ = ϕ
(
ξ − 2jξm

)
,

(
2j − 1

)
ξm < ξ <

(
2j + 1

)
ξm, j = 0,±1,±2, . . . , (3.8)

where

ϕ(ξ) =
(
ϕ3 − ϕ4tanh2

(
ξ

4

))
cosh2

(
ξ

4

)
,

ξm = 4tanh−1

√
ϕ3

ϕ4
.

(3.9)

See Figure 3(b) for an example.

(3) a = 4c2/9
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Figure 3: Solutions to (3.3) with m = 1 and the wave speed c = 2. (a) a = −40, b = 226.0424; (b) a = 1.5,
b = 0; (c) a = 16/9, b = 0; (d) a = 17/9, b = −0.1842.

In this case 0 < ϕL < ϕR and f(ϕR) = f(0). For a = 4c2/9 and each value bL < b < 0 (a
corresponding curve of f(ϕ) is shown in Figure 1(e)), there are periodic valley-like solutions
to (3.3) given by (2.5) so that 0 < m < 1, and with wavelength given by (2.8). See Figure 2(c)
for an example.

The case a = 4c2/9 and b = 0 (a corresponding curve of f(ϕ) is shown in Figure 1(f))
corresponds to the limit ϕ3 = ϕ4 = ϕR = 2c/3 and ϕ1 = ϕ2 = 0 so thatm = 1. In this case neither
(2.9) nor (2.13) is appropriate. Instead we consider (3.3) with f(ϕ) = (1/4)ϕ2(ϕ − (2c/3))2

and note that the bound solution has 0 < ϕ < 2c/3. On integrating (3.3) and setting ϕ = 0 at
ξ = 0 we obtain a weak solution

ϕ = −2c
3

exp
(
−1

2
|ξ|
)
+

2c
3
, (3.10)

that is, a single valley-like peaked solution with amplitude 2c/3. See Figure 3(c) for an
example.

(4) 4c2/9 < a < c2/2

In this case 0 < ϕL < ϕR and f(ϕR) > f(0). For each value 4c2/9 < a < c2/2 and
bL < b < bR (a corresponding curve of f(ϕ) is shown in Figure 1(g)), there are periodic
valley-like solutions to (3.3) given by (2.5) so that 0 < m < 1, and with wavelength given by
(2.8). See Figure 2(d) for an example.
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The case 4c2/9 < a < c2/2 and b = bR (a corresponding curve of f(ϕ) is shown in
Figure 1(h)) corresponds to the limit ϕ3 = ϕ4 = ϕR so that m = 1, and then the solution is a
velley-like solitary wave given by (2.10) with ϕL < ϕ ≤ ϕ3 and

ϕ1 =
c

6
− 1

2

√
c2 − 2a − 1

3

√
c2 − 3c

√
c2 − 2a,

ϕ2 =
c

6
− 1

2

√
c2 − 2a +

1
3

√
c2 − 3c

√
c2 − 2a.

(3.11)

See Figure 3(d) for an example.

4. Conclusion

In this paper, we have found expressions for two types of traveling wave solutions to the
osmosis K(2, 2) equation, that is, the soliton and periodic wave solutions. These solutions
depend, in effect, on two parameters a and m. For m = 1, there are loop-like (a < 0), peakon
(a = 4c2/9), and smooth (4c2/9 < a < c2/2) soliton solutions. For m = 1, 0 < a < 4c2/9 or
0 < m < 1, a < c2/2, and a/= 0, there are periodic wave solutions.
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