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The inverse problem of using measurements to estimate unknown parameters of a system
often arises in engineering practice and scientific research. This paper proposes a Collage-based
parameter inversion framework for a class of partial differential equations. The Collage method
is used to convert the parameter estimation inverse problem into a minimization problem of a
function of several variables after the partial differential equation is approximated by a differential
dynamical system. Then numerical schemes for solving this minimization problem are proposed,
including grid approximation and ant colony optimization. The proposed schemes are applied to
a parameter estimation problem for the Belousov-Zhabotinskii equation, and the results show that
the proposed approximation method is efficient for both linear and nonlinear partial differential
equations with respect to unknown parameters. At worst, the presented method provides an
excellent starting point for traditional inversion methods that must first select a good starting
point.
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1. Introduction

In industrial and engineering applications there are broad classes of inverse problems that
can be described as the problems that seek to go backwards from measurements to estimated
parameter values [1, 2]. In this paper we concentrate on the following partial differential
equation (PDE) with m unknown parameters:

% = f(ul Du/ X, tr)‘lr-”/ )‘m)r u(x/ tO) = uo(x) (11)

where u = (uy,...,u,) and f = (fi, f2,..., fn) are n-dimensional vector functions, and Du =
(DWu, D@y, ..., D®y) is a K-dimensional vector consisting of spatial partial derivatives of
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first or higher order involved in (1.1). The detailed description on (1.1) will be given in the
next section. The parameter estimation problem of (1.1) can be phrased as follows.

Letu(x,t) be a target solution. Find parameters A4, ..., A,, such that (1.1) admits u(x, t)
as a solution or an approximate solution, where f;(i < i < n) may be linear or nonlinear with
respect to the unknown parameters.

Most numerical methods for solving this kind of inverse problems rely on numerous
executions of the forward problem, every time with different parameter values. Therefore,
the numerical method for the forward problem must be fast. This paper proposes a
new framework for solving the above parameter inversion problem by the numerical
approximation based on the Collage method, aiming at avoiding to solve the forward
problem again and again.

In the proposed framework the Collage method is used to convert the parameter
inversion problem into a function optimization problem. The motivation for our treatment
comes from the use of contraction maps in fractal-based approximation methods such as
fractal interpolation [3-5] and fractal image compression [6, 7]. The mathematical methods
that underlie fractal image compression were first introduced to inverse problems for ODEs
by Kunze and Vrscay [8], in which a framework for solving inverse problems was set
up based on the Picard contraction map associated with ODEs. This framework has been
successfully applied to more inverse problems of ODEs (see [9-11]). Recently, Kunze et al.
[12] developed a Collage-based approach for PDEs inverse problem, in which boundary
value inverse problems were solved by the Lax-Milgram representation theorem and a
generalized Collage theorem. Deng et al. [13] proposed a framework for solving parameter
estimation problems for reaction-diffusion equations by an approximate Picard contraction
map and Collage method. In this framework, the fixed point of the contractive Picard integral
operator is viewed as an approximation of the target solution u(x,t). The inverse problem
becomes one of the finding unknown parameters that define the Picard operator P by using
the minimization of the squared Collage distance d*(u, Pu).

In the frameworks proposed in [8, 13], the stationarity conditions dd?(u, Pu) /9 = 0
yield a set of linear equations under the assumption that a vector field is linear with respect to
unknown parameters. Obviously, the above algorithms are incredibly simple both in concept
and in form. However the stationarity conditions will yield a nonlinear system in the case
that the vector field is nonlinear with respect to unknown parameters, and it is very difficult
to solve the nonlinear system.

Differing from [8, 13], in this paper the parameter estimation problem of (1.1) is
viewed as a global minimization problem of the function F(Ay, A, ..., A,,) determined by the
squared Collage distance d?(u, Pu), and the grid approximation and ant colony optimization
are both proposed to solve the minimization problem of F(\i, Ay, ..., ). The methods
presented in this paper are suitable for solving the complicated parameter estimation
problem, such as when f is a nonlinear function with respect to unknown parameters or
is associated with a great number of unknown parameters.

The structure of this paper is as follows. In Section 2, we provide a simple review
of the Collage method for inverse problems of ODEs, and give the theoretical framework
for converting the parameter estimation problem of (1.1) into a minimization problem of
a function of several variables. In Section 3, we describe an algorithm for computing the
function of several variables determined by the squared Collage distance. In Section 4,
the grid approximation and ant colony optimization schemes for parameter estimation are
applied with our method in order to solve a parameter estimation problem for the Belousov-
Zhabotinskii equation.
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2. Formulation from Parameter Estimation to Minimization Problem

In this section, we restrict our discussion of technical details to a minimum. The reader is
referred to [8, 13] for greater mathematical details. The framework presented in this paper
is an extension of the Picard contraction mapping method for a class of inverse problems of
ordinary differential equations [8], the theoretical basis for which comes from the Collage
theorem [14].

Proposition 2.1. (Collage theorem) Let (V,d) be a complete metric space, and let P be a contractive
map on 'V with fixed point u* and contraction factor cp € [0,1). Then

*) <
d(u, u') < 7=

! d(u,Pu), YueV. (2.1)
cp
In [8], the framework for solving the inverse problem of ODEs by Collage theorem was
set up. Seek an ODE initial value problem i = f(u,t), u(ty) = uo that admits u(t) as either a
solution or an approximate solution, where f is restricted to a class of functional forms, for
example, affine and quadratic. Associated with the initial value problem is the Picard integral
operator P:

(Pu)(t) = uo + t f(u(s),s)ds. (2.2)

to

It is well known that, subject to appropriate conditions on f, the operator P is contractive over
an appropriate Banach function space V. By taking u as the target solution, the approximate
vector field g(u,t) of f(u,t) associated with the operator P is found by minimizing the
squared Collage distance d*(u, Pu).

Now we turn to discuss the parameter estimation problem of (1.1) by the use of the
Collage method. Firstly some basic assumptions on (1.1) are listed as follows.

(i) (x,t) € Q x [to, T], where Q c R is a bounded region; t; and T are two positive
constants satisfying ty < T.

(ii) u(x,t) is a vector function with the form of u(x,t) = (uy(x,t), uz(x,t),...,u,(x,t)),
u;(x,-) is a differentiable function, u;(-,t) € C*(Q), and here a is the highest order
number of spatial partial derivative involved in (1.1).

(iii) fi(u,Du, x, t,A1,..., 1) (1 <i < n) are, for the moment, continuous.
(iv) The exact solution u*(x, t) of the system (1.1) exists uniquely.

By replacing the term Dux,t of (1.1) with Dusx,t, we gain an approximate dynamical
model of (1.1):

du
i fu,Du*, x,t,\M,..., Ny), u(x,to) = ug(x), (2.3)

and the solution of (2.3) satisfies the equivalent integral equation

t
u(x,t) =up(x)+ | f(u,Du*,x,s,M1,...,  y)ds. (2.4)

to
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Define the Picard operator W associated with the model (2.4) as follows:

(Wu)(x,t) = up(x) + t f(u,Du*,x,s,\1,..., \y)ds. (2.5)

to

It is clear that Wu* = u*. The parameter estimation problem of (1.1) will be converted into a
minimization problem based on (2.5) by the Collage method.

In [13], we have showed that, subject to appropriate conditions on the vector field f,
the Picard operator W is contractive over a complete space V of functions supported over the
domain Q x [y, T]. The space V is equipped with norm

T 1/2
[[ull = < IIu(x,t)Ilidt> , u€ev, (2.6)
to
where
n 1/2
llu(x, ), = <leui(x,t)lliz> , (27)
i=1
1/2
[lo; (o, )] 2 = <I uf(x,t)dx) , i=1,2,...,n (2.8)
Q
Let
du,v) = lu-v|, VYu, veV. (2.9)

Then an interesting inequality is obtained (see [13] for details):

A, ) < W 4D, Du) + — d(a, W) (2.10)
7 = 1= cw 7 1— cw 7 7 .
where 0 < ¢y, cw < 1 are two constants and
_ t
Wu = up(x) +f f(u(x, s),Du(x,s),x,s,M,..., \y)ds. (2.11)
to

Note the metric d(Du, Dv) is defined similar to (2.6)—(2.9) for d(u,v); the only difference
between d(u,v) and d(Du, Dv) is their dimensions.

In the inequality (2.10), the true approximation error d(u,u*) is bounded by the
spatial derivative approximation error d(Du, Du*) and the Collage distance d(u, Wu). It
is clear that d(Du,Du*) = 0 when u = u*, so one can find the estimate values of the
unknown parameters Ay,..., A, by the use of the minimization of the squared Collage
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distance d?(u, Wu). However, in many practical problems the target function #(x,t) will
be generated by interpolating observational or experimental data points u(x;, t;), collected at
various locations x; at various times t;. Obviously, there needs a further discussion for the
case u(x,t) #u*(x,t) for applying the minimization method of the squared Collage distance
to practical problems.

Proposition 2.2. Let u(x,t) satisfy u(x,-) be differentiable, and let 3DV u/0t(x,t) be continuous
fori=1,2,...,K. Then

|IDu(x, t) - Dug(x)|| < CIT - to]*%,  (x,£) € Q x [ty, T], (2.12)

where Duy(x) = Du(x, ty), and C > 0 is a positive constant.
Proof. It follows from the differential mean-value theorem that fori=1,..., K

oDDu(x, &)

DDu(x,t) - DDu(x, ty) = 5t

(t—to), & € [to t] (2.13)

From the continuity assumption on 8D®u/0t(x, t), we have that

(@) .
‘M‘ <M;, (2.14)
ot
where
(@)
M;=  sup oD u(x, Bl. (2.15)
peaxitor]| Of
We find from the definition of the norm || - || that

IDu(x, t) = Duo(x)|[*= [|Du(x, t) = Du(x, to)||*

(1S (R0,
_JJ§L< ot >“twﬂdt (2.16)

< CX(T - to)°,

where C = 1/Sq/ SZfile,‘ here Sq is the area (or volume) of the domain Q. Thus the
inequality (2.12) holds. O
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Proposition 2.3. Let u*(x,t) and u(x,t) be the exact solution and the target solution of (1.1),
respectively. Assume that dDWu* /Ot(x,t) and dDWu/0t(x,t) are continuous fori = 1,2,...,K.
Then there exists a positive constant C' such that

d(Du, Du*) < C(T - to)*? + d(D1ip(x), Duy(x)), (2.17)

where Dug(x) = Du(x,ty), Dug(x) = Du*(x, tp).

Proof. Firstly, from Proposition 2.2, there are two positive constants C; and C; such that

| Du(x, t) — Ditg (x) || < C)(T — t0)*'?,

(2.18)
IDu" (x, £) = Do (x)]] < Cy(T = t0)*2.
We have that
d(Du, Du*) = ||Du(x,t) — Du*(x,t)]|
< |Du(x, t) — Du(x, to)|| + || Du*(x,t) — Du*(x, to)||
~ (2.19)
+ |Du(x, to) — Du* (x, to)|
< (C) + CY)(T = t0)*? + d(Dii(x, to), Du (x, to)).
Letting C' = C| + C,,, we gain the result of Proposition 2.3. O

The following theorem follows immediately from the inequality (2.10) and
Proposition 2.3.

Theorem 2.4. Let u*(x,t) and u(x,t) be the exact solution and the target of (1.1), respectively.
Denote u(x,ty) by uo(x), and denot u*(x,ty) by uo(x). Assume that 0DDu*/0ot(x,t) and
oDW/0t(x, t) are continuous fori =1,2,...,K. Then

d(w, u*) < C1(T — to)¥'? + Cod(Ditg(x), Dutg(x)) + cm(a,Wa), (2.20)
where
CyC' Cr 1
Ci=12cr C=1-& C=1—g (2.21)

From Theorem 2.4, the true approximation error d(u, u*) is controlled by (T — t0)3/ 2
the spatial derivative approximation error d(Duy(x), Dug(x)),and the Collage distance
d(@, Wu). For a given target solution 1, the first two terms of the right-hand side of (2.20)
are fixed; so the smallest upper bound of d(u, u*) associated with the inequality (2.20) can
be obtained by the minimization of d(iz, W). Thus, Theorem 2.4 provides a theoretical basis
for finding the unknown parameters of (1.1) by minimizing the squared Collage distance. At
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worst, the presented method can provide an excellent starting point for traditional inversion
methods.

In a real problem, it is important to make the error bound of d(u, u*) obtained from
(2.20) as small as possible. Obviously, there is no problem with the first term of the right-hand
side of (2.20), which approaches zero as T approaches ty. For guaranteeing the effectiveness
of the proposed minimization method, it is necessary to construct the target solution # from
the known measurements of (1.1) such that d(Dug(x), Dug(x)) is as small as possible. If the
target solution u satisfies that Diip(x) = (DWug(x), ..., D®uy(x)), then the target function
u and the exact solution u* have the same spatial derivatives at the initial time point tp, and
d(Duy(x), Dug(x)) = 0. We have from (2.20) that

d(u,u*) < Ci(T - to)*/* + cgd(a,Wa). (2.22)

In general, the Hermite interpolation method can be used to construct the target solution
u(x,t). When the exact solution u*(x, t) is given in the form of data points (x;, t;), it can be
expected to provide d(Dug(x), Dug(x)) with a small value by taking the spatial derivative
values of the exact solution u*(x, t) at initial time point f.

3. Algorithm for Function of Several Variables

Differing from the ideas proposed in [8, 13], the unknown parameters of (1.1) will be
estimated by finding the minimum of the function of several variables determined by
d?(u, Wu). Let ] be the vector function defined as follows:

t

J(u,Du, x,t,A,..., \n) =J f(u,Du,x,s,\1,...,Ay)ds, (3.1)
fo

then
a2 <ﬁ, Wa) = |t - uo - J (@, D, x,t, A1, ..., A |IP

T n . 0 o )
=f > - —]l-(u,Du,x,t,)q,...,)tm)”det 52

to =1

n (T . . 2
zzf (f <ﬁ(’)—ué’)—],-(ﬂ,Dﬁ,x,t,)q,...,)Lm)> dx>dt,
i=17 to Q

where ¥ and u(()i) denote the ith part of the vector function % and uy, respectively. Let

T . ) 2
d? = f ( I (ﬁ(l)—uf)’)—]i(ﬂ,Dﬁ,x,t,J\l,...,Am)> dx)dt. (3.3)
Q
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We have that

A2 (a Wﬁ) = id?. (3.4)

i=1
Obviously, a function of unknown parameters 1y,...,\,, will be obtained by computing

the integrals involved in d*(u, Wﬁ). The obtained function is denoted by F(A4,...,\)
throughout the rest of this paper, that is,

F(A, ..o dm) = D od} (3.5)

Example 3.1. To demonstrate the above algorithm, we consider the Belousov-Zhabotinskii
equation

ou o’u
5 —u(l—u—rv)+lrv+@,
(3.6)
B_U =mv — buv + 82_0
ot ox2’

where x € Q, tg < t < T. Suppose that u(x,t), v(x,t) is the target solution satisfying the
condition u(x, tg) = up(x), v(x, ty) = vo(x). l,r and m, b are unknown parameters. Let

t

t t
o= [ aods,  g-| @esrds  g= [ e
to

to to

(3.7)
Lo ft ' oo
=| —(x,s)ds, = | v(x,s)ds, = —(x,9s)ds.
84 . 6x2( ) 85 . (x,8) 86 . 6x2( )
Then
T 2
di = f <f (U-—u-g+gp+rg—Irgs—ga) dx>dt,
to \J @
' (3.8)
T
d; = f <j (0 -vo—mgs +bgs - g6)2dx>dt.
to Q
Denoting d?, d3 by Fi(l,r) and F,(m,b), respectively, we have that
F(,r,m,b) = Fi(I,7) + Fa(m, b). (3.9)

Let () denote the integral

T
(e = [ | fnax (3.10)
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and
A=(g3), B=(gg) C=(g)
D=(gs(u-uo-gi+g-g)),
E=(g(u-u-g+g-g))
— 2
Q= ((-m-g+g-g)") (3.11)
G=(g5(v-v0-g5))
H = (g5(v-v0-8)),
Q= <(5—Uo _86)2>-
Then
Fi(l,r) = A’r* = 2BIr* + Cr* - 2DIr + 2Er + Q, (3.12)
Fy(m,b) = Am* + Cb* — 2Bmb — 2Gm + 2Hb + Q,. (3.13)

4. Numerical Approximation Methods

From the previous section, the function of several variables obtained from the Collage method
has the form of a sum every member of which depends only upon a few variables. This leads
to the conclusion that many parameter estimation problems for PDEs can be solved in the
exact way known from classical analysis. However many problems can only be solved by an
approximate numerical method when the function F(\y,...,\,,) is especially complicated,
such as when f associated with F is nonlinear. Also approximate numerical methods are
suitable for the case that the number of variables is great. In this paper, we are interested
in the grid approximation and ant colony optimization methods, and these methods will be
applied to the unknown parameter estimation of (1.1).

Note that the ranges of unknown parameters may be assumed from the physical
understanding of the problem and modified from the analysis of numerical approximation
results. In this section we assume that (A,...,,,) € S, where S is a bounded domain with
the form

§ = [, AP e [, A s [, ). 4.1)

Thus, the continuous optimization problem associated with the parameter estimation of (1.1)
can be phrased as

min F(Ay, A2, .., ), (M, s, ..., Aw) € S. (4.2)
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Fi(l,7)

Figure 1: The grid approximation for the minimum of F (I, r).

0.04

Fz(m, b)

0024 -

0'013_,..,,.
1

Figure 2: The grid approximation for the minimum of F,(m, b).

Example 4.1. We demonstrate the methods for the system (3.6) with assumptions: the domain
Qx[0,T] =[0,1.0] x [0,0.5], the parameter domain S = [0, 1] x [0, 1] x [0,1] x [0, 1], the initial
condition up(x) = sinx,vy(x) = cosx, and the target solution u(x,t) = xt* + sinx, v(x,t) =
x%t + cos x. By applying the algorithm presented in Section 3, the coefficients of (3.12) and
(3.13) are obtained

A=00332, B=00140, C=0.0079, D=-00072, E =-0.0049,
(4.3)
Q;=00035, G=00044, H=00069, Q,=0.0148.

The estimates of the unknown parameters [, and m,b can be obtained by solving the
optimization problems of F(l,r) and F,(m, b), respectively.
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Figure 3: The grid approximation for the minimum of F; (I, r) with condition I = 1/A(B + D(1/r)), where
Fy(I*,r*) = 2.8553¢7%, I* = 0.182, r* = 0.89.

Fi(l,7)

0 0

Figure 4: The initial positions of 30 particles.

4.1. Grid Approximation

We firstly describe a partition scheme of the parameter domain S. For i = 1,2,...,m, the
intervals [A;mm), )tl(max)] are partitioned with step h; = A;j;1 — i), j =0,1,...,N; — 1, that is,

A = o < g <o < A = AT (4.4)
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Fi(l,r)
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Figure 5: The positions of 30 particles after 100 iteration processes with a global best solution Fy (I, 7*) =
2.8551e™™,1* = 0.1734, r* = 0.8823.
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QLT [ v v

Fi(l,r)

0.005 Flw o

0 N N N N N
0 20 40 60 80 100 120

Tteration number

Figure 6: The global minimum of F; (I, r) for every iteration process.
Let ™" = (Ay9,..., Ano). We define the spatial grid GR(S) by the formula

m
GR(S) = {J\ERmZ)L=)me+Zklhlel/ki =0,...,N;-1,i= 1,...,711} (45)
=1

where e; = (eil, ..., e") are basis vectors satisfying ef =1, e{ =0(#j)ij=1,...,m
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With the above GR(S) grid, the approximate estimate of the unknown parameter
vector of (1.1) A* = (A7, ..., A;,) € GR(S) is determined by

F(AY) = Aé&i{g)F(A). (4.6)

For testing the effect of the grid approximation method, the minimization problems
of (3.12) and (3.13) are solved with S = [0,1] x [0,1], h; = 0.01 (i = 1,2), the results are
shown in Figures 1 and 2. Note that the parameter estimation of (3.6) cannot be solved
by the framework proposed in [13] due to f being nonlinear with respect to the unknown
parameters.

In Figure 1, the red point is the global minimum position of F;i(l,r), where I* =
0.18,7* = 0.9 and F;(I*,r*) = 2.8556¢ . Similarly, (m*,b*) = (0.14,0.01) is the global
minimum point of F;(m, b) with a minimum F,(m*,b*) = 0.0143 (see Figure 2).

Sometimes the stationarity conditions 0F/0\; = 0 can be used to reduce the
computational complexity. For example, it follows from 0F; (l,r)/0l = 0 that

l= %<B+D%>, (47)

The minimum of F;(l,r) can be found by viewing F;(l,r) as a function with respect to the
variable r; the result is shown in Figure 3.

4.2. Ant Colony Optimization Approximation

The ant colony optimization (ACO) algorithm was inspired by the observation of real ant
colonies. Its inspiring source is the foraging behavior of real ants, which enables them to
find the shortest paths between nest and food sources [15, 16]. Recently, ACO algorithms
for continuous optimization problems have received an increasing attention in swarm
computation; many researches have shown that the ACO algorithms have great potential
in solving a wide range of optimization problems, including continuous optimization [17-
22]. These ACO algorithms for continuous domains can be directly used for solving the
minimization problem of (4.2).

In [17], Shelokar et al. proposed a particle swarm optimization (PSO) hybridized
with an ant colony approach (PSACO) for optimization of multimodal continuous functions,
which applies PSO for global optimization and the idea of ant colony approach to update
positions of particles to attain rapidly the feasible solution space (see [17] for detail). for
example, the PSACO algorithm is used for the minimization problem of (3.12); the results in
Figures 4, 5, and 6 are obtained.
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