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This paper presents a short overview of the flow around a slender circular cylinder, the purpose
being to place it within the frame of the distributed Hopf bifurcation problems described by the
Ginzburg-Landau equation (GLE). In particular, the chaotic behavior superposed to a well tuned
harmonic oscillation observed in the range Re > 270, with Re being the Reynolds number, is related
to the defect-chaos regime of the GLE. Apparently new results, related to a Kolmogorov like length
scale and the rms of the response amplitude, are derived in this defect-chaos regime and further
related to the experimental rms of the lift coefficient measured in the range Re > 270.
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1. Flow Around a Circular Cylinder: An Overview

Let a cylinder with a circular cross section in the plane x = (x, y) exposed to an incident
flow Ui; if d is the circle diameter and ν the kinematic fluid viscosity, the Reynolds number is
defined by Re = Ud/ν. Assuming a unit system where ρ = U = d = 1, with ρ being the fluid
density, the two-dimensional (2D) velocity and pressure fields, respectively {u(x, t); p(x, t)},
satisfy the Navier-Stokes equations,

∂u
∂t

+ (u · ∇)u − 1
Re
∇2u +∇p = 0;

∇ · u = 0,
(
∇ = i

∂

∂x
+ j

∂

∂y

)
,

(1.1)



2 Mathematical Problems in Engineering
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Figure 1: Flow around circular cylinder: (a) steady state regime, Re = 40 < 46.5; (b) stable 2D limit cycles, 46.5
< Re < 180 (Re = 102 above, Re = 161, below). (source: Van Dyke [1]).

and the boundary conditions (∂Vc: cylinder cross section)

u(x, t)|x∈∂Vc = 0;

lim
‖x‖→∞

{
u(x, t); p(x, t)

}
= {Ui; 0}.

(1.2)

Equations (1.1) and (1.2) has a steady solution us(x) that is however stable only in the
range Re < 46.5; for Re > 46.5 a limit cycle solution, oscillating with the Strouhal frequency
ωs ≈ U/d, is observed. This limit cycle is stable in the 2D context—namely, if the perturbation
is restricted to the plane x = (x, y)—in a large range of Reynolds numbers and Figure 1 shows
typical flow visualizations in the steady (Re = 40) and limit cycles regimes (Re = 102;161).

The periodic flow in the limit cycle regime can be expanded in its harmonic
components by Fourier series decomposition; namely, if u(x, t) = u(x, t)i + v(x, t)j is the flow
field then

u(x, t) = uo(x) +
∞∑
n=1

[
un,c(x) · cos

(
nωst

)
+ un,s(x) · sin

(
nωst

)]
;

v(x, t) = vo(x) +
∞∑
n=1

[
vn,c(x) · cos

(
nωst

)
+ vn,s(x) · sin

(
nωst

)]
.

(1.3)

The time average uo(x) = uo(x)i + vo(x)j of u(x, t) is a flow field symmetric with
respect to the x-axis, with uo(x) being an even function of y

(
uo(x, y) = uo(x,−y)) and

vo(x) an odd one
(
vo(x, y) = −vo(x,−y)); the first harmonic u1(x) = u1(x)i + v1(x)j is

an anti-symmetric field, with {u1(x, y) = −u1(x,−y);v1(x, y) = v1(x,−y)} and, as a rule,
one can show for a circular cylinder that the even harmonics are symmetric and the odd
ones anti-symmetric: the in-line force (drag) depends thus only on the even modes while the
transverse force (lift) depends only on the odd modes. Figure 2 displays, for Re = 100, the
functions {

(
u1,c(x), v1,c(x));

(
u2,c(x), v2,c(x))} obtained both from numerical simulation of the

2D flow and from PIV measurement of an actual flow experiment. Both plots are visually
very similar and confirm the symmetry/anti-symmetry behavior quoted above; furthermore,
the agreement between them is also quantitative: defining the normalized mode amplitude by
the ratio An(Re) = max|un(x)|/max|uo(x)|, Figure 3 displays the function An(Re) determined
numerically in the range 60 ≤ Re ≤ 600 and also the same value obtained experimentally at
Re = 100.
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Figure 2: Harmonic decomposition of the 2D velocity field—Re = 100. Above: numerical simulation; below:
experiments (PIV). (Source: Barbeiro & Korkischko (2008)—NDF).
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Figure 3: Amplitude An(Re) = = max|un(x)|/max|uo(x)| of the nth mode. Numerical computation (for Re
= 100, also shown PIV computation) (source: Barbeiro & Korkischko (2008)—NDF).

It must be observed also that these numerical results indicate a hierarchy between the
modes amplitudes and a square root singularity near Rc1

∼= 46.5, namely

An(Re) ∼= O
(
εn
)
;

A1(Re) ∼= O(ε) with ε(Re) ∼= 0.45
√

1 − Rc1

Re
,

(1.4)

typical of a Hopf supercritical bifurcation. This point will be elaborated in the following; in fact,
if one writes (1.3) in the complex form,

un(x) =
1
2
(
un,c(x) − iun,s(x)

)
;

u(x, t) = uo(x) +
∞∑
n=1

(
un(x) · einωst + (∗)

)
,

(
lim
‖x‖→∞

{
uo(x)

un(x); n > 0

}
=

{
Ui

0

})
,

(1.5)
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placing (1.5) into (1.1) and separating the harmonic parcels {exp (inωst); n = 0, 1, 2, . . .} one
obtains the sequence of problems,

n = 0 :
(
uo · ∇

)
uo −

1
Re
∇2uo +∇po = fo(x)

= −
∞∑
n=1

[(
un · ∇

)
u∗n +

(
u∗n · ∇

)
un

] ∼= O(ε2);

n = 1 : iωsu1 +
[(

uo · ∇
)
u1 +

(
u1 · ∇

)
uo

]
− 1

Re
∇2u1 +∇p1 = f1(x)

= −
∞∑
n=1

[(
un+1 · ∇

)
u∗n +

(
u∗n · ∇

)
un+1

] ∼= O(ε3);

n = 2 : 2iωsu2 +
[(

uo · ∇
)
u2 +

(
u2 · ∇

)
uo

]
− 1

Re
∇2u2 +∇p2 = f2(x)

= −
(
u1 · ∇

)
u1 −

∞∑
n=1

[(
un+2 · ∇

)
u∗n +

(
u∗n · ∇

)
un+2

] ∼= O(ε2);
(
∇ · un = 0

)
,

(1.6)

the first one, that determines uo(x), being nonlinear and the remaining ones linear, as usual
in an asymptotic expansion. In fact, if higher order terms in the “small parameter” ε are
disregarded, one may express, to leading order, the field u1(x) in the form

u1(x) = aav · eav(x) +O
(
ε3);

iωseav +
[(

uo · ∇
)
eav +

(
eav · ∇

)
uo

]
− 1

Re
∇2eav +∇pav = 0,

(
∇ · eav = 0

)
,

(1.7)

with {λav = iωs; eav(x)} being the eigenvalue—eigenvector of the homogeneous problem
defined in (1.7): this is consistent with a numerical result due to Barkley [2], stating that
the averaged flow uo(x) is marginally stable (Real λav = 0) with respect to 2D perturbation.

But this is not enough for the present purpose: the final goal is to solve the tri-
dimensional (3D) problem for a slender cylinder having to solve basically the 2D cross section
problem: besides the obvious economy in the degrees of freedom needed in the numerical
computation, the 2D flow is well organized (laminar) while the 3D one is chaotic (turbulent),
as it will be seen later in this paper. As discussed in Aranha [3], the flow around a slender
cylinder can be asymptotically approximated by the Ginzburg-Landau equation but one needs
then, first of all, to express the harmonic mode u1(x) · exp(iωst) in the form a(t) · e(x), as in
(1.7), with a(t) satisfying Landau’s equation

da

dt
− σa + μ

(
1 − ic3

)
|a|2a = 0;

ε =
√
σ

μ
, (λ = σ + iω).

(1.8)

The hope is that such a(t) · e(x), with the related eigenvalue-eigenvector {λ(Re) = σ +
iω; e(x; Re)}, coalesce with the standard Hopf bifurcation in the limit ε → 0 (Re → Rc1), while
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recovering the Fourier series expansion (1.5) when ε2 is “small” but finite in the range Re� Rc1.
This double requisite obliges to look for a basic stationary flow that is neither the steady solution
us(x), useless far from the bifurcation, nor the averaged flow uo(x), always marginally stable
and so unsuited to describe a Hopf bifurcation.

A clue is given by the following observation: the steady state solution us(x; Re), that
becomes unstable at Re = Rc1, satisfies the homogeneous 0th-order equation (1.6); with fo(x)
defined in (1.6), if one considers instead of us(x; Re) the field

(
ûo · ∇

)
ûo −

1
Re
∇2ûo +∇p̂o = fo(x; Re) −Δfo(x; Re) ∼= O

(
ε4);

Δfo(x; Re) = −
[(

u∗1 · ∇
)
u1 +

(
u1 · ∇

)
u∗1

] ∼= O(ε2), (
ûo − us

∼= O
(
ε4)),

(1.9)

the stability of this flow coalesce with the one related to the steady state solution us(x; Re) with
an error of order ε4 in the limit σ → 0

(
Re → Rc1): in Hopf bifurcation one has σ(Re) =

α · (1−Rc1/Re) ≈ ε2 when Re → Rc1 and this relation is recovered if the field defined in (1.9)
is used, instead of the standard steady state solution us(x; Re), as the basic field.

At Rc1 one has strictly us(x; Rc1) ≡ uo(x; Rc1); however, as Re increases the steady
state solution us(x; Re) presents a bulbous region in the wake, similar to the one indicated
in Figure 1 but with a length increasing linearly with Re: the difference between us(x; Re)
and uo(x; Re) becomes enormous in the range Re > 200, in despite of the fact that the forcing
term fo(x) in the problem that defines uo(x; Re) be small, of order ε2. This apparent paradox
is in fact due to an extreme susceptibility of the steady flow us(x; Re) to the influence of “small
forces”, either applied directly, as fo(x), or else indirectly, as the constraint forces that appear
on the outer contour of the finite domain used in the numerical computation; for example, to
determine numerically us(x) at Re = 600 with reasonable accuracy one needs to discretize a
circle with radius 1000d: only then the “small constraint forces” in the outer circle becomes
small enough to not impair convergence. In the other hand, the presence of the small forcing
term fo(x) seems to regularize the problem, since then the time average field uo(x; Re) is robust:
it can be easily determined numerically, without any major concern about the region size to
be discretized, and it also changes weakly with the Reynolds number.

In the asymptotic solution that leads to Landau’s equation (1.8) terms of order ε4 are
ignored and the fields {ûo; p̂o} can be thus determined by solving the regular linear system

ûo = uo − δu;

p̂o = po − δp;

}
=⇒ [

(
uo · ∇

)
δu + (δu · ∇)uo] −

1
Re
∇2(δu) +∇(δp) = Δfo ∼= O

(
ε2),

(1.10)

where the term (δu · ∇)δu ∼= O(ε4) was disregarded; notice that the linear operator (1.10)
is regular since its eigenvalue λ with largest real part is given by {Realλ = 0; Imag λ = ωs

∼=
O(1)}, see (1.7).

The eigenvalue-eigenvector {λ(Re) = σ + iω; e(x; Re)} corresponding to the basic flow
defined in (1.9) is solution of the problem

λe +
[(

ûo · ∇
)
e + (e · ∇)ûo

]
− 1

Re
∇2e +∇pe = 0;

λ = σ + iω with σ(Re) > 0 if Re > Rc1, (∇ · e = 0),
(1.11)
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and since {ûo − uo; p̂o − po} ∼= O(ε2), comparing (1.7) to (1.11) one obtains

{
e − eav; pe − pav

} ∼= O(ε2);

σ + i
(
ω −ωs

) ∼= O(ε2).
(1.12)

Observing that the harmonic components {un(x);n > 0} in (1.5) tend to zero as ‖x‖ →
∞, and so it does the functions {fo(x);Δfo(x)}, one considers now the solution of

∂û
∂t

+ (û · ∇)û − 1
Re
∇2û +∇p̂ = fo(x; Re) −Δfo(x; Re) ∼= O

(
ε4);

∇ · û = 0,
(1.13)

satisfying the same boundary conditions (1.2). The steady state solution of (1.13), defined in
(1.9), becomes unstable for Re > Rc1, the only unstable mode being given by {λ(Re) = σ +
iω; e(x; Re)}, solution of (1.11); the solution of (1.13) in the unstable range Re > Rc1 can be
thus expressed by means of the standard asymptotic series

û(x, t) = ûo(x) +
[
a(t) · e(x)eiωt + (∗)

]
+
[∣∣a(t)∣∣2 · u20(x) +

(
a2(t) · u22(x)e2iωt + (∗)

)]

+
[∣∣a(t)∣∣2

a(t) · u31(x)eiωt + a3(t) · u33(x)e3iωt] +O(ε4);

p̂(x, t) = p̂o(x) +
[
a(t) · pe(x)eiωt + (∗)

]
+
[∣∣a(t)∣∣2 · p20(x) +

(
a2(t) · p22(x)e2iωt + (∗)

)]

+
[∣∣a(t)∣∣2

a(t) · p31(x)eiωt + a3(t) · p33(x)e3iωt] +O(ε4);

a ∼= O(ε);
da

dt
∼= O

(
ε3);

{(
ûo, p̂o

)
;
(
e, pe

)
;
(
uαβ, pαβ

)} ∼= O(1),

(1.14)

where (∗) stands for the complex conjugate of the expression in the left and, as usual, the mode
amplitude a(t) is assumed to change slowly in time, the slow time being proportional to the
amplitude square.

By placing (1.14) into (1.13) and separating terms of like orders in ε, a sequence of
linear problems is obtained, allowing to compute the fields {uαβ(x); pαβ(x)}. Details will be
omitted here but two points must be commented. First, the operator that determines u31(x)
is exactly the one defined in (1.11) and it is thus singular: the solvability condition (Fredholm
alternative) of this u31-equation leads to Landau’s equation (1.8); second, for future reference,
the field u20(x) is solution of the equation

[(
uo · ∇

)
u20 +

(
u20 · ∇

)
uo

]
− 1

Re
∇2u20 +∇p20 = f20;

f20 = −
[(

e∗ · ∇
)
e + (e · ∇)e∗

]
,

(1.15)

where the relation (ûo − uo) · |a(t)|2u20
∼= O(ε4) was used.

The 2D systems (1.1) and (1.13) have both the same singularity at Rc1
∼= 46.5 and are

both regular in “all range” Re > Rc1, a result numerically confirmed by Henderson [4] up
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to Re = 1000; since one system differ from the other only by a forcing term of order ε4, one
should have asymptotically

u(x, t) = û(x, t) +O
(
ε4);

p(x, t) = p̂(x, t) +O
(
ε4), (1.16)

a result that will be explored next. In fact, recalling that {ûo − uo; p̂o − po} ∼= O(ε2) one has,
with the help of (1.16),

u(x, t) = uo(x) +
[
u1(x)eiωst + (∗)

]
+O

(
ε2);

û(x, t) = uo(x) +
[
a(t) · e(x)eiωt + (∗)

]
+O

(
ε2);

}
=⇒ u1(x)eiωst = a(t) · e(x)eiωt +O

(
ε3).
(1.17)

Two results can be derived directly from the latter equality (see also (1.9) and (1.15)),

∣∣a(t)∣∣2f20(x) = Δfo(x) +O
(
ε4) =⇒

∣∣a(t)∣∣2u20(x) = δu(x) +O
(
ε4);

a(t) = |a| · ei(ωs−ω)t,
(1.18)

and thus it follows from (1.14) that the asymptotic solution of (1.13), based on the Landau’s
equation (1.8), recovers the observed 2D periodic (limit cycle) solution (1.5) in the range Re�
Rc1, with an error of order ε4. Or in short: Landau’s equation (1.8), strictly valid in a close
neighborhood of a Hopf supercritical bifurcation, can be extended in the present flow problem
to the range Re� Rc1, where a neat periodic solution persists.

Finally, once the 2D numerical solution u(x, t) is determined and its harmonic
components {un(x);n = 0, 1, 2, 3} are computed, the unstable mode {λ = σ + iω; e(x); pe(x)}
and the coefficients {μ; c3} of Landau’s equation can be easily estimated, as elaborated below.
In fact, using the approximations and the normalization of the mode e(x),

e(x) =
u1(x)
|a| +O

(
ε2);

pe(x) =
p1(x)
|a| +O

(
ε2);

∫
S

||e(x)||2dS = 1 =⇒ |a| =
(∫

S

||u1(x)||2dS
)1/2

+O
(
ε2),

(1.19)

multiplying (1.11) by e∗(x), integrating by parts and using ∇ · e∗ = 0, one obtains

λ = σ + iω = −
∫
S

[(
ûo · ∇

)
e + (e · ∇)ûo

]
· e∗dS − 1

Re

∫
S

(
∇e : ∇e∗

)
dS, (1.20)
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with ∇e : ∇e∗ = ∇ex · ∇e∗x + ∇ey · ∇e∗y. Using again the approximation eav
∼= u1(x)/|a| ∼= e,

with the same error ε2 in (1.7), the following identity can be derived,

iωs = −
∫
S

[(
uo · ∇

)
e + (e · ∇)uo

]
· e∗dS − 1

Re

∫
S

(
∇e : ∇e∗

)
dS, (1.21)

and subtracting one expression from the other, while using ûo = uo − δu, one obtains

σ + i
(
ω −ωs

) ∼=
∫
S

[
(δu · ∇)e + (e · ∇)δu

]
· e∗dS, (1.22)

with δu(x; Re) ∼= O(ε2) being solution of the regular linear system (1.10).
Notice that (1.22) reaffirms, as it should, the estimated orders in (1.12) and placing the

a(t) defined in (1.18) into Landau’s equation (1.8) one has

μ ∼=
σ

|a|2
;

c3
∼=
ωs −ω
σ

.

(1.23)

Summarizing: through the 2D simulation one obtains {u(x, t); p(x, t)} and from the
Fourier expansion in the harmonics of the observed frequencyωs one determines the averaged
flow {uo(x; Re); po(x; Re)} and the first harmonic {u1(x; Re); p1(x; Re)} defined in (1.5). Solving
the linear system (1.10) the field δu(x; Re) can be computed and so the coefficients of
Landau’s equation using (1.19), (1.22), and (1.23). The gain in this extra computation is
certainly marginal in the context of the 2D problem; however, as it will be discussed in
the following sections, Landau’s equation is the basis of the 3D Ginzburg-Landau equation
(GLE) and with it one can possible predict an asymptotic approximation of the 3D behavior
without having to resort to a 3D numerical computation of the flow field. In this context, the
proposed approximation is similar to existing “slender body theories” in applied mechanics,
as for example the Lifting Line Theory in the Aerodynamics of slender wings: in all of them
one takes profit of the body slenderness to correct asymptotically the 2D solution. But before
one addresses this 3D extension of Landau’s equation it is worth to mention some general
features of the actual 3D flow around a slender cylinder.

2. Features of the 3D Flow Around a Slender Cylinder

The 2D flow around a slender 3D cylinder is unstable with respect to 3D-perturbation for Re
> 190 and this is instability, known experimentally for a long time, has only recently been
verified theoretically in a comprehensive numerical study done by Henderson [4]. The plot
of the Strouhal number St = fsd/U

(
fs = ωs/2π) as a function of Re, see Figure 4, portrays

this instability in a very clear way and Henderson [4] has shown that the bifurcation at
Rc2

∼= 190 is subcritical while a second one at Rc3
∼= 260 is supercritical. The curve St(Re)

presents a hysteretic behavior in the range 180 < Re ≤ 260, where two competing solutions,
corresponding to two distinct attractors, can appear depending on the initial conditions; as
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usual in a subcritical bifurcation, the presence of the two attractors can be detected a little
before the critical point Rc2

∼= 190.
In the range Re > 260 the Strouhal frequency changes weakly with Re and the flow

pattern presents a well tuned frequency immersed in a chaotic (turbulent) background. In
this range of Reynolds numbers the most conspicuous experimental result is, certainly, the
“lift crisis” observed by Norberg [5] and briefly commented below.

The sectional transverse (lift) force l(z, t) was measured by Norberg [5] in the range
250 < Re < 10 000 and the rms of the lift coefficient cl(z, t) = l(z, t)/((1/2)ρU2d) was plotted as
a function of Re, the obtained result being shown in Figure 5. The “lift crisis” corresponds to
the sharp drop of rms cl at Re ≈ 260, reaching a minimum at Re ≈ 1000 of about 20% of the 2D
value and there remaining up to Re ≈ 5000, where the value of rms cl starts a slow recovering.
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The behavior is similar to the well known “drag crisis” in the range 105 < Re < 106,
although even sharper, and it should be also related to the chaotic (turbulent) flow observed
when Re > 260. The main purpose in the present paper is to indicate that the Ginzburg-
Landau Equation (GLE) has the potential ability to recover Norberg’s “lift crisis” and this
point will be addressed next.

3. Ginzburg-Landau Equation in the Defect Chaos Regime

The 2D unstable mode a(t) · e(x)exp(iωt) is triggered by a random perturbation distributed
along the cylinder’s span and one should expect, as a consequence, a certain phase-lag of
this mode in the z-direction: the amplitude a must then change with the span coordinate
z, namely, a = a(z, t). The z-dependence of the mode amplitude should modify the 2D
Landau’s equation by a parcel proportional to a z-derivative of a and observing that there is
no preferred z-direction this derivative should be even in z: the obvious choice here is to take
the second derivative ∂zza. This is perhaps the simplest argument to introduce the Ginzburg-
Landau Equation (GLE),

∂a

∂t
− σa − γ

(
1 + ic1

)∂2a

∂z2
+ μ

(
1 − ic3

)
|a|2a = 0; {σ; γ ;μ} > 0, (3.1)

as done by Ginzburg in 1950 in his joint study with Landau on super-conductivity, see
Ginzburg [6]. It was introduced then as a phenomenological model, namely, as an equation
that emulates the overall behavior of an observed phenomenon, and as such has been used
in Physics, see Aranson and Kramer [7], to analyze a class of problems related to a distributed
Hopf bifurcation; the flow around a slender cylinder is just an example of it.

In this context, the GLE was first proposed as a phenomenological model by Abarède
and Monkewitz [8] and studied by Monkewitz and co-authors in several papers; particularly
interesting is the work by Monkewitz et al. [9] where some subtle aspects of the flow are
theoretically predicted and confirmed experimentally. These works were restricted, however,
to the range Re < 160, within the stable range of the 2D periodic flow, and the purpose here
is to extend it to the unstable regime Re > Rc2

∼= 190.
Normalizing time, space and amplitude by using {t ← σt; z ← (σ/γ)1/2z; a ←

(σ/μ)1/2a} the same equation (3.1) is obtained with σ = γ = μ = 1: the behavior of the GLE
depends only on the dispersion coefficients {c1; c3} and it is not difficult to show, via Fourier
Transform of the perturbed equation, that the 2D solution becomes unstable with respect to
3D perturbation when c1 · c3 > 1; incidentally, this stability condition is usually called the
Benjamin-Feir condition, in honour of a stability study in water waves done by these authors,
see Benjamin and Feir [11]. In Figure 6 it is shown the results of a comprehensive numerical
study done by Shraiman et al. [10] in the unstable region of the dispersion plane (c1, c3).
It discloses, at first, two distinct chaotic regimes: one, very mild, called “phase chaos”, is
characterized by a “turbulence” superposed on the uniform 2D phase and restricted to a
small strip on the unstable region c1 · c3 > 1; the other, very energetic and covering the
remaining of the unstable region, called “defect chaos”, is related directly to the amplitude
size |a|: the “defects” are the points in time-space plane (z, t) where the amplitude is null and
the iso-phases either stop or bifurcate at them, see the plots of the iso-phases in the detached
figures in Figure 6. Shraiman et al. [10] also observed a thin strip, coined bi-chaotic, close to
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chaos” regimes and corresponding iso-phases. In the bi-chaotic region GLE has two attractors with distinct
frequencies. (Source: Shraiman et al. [10].)

the threshold curve c1 · c3 = 1 and in fact penetrating a little into the stable region c1 · c3 < 1,
where the GLE has two chaotic attractors.

It seems then that the GLE, with recognized predictive ability in the stable range (Re <
190 or c1 · c3 < 1), may be useful also in the unstable range (Re > 190 or c1 · c3 > 1) since, as in
the flow problem, it presents a bi-chaotic behavior in the vicinity of the threshold point (Re ≈
190 or c1 · c3 ≈ 1) and a chaotic one when Re� 190 or c1 · c3 � 1. The difficulty here is first of
all operational, since it seems awkward to adjust the parameters of the phenomenological GLE
to the empirical data of the now chaotic flow, and also conceptual in some sense, once it is
understood that GLE can model the problem just in the vicinity of Hopf bifurcation but not
far from it, although Monkewitz et al. [9] used GLE to model properly the flow problem at a
Re almost three times larger than critical Reynolds Rc1

∼= 46.5.
However, as seen in the first section, Landau’s equation can be extended far beyond

bifurcation and the GLE can be obtained as an asymptotic approximation of the 3D flow related
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Figure 7: Wavenumber spectrum for several points in the dispersion plane
(
c1; c3). σ = γ = μ = 1: (a)

c1 = 1; (b) c1 = 4. (Burr (2007) —NDF)

to (1.13), allowing one to determine the curve (c3(Re); c1(Re)) representing the flow problem.
This computation was not done yet, however, only scarce results are available; meanwhile, it
seems interesting to check whether or not GLE has the potential ability to recover the main
features of the observed 3D flow. For example, one certainly should expect that the curve
(c3(Re); c1(Re)) crosses the Benjamin-Feir curve c1 · c3 = 1 at Re ≈ 190, penetrating after the
defect chaos regime trough the bi-chaotic region, corresponding to the hysteretic behavior in
the range 180 < Re ≤ 260 observed in Figure 4; as Re rises above 260 the curve (c1(Re); c2(Re))
must go even deeper into the defect chaos regime and, in particular, Norberg’s lift crisis must
be predicted if the GLE approximation is consistent. But the transverse (lift) force is due to the
odd harmonics, and so it is proportional to a(z, t): the sharp drop in rms cl must be related,
in the GLE context, to a sharp drop in rms |a(z, t)|. The purpose here is to discuss this point
while revealing some interesting aspects of the GLE in the defect chaos regime, that may have
an interest in itself.

As in a turbulent flow regime, the chaotic solution in the “defect chaos” regime is
characterized by a cascade of length scales k−1 limited below by a “Kolmogorov scale”(
k(kol))

−1, where the dissipated power, proportional to γ · |∂za|2, is of order of the power
given by the instability, proportional to σ · |a|2; it follows that

k(kol) ≈
√
σ

γ
or k(kol)|σ=γ=1 ≈ 1. (3.2)

Equation (3.1) was integrated in the region 0 ≤ z ≤ l = 1000 in the time interval 18000 ≤
t ≤ 20000, using the periodic boundary condition {a(0, t) = a(l, t); ∂za(0, t) = ∂za(l, t)}.
Figure 7 shows the wavenumber spectrum S(k) of a(z, t) for pairs of values

(
c3; c1) and it

is clear that the energy is almost exhausted in the region k > kkol ≈ 1. This behavior was
observed in all numerical experiments in the grid {1 ≤ c3 ≤ 20; 1 ≤ c1 ≤ 20; c3 · c1 > 1}.
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Figure 8: (a) Comparison between (3.3) and rms |a|; (b) Averaged frequency ωm. (Burr (2007)—NDF)

The intensity of the response can be also estimated by the wavenumber spectrum
integral,

I[S(k)] =
∫∞

0
S(k)dk =

1
l

∫ l

0

∣∣a(z, t)∣∣2
dz, (3.3)

and in Figure 8(a) the values of I[S(k)] and rms |a(zm, t)|, zm = (1/2)l, are plotted again for
several points in the “dispersion plane” (c3; c1). The almost exact agreement between the two
plots indicates that the random signal a(z, t) is weakly stationary, namely

d

dt

∫ l

0

∣∣a(z, t)∣∣2
dz ∼= l ·

d

dt

(
rms

∣∣a(zm, t)∣∣) = 0,
(
zm =

1
2
l

)
. (3.4)

Figure 8(a) shows that the rms of |a(z, t)| decreases monotonically with c3, kept c1

constant, but when c3 is constant it increases with c1, also monotonically in the range c3 > 4.
This behavior can be inferred from an identity of the GLE. In fact, if (3.1) is multiplied by
a∗ and integrated in the interval 0 ≤ z ≤ l, one obtains, after using the periodicity of the
boundary conditions and the weak stationary condition (3.4), the identities

(i) −
∫ l

0
|a|2dz +

∫ l

0

∣∣∣∣∂a∂z
∣∣∣∣

2

dz +
∫ l

0
|a|4dz = 0;

(ii)
∫ l

0

(
∂a

∂t
a∗ − ∂a

∗

∂t
a

)
dz + 2ic1

∫ l

0

∣∣∣∣∂a∂z
∣∣∣∣

2

dz − 2ic3

∫ l

0
|a|4dz = 0.

(3.5)
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Now, if a(z, t) = |a(z, t)| · exp[iϕ(z, t)] and introducing the average frequency ωm by
the expression

ωm =
(

1
l

∫
0

∂ϕ

∂t
· |a|2dz

)
/I

[
S(k)

]
, (3.6)

one obtains from (3.5)

χ2 =
m4

m2
=

1 +
(
ωm/c1

)
1 +

(
c3/c1

) ; mk =
1
l

∫ l

0
|a|kdz. (3.7)

This relation was obtained under the weak stationary assumption (3.4) and it seems
reasonable to assume that the intensity of rms |a(z, t)| can be gauged by χ; notice, in particular,
that χ is monotonically increasing with c1 whenωm/c3 < 1 and decreasing with c3 increasing,
in accordance to the observed in Figures 8(a), 8(b) for rms |a(z, t)|. From the relation χ ∼=
rms |a(z, t)| it follows also the asymptotic relations

(i) lim
c1→∞

(
rms|a|

)
c3∼=O(1)

∼= O(1);

(ii) lim
c3→∞

(
rms|a|

)
c1∼=O(1)

∼= O
(√

c1 +ωm

c3

)
.

(3.8)

The expression (ii) in (3.8) can be related to the Kolmogorov scale (3.2). In fact, lets recall,
first of all, a standard result: by assuming an harmonic wave solution a(z, t) = |a| · exp[i(k · z+
ω · t)] of the GLE (3.1) one obtains the dispersion relation,

ω = c3 · |a|2−c1 · k2, (σ = γ = μ = 1) (3.9)

depending on the “dispersion coefficients”
(
c1; c3). For a “random wave” one may take

(rms a(z, t))2 in the place of |a|2 in (3.9) and if k = k(kol) ≈ 1 one obtains, with the help of
(ii) in (3.8), ω ≈ ωm, or in short: the averaged frequency defined in (3.6) is the “Kolmogorov
frequency scale” of the random signal a(z, t) in the limit c3 → ∞, kept c1 constant; in this limit
ωm tends to a bounded value ω∞

(
c1), see Figure 8(b). The data of Figure 8(a) confirm, in the

limit {c3 → ∞; c1 = 1}, the asymptotic behavior rms a(z, t) ∼= ρ · c3
−1/2 with ρ ≈ (c1 +ωm)

1/2;
in reality, ρ ∼= 1.49 from the data of Figure 8(a) while (c1 +ωm)

1/2 ∼= 2.17 from Figure 8(b).
One expects then that rms |a(z, t)| diminishes monotonically with increasing c3, a

result confirmed by the direct evaluation of rms |a(z, t)| in the dispersion plane
(
c3, c1),

see Figure 9; notice that expression (i) in (3.8) is also recovered, a result consistent with the
“phase chaos” regime identified in Figure 6.

In the flow problem, the linear dispersion coefficient c1 is not expected to change
too much with Re but c3, defined by the ratio

(
ωs − ω)/σ, see (1.23), apparently does: the

difference
(
ωs − ω) is small but fairly constant while σ appears to drop sharply for Re

above 100, the ratio
(
ωs − ω)/σ = c3 becoming very large then: as it was seen, if c3 � 1

then rms |a| � 1 and thus rms cl � 1. This result must be confirmed by a more refined
numerical solution but it indicates, anyway, the ability of the GLE to predict Norberg’s “lift
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crisis.” Or, in other words, if the actual curve (c3(Re); c1(Re)) in fact penetrates the unstable
range through the bi-chaotic region at Re ≈ Rc2

∼= 190 and c3(Re) increases rapidly with Re,
then the GLE, together with the asymptotic expansion (1.14), defines in fact a reduced Navier-
Stokes Equation for the flow around a slender cylinder, the practical importance of it being
commented below.

4. Conclusion

In this paper the possibility to solve asymptotically the flow around a slender cylinder
using a 2D computation and the Ginzburg-Landau equation to obtain the 3D correction
was elaborated, stressing the regime above Re ∼= 190, where three dimensionality has a
marked influence. Although one must wait more refined numeric results to reach a definitive
conclusion, the qualitative behavior of GLE in the range c3 · c1 > 1 matches very well the
most important qualitative features of the flow around a slender cylinder in the range Re >
190; as already discussed in Monkewitz et al. [9] , the matching between both is impressive
in the range Re < 160.

A practical problem where the present study may be relevant is related to the fatigue
analysis of “risers” (vertical ducts) in the offshore oil production systems, essential to assure
the safe operation of these systems during its projected life: risers are exposed to ocean
currents and oscillate transversally in the elastic modes with natural frequencies close to the
flow’s Strouhal frequency, the related cyclic stress causing fatigue of the material. The use of
a 3D Navier-Stokes code to obtain practical answers is, however, completely out of question
in the present stage of development, not only due to computer time needed, but also for the
lack of confidence in the numerical results of the enormous discrete system related to it. The
reduced Navier-Stokes equation, represented by the GLE, opens an opportunity to a feasible
and relatively cheap computation: in it, the complex coupling between the incoming flow and
the riser’s elasticity can be represented by a coupled set of equations—one of them being the
(extended) GLE, the other representing the riser’s elastic behavior—both depending only on
the space variable along the riser’s span, turning the discrete model orders of magnitude
smaller. This is the main motivation to study this problem at NDF.



16 Mathematical Problems in Engineering

Acknowledgments

The authors acknowledge the financial support from FINEP-CTPetro, FAPESP, PETROBRAS
and CNPq.

References

[1] M. van Dyke, An Album of Fluid Mechanics, The Parabolic Press, Stanford, Calif, USA, 1982.
[2] D. Barkley, “Linear analysis of the cylinder wake mean flow,” Europhysics Letters, vol. 75, no. 5, pp.

750–756, 2006.
[3] J. A. P. Aranha, “Weak three dimensionality of a flow around a slender cylinder: the Ginzburg-Landau

equation,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 26, no. 4, pp. 355–
367, 2004.

[4] R. D. Henderson, “Nonlinear dynamics and pattern formation in turbulent wake transition,” The
Journal of Fluid Mechanics, vol. 352, pp. 65–112, 1997.

[5] C. Norberg, “Fluctuating lift on a circular cylinder: review and new measurements,” Journal of Fluids
and Structures, vol. 17, no. 1, pp. 57–96, 2003.

[6] V. L. Ginzburg, On Superconductivity and Superfluidity, Nobel Lecture, Springer, Berlin, Germany, 2003.
[7] I. S. Aranson and L. Kramer, “The world of the complex Ginzburg-Landau equation,” Reviews of

Modern Physics, vol. 74, no. 1, pp. 99–143, 2002.
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