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1. Introduction

Fractional calculus has played a significant role in engineering, science, economy, and other
fields. Many papers and books on fractional calculus, and fractional differential equations
have appeared recently, (see [1–9]). It should be noted that most of papers and books on
fractional calculus, are devoted to the solvability of initial fractional differential equations
(see [3, 4]). Here, we consider positive solutions of nonlinear fractional differential equation
conjugate boundary value problem involving Riemann-Liouville derivative:

Dα
0+u(t) = μa(t)f(t, u(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0,
(1.1)

where μ > 0, a, and f are continuous. α ∈ (3, 4] is a real number, and Dα
0+ is the Riemann-

Liouville fractional derivative.
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It is well known that in mechanics the boundary value problem (1.1) where α = 4
describes the deflection of an elastic beam rigidly fixed at both ends. The integer order
boundary value problem (1.2) has been studied extensively. For details, see for instance, the
papers [10–13] and the references therein. In [10, 12], Yao considered

u′′′′(t) = λf(t, u(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0,
(1.2)

and using a Krasnosel’skii fixed-point theorem, derived a λ-interval such that, for any λ lying
in this interval, the beam equation has existence and multiplicity on positive solution. In this
paper, we will consider a more general situation, namely, the boundary value problem (1.1).
To the best of our knowledge, there have been few papers which deal with the boundary
value problem (1.1) for nonlinear fractional differential equation.

In this paper, in analogy with boundary value problems for differential equations
of integer order, we firstly derive the corresponding Green’s function named the fractional
Green’ function. Consequently problem (1.1) is reduced to an equivalent Fredholm integral
equation of the second kind. Finally, using Krasnosel’skii’s fixed-point theorems, the
existence of positive solutions are obtained.

2. Preliminaries

For completeness, in this section, we will demonstrate and study the definitions and some
fundamental facts of Riemann-Liouville derivatives of fractional order which can be found
in [5].

Definition 2.1 (see [5, Definition 2.1]). The integral

Iα0+f(x) =
1

Γ(α)

∫x

0

f(t)

(x − t)1−α
dt, x > 0, (2.1)

where α > 0, is called the Riemann-Liouville fractional integral of order α.

Definition 2.2 (see [5, page 36-37]). For a function f(x) given in the interval [0,∞), the
expression

Dα
0+f(x) =

1
Γ(n − α)

(
d

dx

)n∫x

0

f(t)

(x − t)α−n+1
dt, (2.2)

where n = [α] + 1, [α] denotes the integer part of number α, is called the Riemann-Liouville
fractional derivative of order α.

From the definition of Riemann-Liouville derivative, for μ > −1, we have

Dα
0+x

μ =
Γ
(
1 + μ

)
Γ
(
1 + μ − α

)xμ−α, (2.3)

giving in particular Dα
0+x

α−m = 0, m = 1, 2, 3, . . . ,N, where N is the smallest integer greater
than or equal to α.
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Lemma 2.3. Let α > 0, then the differential equation

Dα
0+u(t) = 0 (2.4)

has solutions u(t) = c1t
α−1 + c2t

α−2 + · · · + cnt
α−n, ci ∈ R, i = 1, , 2 . . . , n, as unique solutions, where

n is the smallest integer greater than or equal to α.
AsDα

0+I
α
0+u = u, from Lemma 2.3, we deduce the following statement.

Lemma 2.4. Let α > 0, then

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · · + cnt

α−n, (2.5)

for some ci ∈ R, i = 1, 2, . . . , n, n is the smallest integer greater than or equal to α.
The following Krasnosel’skii’s fixed-point theorem will play a major role in our next analysis.

Theorem 2.5 (see [6]). Let X be a Banach space, and let P ⊂ X be a cone in X. Assume that Ω1,Ω2

are open subsets ofX with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let S : P → P be a completely continuous operator
such that, either

(1) ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω2, or

(2) ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂Ω2.

Then S has a fixed-point in P ∩ (Ω2 \Ω1).

3. Green’s Function and Its Properties

In this section, we derive the corresponding Green’s function for boundary-value problem
(1.1), and obtain some properties of Green’s function.

Lemma 3.1. Let h(t) ∈ C[0, 1] be a given function, then the boundary-value problem,

Dα
0+u(t) = h(t), 0 < t < 1, 3 < α ≤ 4,

u(0) = u(1) = u′(0) = u′(1) = 0,
(3.1)

has a unique solution

u(t) =
∫1

0
G(t, s)h(s)ds, (3.2)

where

G(t, s) =
1

Γ(α)

⎧⎨
⎩
tα−2(1 − s)α−2[(s − t) + (α − 2)(1 − t)s] + (t − s)α−1, 0 ≤ s ≤ t ≤ 1,

tα−2(1 − s)α−2[(s − t) + (α − 2)(1 − t)s], 0 ≤ t ≤ s ≤ 1.
(3.3)

Here G(t, s) is called Green’s function of boundary-value problem (3.1).
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Proof. By means of the Lemma 2.4, we can reduce (3.1) to an equivalent integral equation

u(t) = c1t
α−1 + c2t

α−2 + c3t
α−3 + c4t

α−4 +
∫ t

0

(t − s)α−1

Γ(α)
h(s)ds. (3.4)

From u(0) = u(1) = u′(0) = u′(1) = 0, we have c3 = c4 = 0 and

c1 =
∫1

0

(1 − s)α−2(2s − αs − 1)
Γ(α)

h(s)ds,

c2 =
∫1

0

(α − 1)(1 − s)α−2s
Γ(α)

h(s)ds.

(3.5)

Therefore, the unique solution of (3.1) is

u(t) =
∫1

0

tα−1(1−s)α−2(2s−αs−1)
Γ(α)

h(s)ds +
∫1

0

tα−2(α−1)(1−s)α−2s
Γ(α)

h(s)ds +
∫ t

0

(t−s)α−1
Γ(α)

h(s)ds

=
1

Γ(α)

∫ t

0

[
tα−1(1−s)α−2(2s−αs−1) + tα−2(α−1)(1−s)α−2s + (t−s)α−1

]
h(s)ds

+
∫1

t

[
tα−1(1−s)α−2(2s−αs−1) + tα−2(α−1)(1−s)α−2s

]
h(s)ds

=
∫1

0
G(t, s)h(s)ds.

(3.6)

The proof is finished.

Lemma 3.2. The function G(t, s) defined by (3.3) has the following properties:

(1) G(t, s) = G(1 − s, 1 − t), for t, s ∈ [0, 1];

(2) tα−2(1 − t)2q(s) ≤ G(t, s) ≤ (α − 1)q(s) and G(t, s) ≤ ((α − 1)(α − 2)/Γ(α))tα−2(1 − t)2

for t, s ∈ [0, 1],

where q(s) = ((α − 2)/Γ(α))s2(1 − s)α−2.

Proof. Observing the expression of G(t, s), it is clear that G(t, s) = G(1− s, 1− t) for t, s ∈ [0, 1].
In the following, we consider Γ(α)G(t, s).
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For 0 ≤ s ≤ t ≤ 1, we have

Γ(α)G(t, s) = (t − s)α−1 − (t − ts)α−2(t − s) + (α − 2)(1 − t)(t − ts)α−2s

= (t − s)
[
(t − s)α−2 − (t − ts)α−2

]
+ (α − 2)(1 − t)(t − ts)α−2s

= −(t − s)(α − 2)
∫ t−ts

t−s
xα−3dx + (α − 2)(t − ts)α−2(1 − t)s

≥ −(t − s)(α − 2)(t − ts)α−3[(t − ts) − (t − s)] + (α − 2)(t − ts)α−2(1 − t)s

= −(t − s)(α − 2)(t − ts)α−3(1 − t)s + (α − 2)(t − ts)α−2(1 − t)s

= (α − 2)(t − ts)α−3(1 − t)s[−(t − s) + (t − ts)]

≥ (α − 2)(t − ts)α−2(1 − t)2s2

= (α − 2)tα−2(1 − t)2s2(1 − s)α−2,

(3.7)

and

Γ(α)G(t, s) = −(t − s)(α − 2)
∫ t−ts

t−s
xα−3dx + (α − 2)(t − ts)α−2(1 − t)s

≤ −(t − s)(α − 2)(t − s)α−3[(t − ts) − (t − s)] + (α − 2)(t − ts)α−2(1 − t)s

= −(t − s)(α − 2)(t − s)α−3(1 − t)s + (α − 2)(t − ts)α−2(1 − t)s

= (α − 2)(1 − t)s
[
(t − ts)α−2 − (t − s)α−2

]

≤ (α − 2)2(1 − t)2s2(t − ts)α−3

≤ (α − 1)(α − 2)tα−3(1 − t)2s2(1 − s)α−3

≤ (α − 1)(α − 2)s2(1 − s)α−2.

(3.8)

For 0 ≤ t ≤ s ≤ 1, since α > 3, we have

Γ(α)G(t, s) = (t − ts)α−2[(s − t) + (α − 2)(1 − t)s]

≥ (α − 2)(t − ts)α−2(1 − t)s

= (α − 2)tα−2(1 − s)α−2(1 − t)s

≥ (α − 2)tα−2(1 − t)2s2(1 − s)α−2,
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Γ(α)G(t, s) = tα−2(1 − s)α−2[(s − t) + (α − 2)(1 − t)s]

≤ tα−2(1 − s)α−2[s + (α − 2)s]

≤ (α − 1)t(1 − s)α−2s

≤ (α − 1)s2(1 − s)α−2

≤ (α − 2)(α − 1)s2(1 − s)α−2.

(3.9)

Thus tα−2(1 − t)2q(s) ≤ G(t, s) ≤ (α− 1)q(s), for t, s ∈ [0, 1]. Combining G(t, s) = G(1− s, 1− t),
we have

G(t, s) ≤ (α − 1)q(1 − t) =
(α − 1)(α − 2)

Γ(α)
tα−2(1 − t)2, for t, s ∈ [0, 1]. (3.10)

This completes the proof.

We note that u(t) is a solution of (1.1) if and only if

u(t) = μ

∫1

0
G(t, s)a(s)f(u(s))ds, 0 ≤ t ≤ 1. (3.11)

For our constructions, we will consider the Banach space E = C[0, 1] equipped with
standard norm ‖u‖ = max0≤t≤1‖u(t)‖, u ∈ X. We define a cone K by

K =

{
u ∈ X | u(t) ≥ tα−2(1 − t)2

α − 1
‖u‖, t ∈ [0, 1], α ∈ (3, 4]

}
. (3.12)

Define an integral operator A : K → X by

Au(t) = μ

∫1

0
G(t, s)a(s)f(u(s))ds, 0 ≤ t ≤ 1, u ∈ K. (3.13)

Notice from (3.13) and Lemma 3.2 that, for u ∈ K, Au(t) ≥ 0 on [0, 1] and

Au(t) = μ

∫1

0
G(t, s)a(s)f(s, u(s))ds ≤ μ

∫1

0
(α − 1)q(s)a(s)f(s, u(s))ds, (3.14)

then ‖Au‖ ≤ ∫10(α − 1)q(s)a(s)f(s, u(s))ds .
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On the other hand, we have

Au(t) = μ

∫1

0
G(t, s)a(s)f(s, u(s))ds

≥ μ

∫1

0
tα−2(1 − t)2q(s)a(s)f(s, u(s))ds

≥ tα−2(1 − t)2

α − 1
μ

∫1

0
(α − 1)q(s)a(s)f(s, u(s))ds

≥ tα−2(1 − t)2

α − 1
‖Au‖.

(3.15)

Thus, A(K) ⊂ K. In addition, standard arguments show that A is completely continuous.

4. Singular Positone Problems

In this section we present some new result for the singular problem

Dα
0+u(t) = μa(t)f(t, u(t)), 0 < t < 1, 3 < α ≤ 4,

u(0) = u(1) = u′(0) = u′(1) = 0,
(4.1)

where μ > 0 and nonlinearity f may be singular at u = 0.
Using Theorem 2.5 we establish the following main result.

Theorem 4.1. Suppose that the following conditions are satisfied.

a ∈ C(0, 1) ∩ L1[0, 1] with a > 0 on (0, 1) (4.2)

f : [0, 1] × (0,∞) −→ (0,∞) is continuous, (4.3)
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f(t, u) ≤ g(u) + h(u) on [0, 1] × (0,∞) with g > 0

continuous and nonincreasing on (0,∞), h ≥ 0

continuous on [0,∞) and
h

g
non decreasing on (0,∞),

(4.4)

∃K0 with g
(
xy
) ≤ K0g(x)g

(
y
) ∀x > 0, y > 0, (4.5)

a0 = μ(α − 1)
∫1

0
q(s)a(s)g

(
sα−2(1 − s)2

)
ds < ∞, (4.6)

∃r > 0 with
r

g(r) + h(r)
> K2

0a0g

(
1

α − 1

)
, (4.7)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

There exists 0 < θ <
1
2
(
choose and fix it

)
and a continuous,

nonincreasing function g1 : (0,∞) −→ (0,∞), and a continuous

function h1 : [0,∞) −→ (0,∞) with
h1

g1
nondecreasing on (0,∞)

and with f(t, u) ≥ g1(u) + h1(u) for (t, u) ∈ [θ, 1 − θ] × (0,∞),

(4.8)

⎧⎪⎪⎨
⎪⎪⎩
∃ 0 < R1 < r < R2 with (i = 1, 2),

Rig1(θα/α − 1)Ri

g1(Ri)g1((θα/α − 1)Ri) + g1(Ri)h1((θα/α − 1)Ri)
< μ

∫1−θ

θ

G(σ, s)a(s)ds,
(4.9)

here G(t, s) is Green’s function and

∫1−θ

θ

G(σ, s)a(s)ds = sup
t∈[0,1]

∫1−θ

θ

G(t, s)a(s)ds. (4.10)

Then (4.1) has two nonnegative solutions ui with R1 < ‖u1‖ < r < ‖u2‖ < R2 and ui(t) > 0 for
t ∈ (0, 1), i = 1, 2.

Proof. First we will show that there exists a solution u2 to (4.1)with u2(t) > 0 for t ∈ (0, 1) and
r < ‖u2‖ < R2. Let

Ω1 = {u ∈ E : ‖u‖ < r}, Ω2 = {u ∈ E : ‖u‖ < R2}. (4.11)

We now show

‖Au‖ < ‖u‖ for K ∩ ∂Ω1. (4.12)

To see this, let u ∈ K ∩ ∂Ω1. Then ‖u‖ = ||u||[0,1] = r and u(t) ≥ (tα−2(1 − t)2/(α − 1))r for
t ∈ [0, 1]. So for t ∈ [0, 1], we have

(Au)(t) = μ

∫1

0
G(t, s)a(s)f(s, u(s))ds

≤ μ

∫1

0
(α − 1)q(s)a(s)

[
g(u(s)) + h(u(s))

]
ds

= μ

∫1

0
(α − 1)q(s)a(s)g(u(s))

{
1 +

h(u(s))
g(u(s))

}
ds
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≤ μ

∫1

0
(α − 1)q(s)a(s)g

(
sα−2(1 − s)2

α − 1
r

){
1 +

h(r)
g(r)

}
ds

≤ K0g

(
r

α − 1

){
1 +

h(r)
g(r)

}
μ

∫1

0
(α − 1)q(s)a(s)g

(
sα−2(1 − s)2

)
ds

= a0K
2
0g

(
1

α − 1

)[
g(r) + h(r)

]
.

(4.13)

This together with (4.7) yields

‖Au‖ = ‖Au‖[0,1] < r = ‖u‖, (4.14)

so (4.12) is satisfied.
Next we show

‖Au‖ > ‖u‖ for K ∩ ∂Ω2. (4.15)

To see this, let u ∈ K ∩ ∂Ω2 so ‖u‖ = ‖u‖[0,1] = R2, and let u(t) ≥ (tα−2(1 − t)2/(α − 1))R2 for
t ∈ [0, 1].

We have

(Au)(σ) = μ

∫1

0
G(σ, s)a(s)f(s, u(s))ds

≥ μ

∫1−θ

θ

G(σ, s)a(s)
[
g1(u(s)) + h1(u(s))

]
ds

= μ

∫1−θ

θ

G(σ, s)a(s)g1(u(s))
{
1 +

h1(u(s))
g1(u(s))

}
ds

≥ g1(R2)μ
∫1−θ

θ

G(σ, s)a(s)

⎧⎨
⎩1 +

h1

((
sα−2(1 − s)2/(α − 1)

)
R2

)

g1
((

sα−2(1 − s)2/(α − 1)
)
R2

)
⎫⎬
⎭ds

≥ g1(R2)μ
∫1−θ

θ

G(σ, s)a(s)
{
1 +

h1((θα/(α − 1))R2)
g1((θα/(α − 1))R2)

}
ds.

(4.16)

This together with (4.9) yields

(Au)(σ) > R2 = ‖u‖. (4.17)

Thus ||Au|| > ||u||, so (4.15) is held.
Now Theorem 2.5 implies that A has a fixed-point u2 ∈ K ∩ (Ω2 \ Ω1), that is, r ≤

‖u2‖ = ‖u2‖[0,1] ≤ R and u2(t) ≥ q(t)r for t ∈ [0, 1]. It follows from (4.12) and (4.15) that
‖u2‖/= r, ‖u2‖/=R2, so we have r < ||u2|| < R2.
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Similarly, if we put

Ω1 = {u ∈ E : ‖u‖ < R1}, Ω2 = {u ∈ E : ‖u‖ < r}, (4.18)

we can show that there exists a solution u1 to (4.1) with u1(t) > 0 for t ∈ (0, 1) and R1 < ||u1||
< r.

This completes the proof of Theorem 4.1.

Similar to the proof of Theorem 4.1, we have the following result.

Theorem 4.2. Suppose that (4.2)–(4.8) hold. In addition suppose

⎧⎪⎪⎨
⎪⎪⎩
∃0 < R1 < r with

R1g1(θα/(α − 1))R1

g1(R1)g1(θα/(α − 1))R1 + g1(R1)h1(θα/(α − 1))R1
< μ

∫1−θ

θ

G(σ, s)q(s)ds.
(4.19)

Then (4.1) has a nonnegative solution u1 with R1 < ‖u1‖ < r and u1(t) > 0 for t ∈ (0, 1).

Remark 4.3. If in (4.19)we haveR1 > r, then (4.1) a nonnegative solution u2 with r < ‖u2‖ < R2

and u2(t) > 0 for t ∈ (0, 1).
It is easy to use Theorem 4.2 and Remark 4.3 to write theorems which guarantee the

existence of more than two solutions to (4.1). We state one such result.

Theorem 4.4. Suppose that (4.2)–(4.6) and (4.8) hold. Assume that ∃m ∈ {1, 2, . . .} and constants
Ri, ri(i = 1, . . . , m), with r1 > b0, and

0 < R1 < r1 < R2 < r2 < · · · < Rm < rm. (4.20)

In addition suppose for each i = 1, . . . , m that

ri
g(ri) + h(ri)

> K2
0a0g

(
1

α − 1

)
, (4.21)

and

Rig1(θα/(α − 1))Ri

g1(Ri)g1(θα/(α − 1))Ri + g1(Ri)h1(θα/(α − 1))Ri
< μ

∫1−θ

θ

G(σ, s)a(s)ds (4.22)

hold. Then (4.1) has nonnegative solutions y1, . . . , ym with yi(t) > 0 for t ∈ (0, 1).

Example 4.5. Consider the boundary value problem

Dα
0+u(t) = σ

(
u−a(t) + ub(t)

)
, t ∈ (0, 1), 3 < α ≤ 4,

u(0) = u(1) = u′(0) = u′(1) = 0, 0 < a < 1 < b,

(4.23)
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where σ ∈ (0, σ0) is such that

σ0 ≤ 1
2a1

, (4.24)

here

a1 =
(α − 1)(α − 2)

Γ(α)

∫1

0
sα−2(1 − s)2

(
sα−2(1 − s)2

)−α
ds =

∫1

0
s(α−2)(1−a)(1 − s)2(1−a)ds < ∞.

(4.25)

Then (4.23) has two solutions u1, u2 with u1(t) > 0, u2(t) > 0 for t ∈ (0, 1), i = 1, 2.
To see this we will apply Theorem 4.1 with (here 0 < R1 < 1 < R2 will be chosen below)

g(u) = g1(u) = u−a, h(u) = h1(u) = ub, a(t) = σ, K0 = 1, θ =
1
4
. (4.26)

Clearly (4.2)–(4.6) and (4.8) hold, and a0 = (σa1/(α − 1)a). Now (4.7) holds with r = 1 since

r

g(r) + h(r)
=

1
2
≥ a1σ0 > K2

0a0(α − 1)a = K2
0a0g

(
1

α − 1

)
. (4.27)

Finally notice (4.9) is satisfied for R1 small and R2 large since

Ri

g1(Ri)
{
1 + (h1)((θα/α − 1)Ri)/

(
g1
)
((θα/α − 1)Ri)

} =
R1+a

i

1 + (α − 1)−(a+b)θα(a+b)Ra+b
i

−→ 0,

(4.28)

as R1 → 0, R2 → ∞, since b > 1. Thus all the conditions of Theorem 4.1 are satisfied so
existence is guaranteed.

5. Singular Semipositone Problems

In this section we present a new result for the singular semipositone problem:

Dα
0+u(t) = μa(t)f(t, u(t)), 0 < t < 1, 3 < α ≤ 4,

u(0) = u(1) = u′(0) = u′(1) = 0,
(5.1)

where μ > 0 and nonlinearity f may be singular at u = 0.
Before we prove our main result, we first state a result.

Lemma 5.1. Suppose a ∈ L1[0, 1] with a > 0 on (0, 1). Then the boundary value problem,

Dα
0+u(t) = a(t)e(t), 0 < t < 1, 3 < α ≤ 4,

u(0) = u(1) = u′(0) = u′(1) = 0,
(5.2)
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has a solution w with

w(t) ≤ tα−2(1 − t)2

α − 1
C0 for t ∈ [0, 1], (5.3)

here

C0 =
(α − 1)2(α − 2)

Γ(α)

∫1

0
a(s)e(s)ds. (5.4)

In fact, from Lemma 3.1, (5.2) has solution

w(t) =
∫1

0
G(t, s)a(s)e(s)ds. (5.5)

According to Lemma 3.2, we have

w(t) ≤
∫1

0

(α − 1)(α − 2)tα−2(1 − t)2

Γ(α)
a(s)e(s)ds =

tα−2(1 − t)2

α − 1
C0. (5.6)

The above Lemma together with Theorem 2.5 establish our main result.

Theorem 5.2. Suppose that the following conditions are satisfied.

q ∈ C(0, 1) ∩ L1[0, 1] with q > on (0, 1). (5.7)
⎧⎨
⎩
f : [0, 1] × (0,∞) −→ R is continuous and there exists

a function e ∈ C((0, 1), (0,+∞)) with f(t, u) + e(t) ≥ for (t, u) ∈ (0, 1) × (0,∞),
(5.8)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f∗(t, u) = f(t, u) + e(t) ≤ g(u) + h(u) on [0, 1] × (0,∞) with g > 0

continuous and nonincreasing on (0,∞), h ≥ 0

continuous on [0,∞) and
h

g
nondecreasing on (0,∞),

(5.9)

∃K0 with g
(
xy
) ≤ K0g(x)g

(
y
) ∀x > 0, y > 0, (5.10)

a0 =
∫1

0
G(σ, s)q(s)g

(
sα−2(1 − s)2

)
ds < ∞, (5.11)

∃r > μC0 with
r

g
((
r − μC0

)
/(α − 1)

){
1 +
(
h(r)/g(r)

)} ≥ μK0a0, (5.12)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

There exists 0 < θ <
1
2
(
choose and fix it

)
and a continuous,

nonincreasing function g1 : (0,∞) −→ (0,∞), and a continuous

function h1 : [0,∞) −→ (0,∞) with
h1

g1
nondecreasing on (0,∞)

and with f(t, u) + e(t) ≥ g1(u) + h1(u) for (t, u) ∈ [θ, 1 − θ] × (0,∞),

(5.13)

and ∃R > r with

Rg1((εθα/(α − 1))R)
g1(R)g1((εθα/(α − 1))R) + g1(R)h1((εθα/(α − 1))R)

≤ μ

∫1−θ

θ

G(σ, s)q(s)ds, (5.14)

here ε > 0 is any constant (choose and fix it) so that 1− (μC0/R) ≥ ε (note ε exists since R > r > μC0

in fact we can have ε = 1 − (μC0/r) ) and G(t, s) is Green’s function and

∫1−θ

θ

G(σ, s)a(s)ds = sup
t∈[0,1]

∫1−θ

θ

G(t, s)a(s)ds. (5.15)

Then (5.1) has a solution y ∈ C[0, 1] ∩ C2(0, 1) with y(t) > 0 for t ∈ (0, 1).

Proof. To show that (5.1) has a nonnegative solution we will look at the boundary value
problem

Dα
0+y(t) = μq(t)f∗(t, y(t) − φ(t)

)
, 0 < t < 1, 3 < α ≤ 4,

y(0) = y(1) = y′(0) = y′(1) = 0,
(5.16)

where

φ(t) = μMw(t), 0 ≤ t ≤ 1, (5.17)

(w is as in Lemma 5.1).
We will show, using Theorem 2.5 , that there exists a solution y1 to (5.16) with y1(t) >

φ(t) for t ∈ (0, 1). If this is true then u(t) = y1(t) − φ(t), 0 ≤ t ≤ 1 is a nonnegative solution
(positive on (0, 1)) of (5.1), since

Dα
0+u(t) = Dα

0+y1(t) −Dα
0+φ(t) = −μq(t)f∗(t, y1(t) − φ(t)

)
+ μq(t)e(t)

= −μq(t)[f(t, y1(t) − φ(t)
)
+ e(t)

]
+ μq(t)e(t)

= −μq(t)f(t, y1(t) − φ(t)
)

= −μq(t)f(t, u(t)), 0 < t < 1.

(5.18)

As a result, we will concentrate our study on (5.16). Let E,K as in Section 2, and let

Ω1 = {u ∈ E : ‖u‖ < r}, Ω2 = {u ∈ E : ‖u‖ < R}. (5.19)
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Next let A : K ∩ (Ω2 \Ω1) → E be defined by

(
Ay
)
(t) = μ

∫1

0
G(t, s)q(s)f∗(s, y(s) − φ(s)

)
ds, 0 ≤ t ≤ 1. (5.20)

In addition, standard argument shows that A(P) ⊂ P and A is completely continuous.
We now show

∥∥Ay
∥∥ ≤ ∥∥y∥∥ for K ∩ ∂Ω1. (5.21)

To see this, let y ∈ K ∩ ∂Ω1. Then ‖y‖ = ‖y‖[0,1] = r and y(t) ≥ (tα−2(1 − t)2/(α − 1))r for
t ∈ [0, 1]. Now for t ∈ (0, 1), the Lemma 5.1 implies

y(t) − φ(t) ≥ tα−2(1 − t)2

α − 1
r − μ

tα−2(1 − t)2

α − 1
C0 ≥ tα−2(1 − t)2

α − 1
(
r − μC0

)
> 0, (5.22)

so for t ∈ [0, 1] we have

(
Ay
)
(t) = μ

∫1

0
G(t, s)a(s)f∗(s, y(s) − φ(s)

)
ds

≤ μ

∫1

0
q(s)a(s)

[
g
(
y(s) − φ(s)

)
+ h
(
y(s) − φ(s)

)]
ds

= μ

∫1

0
q(s)a(s)g

(
y(s) − φ(s)

){
1 +

h
(
y(s) − φ(s)

)
g
(
y(s) − φ(s)

)
}
ds

≤ μ

∫1

0
q(s)a(s)g

(
sα−2(1 − s)2

α − 1
(
r − μC0

)){
1 +

h(r)
g(r)

}
ds

≤ μK0g

(
r − μC0

α − 1

){
1 +

h(r)
g(r)

}∫1

0
q(s)a(s)g

(
sα−2(1 − s)2

)
ds

= μK0a0g

(
r − μC0

α − 1

){
1 +

h{r}
g{r}

}
.

(5.23)

This together with (5.12) yields

∥∥Ay
∥∥ =
∥∥Ay

∥∥
[0,1] ≤ r =

∥∥y∥∥, (5.24)

so (5.21) is satisfied.
Next we show

∥∥Ay
∥∥ ≥ ∥∥y∥∥ for K ∩ ∂Ω2. (5.25)
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To see this let y ∈ K ∩∂Ω2 so ‖y‖ = ‖y‖[0,1] = R and y(t) ≥ (tα−2(1 − t)2/(α− 1))R for t ∈ [0, 1].
Also for t ∈ [0, 1] we have

y(t)−φ(t) = y(t)−μw(t) ≥ tα−2(1−t)2
α − 1

R−μC0
tα−2(1−t)2

α − 1

≥ tα−2(1−t)2
α−1 R

(
1−μC0

R

)
≥ εtα−2(1−t)2

α−1 R.

(5.26)

As a result

y(t) − φ(t) ≥ εθα

α − 1
R for t ∈ [θ, 1 − θ]. (5.27)

We have

(
Ay
)
(σ) = μ

∫1

0
G(σ, s)q(s)f∗(s, y(s) − φ(s)

)
ds

≥ μ

∫1−θ

0
G(σ, s)q(s)

[
g1
(
y(s) − φ(s)

)
+ h1
(
y(s) − φ(s)

)]
ds

= μ

∫1−θ

0
G(σ, s)q(s)g1

(
y(s) − φ(s)

){
1 +

h1
(
y(s) − φ(s)

)
g1
(
y(s) − φ(s)

)
}
ds

≥ μg1(R)
∫1−θ

0
G(σ, s)q(s)

{
1 +

h1((εθα/(α − 1))R)
g1((εθα/(α − 1))R)

}
ds.

(5.28)

This together with (5.14) yields

(
Ay
)
(σ) ≥ R =

∥∥y∥∥. (5.29)

Thus ‖Ay‖ ≥ ‖y‖, so (5.25) is held.
Now Theorem 2.5 implies that A has a fixed-point y ∈ K ∩ (Ω2 \ Ω1), that is, r ≤

‖y‖ = ‖y‖[0.1] ≤ R and y(t) ≥ tα−2(1 − t)2r for t ∈ [0, 1]. Thus y(t) is a solution of (5.16) with
y(t) > φ(t) for t ∈ (0, 1). Thus (5.1) has a positive solution u(t) = y(t)−φ(t) > for t ∈ (0, 1).

Example 5.3. Consider the boundary value problem

Dα
0+y(t) = μ

(
y−a(t) + yb(t) − 1

)
, 0 < t < 1, 3 < α ≤ 4,

y(0) = y(1) = y′(0) = y′(1) = 0, 0 < a < 1 < b,

(5.30)

where μ ∈ (0, μ0) is such that

(α − 1)2(α − 2)μ0

2Γ(α)
+ (α − 1)

(
2μ0a0

)1/α ≤ 1, (5.31)
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here

a0 =
∫1

0
q(s)a(s)g

(
sα−2(1 − s)2

)
ds =

∫1

0
s1−a(α−1)(1 − s)(α−1)ds < ∞. (5.32)

Then (5.30) has a solution y with y(t) > 0 for t ∈ (0, 1).
To see this we will apply Theorem 5.2 with (here R > 1 will be chosen later, in fact here

we choose R > 1 so that ε = 1/2 works, i.e., we choose R so that 1 − (μ/(2Γ(α)R)) ≥ 1/2)),

g
(
y
)
= g1

(
y
)
= y−a, h

(
y
)
= h1

(
y
)
= yb, a(t) = 1, e(t) = t−1/2,

aK0 = 1, ε =
1
2
, θ =

1
4
, C0 =

(α − 1)2(α − 2)
Γ(α)

∫1

0
s−1/2ds =

(α − 2)2(α − 2)
2Γ(α)

.
(5.33)

Clearly (5.7)–(5.11) and (5.13) hold. Now (5.12) holds with r = 1 since

μK0a0 = μa0 < μ0a0 ≤ 1
2

(
1−μ0C0

α−1
)a

≤ 1
2

(
1−μc0
α−1

)a

=
r{

1+
(
h(r)/g(r)

)}
g
((
r−μMC0

)
/(α−1)) ,

(5.34)

from (5.31). Finally notice (5.14) is satisfied for R large since

Rg1(εθα/(α − 1))R
g1(R)g1((εθα/(α − 1))R) + g1(R)h1((εθα/(α − 1))R)

=
R1+a

1 + (α − 1)−(a+b)[εθα]a+bRa+b
−→ 0,

(5.35)

as R → ∞, since b > 1. Thus all the conditions of Theorem 5.2 are satisfied so existence is
guaranteed.
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