
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2009, Article ID 602712, 17 pages
doi:10.1155/2009/602712

Research Article
A Gradient Weighted Moving
Finite-Element Method with Polynomial
Approximation of Any Degree

Ali R. Soheili, J. Naghipoor, and S. A. Ahmadian

Faculty of Mathematics, University of Sistan and Baluchestan, P.O. Box 98135-984 Zahedan, Iran

Correspondence should be addressed to Ali R. Soheili, soheili@math.usb.ac.ir

Received 29 November 2008; Revised 20 April 2009; Accepted 5 July 2009

Recommended by Angelo Luongo

A gradient weighted moving finite element method (GWMFE) based on piecewise polynomial of
any degree is developed to solve time-dependent problems in two space dimensions. Numerical
experiments are employed to test the accuracy and effciency of the proposed method with
nonlinear Burger equation.

Copyright q 2009 Ali R. Soheili et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Many problems in science and engineering are formulated in terms of time-dependent partial
differential equations (PDEs). It is well known that due to the moving steep fronts present in
the solution, these problems present serious numerical difficulties. We present an approach
where the mesh moves dynamical to capture the sharp front with a small number of space
nodes.

Moving finite-element method (MFE) is a discretization technique on continuously
deforming spatial grids introduced by K. Miller and R. N. Miller [1, 2] to deal with time-
dependent partial differential equations involving fine scale phenomena such as moving
fronts, pulses and shocks [3–7]. Much significant work on MFE has been done by Baines
and Wathen and their collaborators [1, 4, 5, 8, 9]. In particular, we mention the Baines book
[8] and its excellent bibliography. For more information about moving finite-element method
and its aspects and applications, see [9–18].

In all of these works, the method is based on a minimization of the PDE residual
that is obtained by approximating the solution with piecewise linear elements. In [19],
Coimbra et. al. introduced the MFE in two dimensions in which the degree of approximation
polynomial was greater than 1. In [6, 7], Carlson and Miller introduced the GWMFE in two
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dimension in which the approximation polynomial was linear. In this paper, we present
a formulation of GWMFE with approximation of higher degree to solve two dimensional
time-dependent partial differential equations. This formulation of the GWMFE, which builds
on the original approach of Miller [1, 2], uses piecewise polynomial approximations of any
degree of the 2D spatial domain. Numerical investigations are presented to show the accuracy
and effectiveness of our method.

2. The GWMFE in 2D

Our formulation of GWMFE has been designed to solve a PDE of the type

∂u

∂t
= L(u), (2.1)

where

L(u)=F
(
x, y, t, u,

∂u

∂x
,
∂u

∂y

)
∂2u

∂x2
+G
(
x, y, t, u,

∂u

∂x
,
∂u

∂y

)
∂2u

∂y2
+H
(
x, y, t, u,

∂u

∂x
,
∂u

∂y

)
(2.2)

is a first or second order differential operator on the 2D spatial interval Ω, if
F(x, y, t, u, ∂u/∂x, ∂u/∂y) and G(x, y, t, u, ∂u/∂x, ∂u/∂y) be zero or not, respectively, and
under Dirichlet, Neumann, or Robin boundary conditions and initial conditions satisfying
u(x, y, 0) = u0(x, y), (x, y) ∈ Ω.

2.1. Description of the Method

The GWMFE is a numerical procedure which allows the local gradient adaptation of the
finite-element approximation space with time. For the space discretization, we consider a
hexagonally connected triangularization of Ω =

⋃ne
j=1 Ωj , where ne is the number of elements

on Ω. In each triangle Ωj , the solution approximated by a polynomial of degree greater than
1. We define the polynomial approximation Uj(x, y, t) to uj(x, y, t) as

Uj

(
x, y, t

)
=

np∑
k=1

bj,k
(
x, y
)
Uk
j (t), (2.3)

where bj,k(x, y) is the kth Lagrange basis function on the jth element, np is the number
of interpolations points in an element, and Uk

j is the value of U at the kth interpolation
point of the jth element. Because of minimizing the algebra requirements in the formulation
of GWMFE for computing Uj(x, y, t), the physical coordinates on triangular element are
introduced. So let (L1, L2, L3) be the physical coordinates of (x, y) ∈ Ωj . The Lagrangian
interpolation functions are given by

bj,k
(
x, y
)
= B(k)(L1)B(k)(L2)B(k)(L3), (2.4)
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where 1 ≤ j ≤ ne, 1 ≤ k ≤ np, and

B(k)(LN) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pL
(k)
N∏

s=1

1
s

(
pLN − s + 1

)
pL

(k)
N ≥ 1,

1 pL
(k)
N = 0,

(2.5)

with N = 1, 2, 3 and k = 1, . . . , np that p denote the degree of approximation and L
(k)
N is Nth

physical coordinate of the kth interpolation point.
For example, for node 1 of triangle element with 6 nodes, we have

B(1)(L1) =
2×1∏
s=1

1
s
(2L1 − s + 1) = L1(2L1 − 1),

B(1)(L2) = 1, B(1)(L3) = 1,

(2.6)

then

bj,1 = L1(2L1 − 1). (2.7)

For the node 2, we have

B(2)(L1) =
2×(1/2)∏
s=1

1
s
(2L1 − s + 1) = 2L1,

B(2)(L2) =
2×(1/2)∏
s=1

1
s
(2L2 − s + 1) = 2L2,

B(2)(L3) = 1,

(2.8)

then

bj,2 = 4L1L2. (2.9)

For other nodes, we have

bj,3 = L2(2L2 − 1), bj,4 = 4L2L3, bj,5 = L3(2L3 − 1), bj,6 = 4L1L3. (2.10)

A weighted form of the variational formulation is often recommended, in particular, when
the method is overly sensitive to specific features of the physical problem such as steep fronts.
Such weighting replaces the inner products (f, g)2 by inner products with respect to a given,
positive, weight function w : R+ → Ω. Then, in one dimension, we will have:

(
f, g
)
w =
∫
Ω
f(x)g(x)w(x)dΩ. (2.11)



4 Mathematical Problems in Engineering

In two dimension, a standard form of weighted function is the positive function w(x, y), in
meaning of the Galerkin approach, given rise to minimization

min
U̇i,Ẋi,Ẏi

∫∫
Ω
R2w

(
x, y
)
dΩ, (2.12)

where

R =
∂U

∂t
− F
(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
∂2U

∂x2
−G
(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
∂2U

∂y2

−H
(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
.

(2.13)

It is also possible to use a solution-dependent weight function w(x, y), which depends on
x, y or those known function, say U, or its first derivatives, say ∂U/∂x or ∂U/∂y.

In GWMFE, this weight function is taken to be 1/
√

1 + ‖∇U‖2
2 and we will have

min
U̇i,Ẋi,Ẏi

φ =
∫∫

Ω

R2√
1 + ‖∇U‖2

2

dΩ, (2.14)

where ∇U is the gradient with respect to the physical variable x and y.
The argument for the use of this weight function is that it de-emphasizes those

parts of the integral where ∂U/∂x and ∂U/∂y are large and therefore reduce the effect of
minimization in steep parts of the solution. These moving node methods are especially suited
to problems which develop sharp moving fronts, especially problems where one needs to
resolve the fine-scale structure of the fronts.

We add the penalization term
∑ne

j=1(εjΔ̇j − Sj) to the objective function (2.14) in order
to prevent singularities depending on the area of each element Δj , j = 1, . . . , ne. So we will
have

min
U̇i,Ẋi,Ẏi

φ =
∫∫

Ω

R2√
1 + ‖∇U‖2

2

dΩ +
ne∑
j=1

(
εjΔ̇j − Sj

)
. (2.15)

Here Δ̇j is the time derivative of Δj . The internodal viscosity function and the internodal
spring function associated to an element Δj are chosen in a closed form to the original
proposed by Miller [1]. We consider, respectively,

Sj =
C1

Δj − C3

(
1 +

C3

Δj − C3

)2

,

εj =

(
C1

Δj − C3
+ C2

)(
1 +

C3

Δj − C3

)2

,

(2.16)



Mathematical Problems in Engineering 5

j = 1, . . . , ne. The penalty constants C1, C2, and C3 are small constants supplied by the user.
Penalty functions do not interfere on the solution, but exclusively on the movement of the
nodes in order to prevent singularities. Their disadvantage is that it is not possible to set up
a priori a relation between them and the problem we are solving.

The discretization of space-variables transforms each PDE in a system of ODE. To
accomplish the discretization of problem (2.1) some overwriting may be necessary in order to
apply the appropriate boundary conditions. The full discretization of (2.1) is obtained solving
the ODE system by a suitable ODE solver such as LSODI [20] in FORTRAN software or
ODE15S [16, 21] in MATLAB software.

2.2. Time Derivative of U

The approximation U(x, y, t) to u(x, y, t) is dependent on the nodal amplitudes Uk
j and on

the nodal position ξ� = (X�, Y�). So we can write

∂U

∂t
=

ne∑
j=1

np∑
k=1

∂U

∂Uk
j

U̇k
j +

ns∑
�=1

∂U

∂X�
Ẋ� +

ns∑
�=1

∂U

∂Y�
Ẏ�. (2.17)

In order to define the system of ODEs generated by space discretization, it is necessary to
evaluate the derivatives ∂U/∂Uk

j for all 1 ≤ j ≤ ne, 1 ≤ k ≤ np, and ∂U/∂X� and ∂U/∂Y� for
all 1 ≤ � ≤ ns.

Let us consider a global node vi, which is either a vertex of a triangle or an
interpolation point that belongs to an edge or is placed inside the triangle. Let ng be the
number of these global nodes. The support Ωi of a global node vi is the union of triangles
to whom vi belongs, say Ωi =

⋃I(i)
s=1 Ωis , I(i) be the number of elements surrounding node

vi. Suppose that vi is the global node associated with Pkj , the kth interpolation point of jth
element of Ωi. Defining the global basis function ϕi, 1 ≤ i ≤ ng as

ϕi =

⎧⎨
⎩

0
(
x, y
)
/∈Ωi,

bj,k
(
x, y
) ∈ Ωj ⊂ Ωi.

(2.18)

After some simple computations, from (2.3) and (2.18), we have

∂U

∂Uk
j

= ϕi, (2.19)

where ϕi is the global node associated to the kth interpolation point of jth element.
The computation of ∂U/∂X� and ∂U/∂X� for 1 ≤ � ≤ ns are similar. Consider

∂U

∂X�
=

np∑
k=1

∂bk
∂X�

(
x, y
)
Uk
j ,

∂U

∂Y�
=

np∑
k=1

∂bk
∂Y�

(
x, y
)
Uk
j . (2.20)
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After some computations [22], we have

∂U

∂X�
= −Lk1

∂U

∂x
,

∂U

∂Y�
= −Lk1

∂U

∂y
, (2.21)

where Lk1 is the K1th physical coordinates of (x, y) ∈ Ωj .

2.3. The GWMFE Equations

Our GWMFE discretization leads to a large ODE system

∂φ

∂U̇k
j

= 0,

∂φ

∂Ẋ�

= 0,

∂φ

∂Ẏ�
= 0,

(2.22)

in which 1 ≤ j ≤ ne, 1 ≤ k ≤ np, and 1 ≤ � ≤ ns. Now consider the first equations in (2.22).
From (2.15) and (2.17), we have

∫∫
Ω

R2√
1 + ‖∇U‖2

2

∂U

∂Uk
j

dΩ = 0, (2.23)

for 1 ≤ j ≤ ne, 1 ≤ k ≤ np. Considering the support of the global node vi, say Ωi, associated
with the kth interpolation point of the jth element we have

∫∫
Ωi

1√
1 + ‖∇Ui‖2

2

ϕi
∂U

∂t
dΩ =

∫∫
Ωi

1√
1 + ‖∇Ui‖2

2

ϕiF

(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
∂2U

∂x2
dΩ

+
∫∫

Ωi

1√
1 + ‖∇Ui‖2

2

ϕiG

(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
∂2U

∂y2
dΩ

+
∫∫

Ωi

1√
1 + ‖∇Ui‖2

2

ϕiH

(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
dΩ,

(2.24)

for i = 1, . . . , ng .
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For the second equation in (2.22), if we suppose that vi is the lth node space, then

∫∫
Ωi

1√
1 + ‖∇Ui‖2

2

∂U

∂X�

∂U

∂t
dΩ =

∫∫
Ωi

1√
1 + ‖∇Ui‖2

2

∂U

∂X�
F

(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
∂2U

∂x2
dΩ

+
∫∫

Ωi

1√
1 + ‖∇Ui‖2

2

∂U

∂X�
G

(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
∂2U

∂y2
dΩ

+
∫∫

Ωi

1√
1 + ‖∇Ui‖2

2

∂U

∂X�
H

(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
dΩ

−
I(i)∑
s=1

1
2
εisΔyk1

(
εisΔ̇is − Sis

)
,

(2.25)

for � = 1, . . . , ns.
Similarly, the third equation is

∫∫
Ωi

1√
1 + ‖∇Ui‖2

2

∂U

∂Y�

∂U

∂t
dΩ =

∫∫
Ωi

1√
1 + ‖∇Ui‖2

2

∂U

∂Y�
F

(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
∂2U

∂x2
dΩ

+
∫∫

Ωi

1√
1 + ‖∇Ui‖2

2

∂U

∂Y�
G

(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
∂2U

∂y2
dΩ

+
∫∫

Ωi

1√
1 + ‖∇Ui‖2

2

∂U

∂Y�
H

(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
dΩ

−
I(i)∑
s=1

1
2
εisΔxk1

(
εisΔ̇is − Sis

)
,

(2.26)

for � = 1, . . . , ns.

2.4. Second-Order Terms

Second order terms such as the Laplacian ΔU = (∂2U/∂x2)+(∂2U/∂y2) need to be interpreted
in GWMFE in the sense of smoothing. That is, we imagine the corners of our GWMFE to be
ever so slightly smoothed.

Based on the idea of smoothing, there are basically three techniques for dealing with
this problem. The δ-mollification of Miller [1], the application of Greens theorem to reduce
the order of the differentiation [14], and the idea of recovery [9] which requires constructing
a function Ũ(x, y, t) from the piecewise polynomial approximation U(x, y, t) with sufficient
continuity to ensure that all the integrals involving second-order derivatives exist and may
be evaluated. In order to define and evaluate the integrals involving second-order derivatives
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over the support, Ωi, of a global node, vi, we consider a δ-neighbourhood of an edge. In each
of δ-neighbourhood of edge adjacent to the node vi, we need to calculate

Iα =
∫∫

R

{
F

(
x, y, t, Ũ,

∂Ũ

∂x
,
∂Ũ

∂y

)
∂2Ũ

∂x2
+G

(
x, y, t, Ũ,

∂Ũ

∂x
,
∂Ũ

∂y

)
∂2Ũ

∂y2

}
dx dy, (2.27)

where R is the δ-neighbourhood of an edge adjacent to the node vi and Ũ is the recovered
function ofU. We take the 1D Hermite cubic recovered function that hasC1 continuity [8, 23].
With changing the coordinates, we can describeR in terms of δ and α, α the length of the edge,
R = [−δ, δ] × [0, α]. Then we have

Iα =
∫α

0

∫δ
−δ

{
F

(
ξ, η, t, Ũ,

∂Ũ

∂ξ
,
∂Ũ

∂η

)
cos2(θ) +G

(
ξ, η, t, Ũ,

∂Ũ

∂ξ
,
∂Ũ

∂η

)
sin2(θ)

}
∂2Ũ

∂ξ2
dξ dη,

(2.28)

where θ is the rotation angle. Let p = (0, ηα), in which 1 ≤ ηα ≤ α and Ũ, the recovered
function, defined by

Ũ
(
ξ, ηα

)
=

⎧⎨
⎩
U ξ /∈ [−δ, δ],
H ξ ∈ [−δ, δ],

(2.29)

whereH is the 1DHermite cubic polynomial defined by the values ofU and ∂U/∂ξ at (−δ, ηα)
and (δ, ηα).

So the integral (2.28) may be approximate without difficulties in the usual way by
some quadrature rule, for example, the mid-point rule. Thus when δ → 0, with some
computation [19], we get

Iα = α
∑
p

w
(
p
)
⎛
⎝∂Ũ

∂ξ

∣∣∣∣∣
p∈ΩR

− ∂Ũ

∂ξ

∣∣∣∣∣
p∈ΩL

⎞
⎠

×
{
F

(
ξ, η, t, Ũ,

∂Ũ

∂ξ
,
∂Ũ

∂η

)
cos2(θ) +G

(
ξ, η, t, Ũ,

∂Ũ

∂ξ
,
∂Ũ

∂η

)
sin2(θ)

}∣∣∣∣∣
p

,

(2.30)

where w(p) is the 1D quadrature weight associated to the quadrature point p and where ΩR

and ΩL denote the right and left triangle, respectively (Figure 1).
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ξ

vi

x

y

ΩR

ΩL

η θ

Figure 1: δ-neighbourhood of an edge adjacent to the node vi.

2.5. General Equations of the GWMFE

Consider the global node vi, i = 1, . . . , ng , and its support Ωi. Assume that vi is the kis th
interpolation point in the element Ωis , s = 1, . . . , I(i). Denoting by ais the length of the sth
edge adjacent to vi, the GWMFE equation (2.24) associated to the nodal amplitude is

I(i)∑
s=1

np∑
k=1

∫∫
Ωis

1√
1 + ‖∇Uis‖2

2

bisbkdΩU̇
k
j +

I(i)∑
s=1

3∑
N=1

∫∫
Ωis

−1√
1 + ‖∇Uis‖2

2

LkNbis
∂U

∂x
dΩẊ�N

+
I(i)∑
s=1

3∑
N=1

∫∫
Ωis

−1√
1 + ‖∇Uis‖2

2

LkNbis
∂U

∂y
dΩẎ�N

=
I(i)∑
s=1

∫∫
Ωis

1√
1 + ‖∇Uis‖2

2

bisF

(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
∂2U

∂x2
dΩ

+
I(i)∑
s=1

∫∫
Ωis

1√
1 + ‖∇Uis‖2

2

bisG

(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
∂2U

∂y2
dΩ

+
I(i)∑
s=1

∫∫
Ωis

1√
1 + ‖∇Uis‖2

2

bisH

(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
dΩ

+
I(i)∑
s=1

∫ais
0
bkis

⎛
⎝∂Ũ

∂ξ

∣∣∣∣∣
p∈ΩR

− ∂Ũ

∂ξ

∣∣∣∣∣
p∈ΩL

⎞
⎠

×
{
F

(
ξ, η, t, Ũ,

∂Ũ

∂ξ
,
∂Ũ

∂η

)
cos2(θ) +G

(
ξ, η, t, Ũ,

∂Ũ

∂ξ
,
∂Ũ

∂η

)
sin2(θ)

}
dη,

(2.31)

for i = 1, . . . , ng .
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Figure 2: Nodes movement for Burger equation from t = 0 to t = 2 at some seconds.

If ξ� = (X�, Y�), � = 1, . . . , ns be a spatial node defining the k1th vertex of the element
surrounding the node i. For � = 1, . . . , ns, (2.25) leads to

I(i)∑
s=1

np∑
k=1

∫∫
Ωis

−1√
1 + ‖∇Uis‖2

2

Lk1bk
∂U

∂x
dΩU̇k

j +
I(i)∑
s=1

3∑
N=1

∫∫
Ωis

1√
1 + ‖∇Uis‖2

2

LkNLk1

(
∂U

∂x

)2

dΩẊ�N

+
I(i)∑
s=1

3∑
N=1

∫∫
Ωis

1√
1 + ‖∇Uis‖2

2

LkNLk1

∂U

∂x

∂U

∂y
dΩẎ�N +

I(i)∑
s=1

1
2
ε2
is
Δyk1Δ̇is

=
I(i)∑
s=1

∫∫
Ωis

−1√
1 + ‖∇Uis‖2

2

Lk1

∂U

∂x
F

(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
∂2U

∂x2
dΩ

+
I(i)∑
s=1

∫∫
Ωis

−1√
1 + ‖∇Uis‖2

2

Lk1

∂U

∂x
G

(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
∂2U

∂y2
dΩ

+
I(i)∑
s=1

∫∫
Ωis

−1√
1 + ‖∇Uis‖2

2

Lk1

∂U

∂x
H

(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
dΩ +

I(i)∑
s=1

1
2
εisSisΔyk1

+
I(i)∑
s=1

∫ais
0

− Lk1

⎧⎨
⎩
⎛
⎝1

2

⎛
⎝∂Ũ

∂ξ

∣∣∣∣∣
p∈ΩR

+
∂Ũ

∂ξ

∣∣∣∣∣
p∈ΩL

⎞
⎠
⎞
⎠ cos(θ) − ∂Ũ

∂η
sin(θ)

⎫⎬
⎭Qdη,

(2.32)
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and (2.26) leads to

I(i)∑
s=1

np∑
k=1

∫∫
Ωis

−1√
1 + ‖∇Uis‖2

2

Lk1bk
∂U

∂y
dΩU̇k

j +
I(i)∑
s=1

3∑
N=1

∫∫
Ωis

1√
1 + ‖∇Uis‖2

2

LkNLk1

∂U

∂x

∂U

∂y
dΩẊ�N

+
I(i)∑
s=1

3∑
N=1

∫∫
Ωis

1√
1 + ‖∇Uis‖2

2

LkNLk1

(
∂U

∂y

)2

dΩẎ�N +
I(i)∑
s=1

1
2
ε2
is
Δxk1Δ̇is

=
I(i)∑
s=1

∫∫
Ωis

−1√
1 + ‖∇Uis‖2

2

Lk1

∂U

∂y
F

(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
∂2U

∂x2
dΩ

+
I(i)∑
s=1

∫∫
Ωis

−1√
1 + ‖∇Uis‖2

2

Lk1

∂U

∂y
G

(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
∂2U

∂y2
dΩ

+
I(i)∑
s=1

∫∫
Ωis

−1√
1 + ‖∇Uis‖2

2

Lk1

∂U

∂y
H

(
x, y, t,U,

∂U

∂x
,
∂U

∂y

)
dΩ +

I(i)∑
s=1

1
2
εisSisΔxk1

+
I(i)∑
s=1

∫ais
0

− Lk1

⎧⎨
⎩
⎛
⎝1

2

⎛
⎝∂Ũ

∂ξ

∣∣∣∣∣
p∈ΩR

+
∂Ũ

∂ξ

∣∣∣∣∣
p∈ΩL

⎞
⎠
⎞
⎠ cos(θ) − ∂Ũ

∂η
sin(θ)

⎫⎬
⎭Qdη,

(2.33)

for � = 1, . . . , ns, where

Q =
I(i)∑
s=1

∫ais
0
bkis

⎛
⎝∂Ũ

∂ξ

∣∣∣∣∣
p∈ΩR

− ∂Ũ

∂ξ

∣∣∣∣∣
p∈ΩL

⎞
⎠

×
{
F

(
ξ, η, t, Ũ,

∂Ũ

∂ξ
,
∂Ũ

∂η

)
cos2(θ) +G

(
ξ, η, t, Ũ,

∂Ũ

∂ξ
,
∂Ũ

∂η

)
sin2(θ)

}
dη.

(2.34)

However (2.31), (2.32), and (2.33) define the general form of the system of ODE
generated by the GWMFE. According to the boundary conditions, some of the equations
may have to be rewritten.

This system of ODE can be written as follows:

M(t, Y )Ẏ = F(t, Y ), (2.35)

where Ẏ = [U̇1, U̇2, . . . , U̇n; ẋ1, ẋ2, . . . , ẋn; ẏ1, ẏ2, . . . , ẏn].
This system of ODE has a stiff mass matrix and appropriate methods are thus required.

In the present work, we use the ODE15S package [16, 21] under All cab software for
integrating in time.
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3. Local Time Step Refinement

Let time steps of the problem have the form

{t0, t1, . . . , tk}, (3.1)

where tk ≤ Tf .
Now, we apply the refinement scheme at each time step [17], for example, on the first

time step [t0, t1]. Set Δt = ((t1 − t0)/l0), l0 ∈N,

t0+(l0−i)Δt = t0 + (l0 − i)Δt, i = l0, l0 − 1, . . . , 0. (3.2)

Thus the time integration from t0 to t1 involves l0 sub step such that

t = t0 −→ t = t0 + Δt −→ t = t0 + 2Δt −→, . . . , t = t0 + l0Δt = t1 (3.3)

solves l0 ODE systems similar (2.35) to approximateU(x, y, t1), x(t1), and y(t1) with [t1, Y 1] =
ODE15S(@Function,[t0, t1)],Y 0,Option).

In each ODE system, we need the initial conditions which are obtained by solving
the previous ODE system. In other words, the initial condition of the kth ODE system is the
approximation of the (k − 1)th ODE system at tk.

Generally, suppose that we are at time level t = tk and want to move toward t = tk+1,
similarly, consider Δt = (tk+1 − tk)/lk such that

tk+(lk−i)Δt = tk + (lk − i)Δt, i = lk, lk − 1, . . . , 0. (3.4)

The values of U(x, y, tk+1), x(tk+1) and y(tk+1) are obtained by solving lk ODE system

t = tk −→ t = tk+Δt −→ t = tk+2Δt −→, . . . , t = tk+lkΔt = tk+1. (3.5)

This process continues until tk+1 ≤ Tf .

3.1. Algorithm

The local time step refinement (LTSR) method may be derived as follows

Step 1. Set xi = i/n, i = 1, 2, . . . , n, and yj = j/m, j = 1, 2, . . . , m and obtain U(x, y, 0) with
initial value xi, yj , Y 0 = [U0, x0, y0] and set k = 0.

Step 2. Set Δt = (tk+1 − tk)/lk, lk ∈N and s = 1.
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Figure 3: Nodes distribution and solution of Burgers equation with quadratic elements for uniform initial
mesh.
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Figure 4: Nodes movement and related solution of Burgers equation with quadratic elements at t = 0.5
second, C1 = 10−3, C2 = 10−4, C3 = 10−5.

Step 3. Solve ODE system (2.35) at time level t = tk+sΔt as follows: [tk+sΔt, Y k+sΔt] =
ODE15S(@Function,[tk+(s−1)Δt, tk+sΔt],Yk+(s−1)Δt,Option), the initial value of which in this step
is obtained by solving ODE system (2.35) at t = tk+(s−1)Δt.

Step 4. Set Uk+(s−1)Δt = Uk+sΔt, xk+(s−1)Δt = xk+sΔt, yk+(s−1)Δt = yk+sΔt, Δk+(s−1)Δt = Δk+sΔt,
εk+(s−1)Δt = εk+sΔt, Sk+(s−1)Δt = Sk+sΔt, and s = s + 1.

Step 5. If s ≤ lk, then go to Step 3, or else k = k + 1.

Step 6. If tk ≤ Tf, then go to Step 2, or else break.

So our solution, Y = [U1, U2, . . . , Unm;x1, x2, . . . , xn;y1, y2, . . . ym] will be obtained in desired
Tf .
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Figure 5: Nodes movement and related solution of Burgers equation with quadratic elements at t = 1
second, C1 = 10−3, C2 = 10−4, C3 = 10−5.
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Figure 6: Nodes movement and related solution of Burgers equation with quadratic elements at t = 2
seconds, C1 = 10−3, C2 = 10−4, C3 = 10−5.

4. Numerical results

We present a numerical example to illustrate the performance of our GWMFE. The integrals
that appear in the system of ODE, say (2.31), (2.32), and (2.33), are evaluated by 1D and
2D Gauss quadrature formulaes with 7 interior points [24]. For integration in time, we have
used the integrator ODE15S. We select the standard choices for both absolute and relative
time tolerances for the ODE15S integrator, Atol = Rtol = 10−8. In order to define the
penalty functions the user must supply the penalty constants C1, C2, and C3. The value of
C3 corresponds to the minimum allowed for an element area and in all computations we
consider C3 = 10−5.
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Table 1: CPU time, number of function evaluation (NFE), and average error (Eave) for GWMFE at t = 2
seconds with C1 = 10−3 , C2 = 10−4 , and C3 = 10−5 in some meshes.

Number of mesh nodes CPU time NFE Eave

5 × 5 2423.453600 384 0.62632852
6 × 6 7687.359375 746 0.44484591
7 × 7 13839.750000 1039 0.34352671

4.1. Burgers Equation in 2D

Some of the more difficult and interesting real life problems in which adaptive algorithms are
needed arise in transport phenomena in which steep fronts propagate through the domain.
The special case of the nonlinear Burger equation is often used to test numerical methods so
we consider the nonlinear evolution equation

∂u

∂t
= p

(
∂2u

∂x2
+
∂2u

∂y2

)
− u
(
∂u

∂x
+
∂u

∂y

)
, 0 ≤ x, y ≤ 1, t ≥ 0. (4.1)

We assume that initial and Dirichlet boundary condition are chosen to correspond to the
analytic solution

u
(
x, y, t

)
=

1

1 + e(y+x−t)/2p
. (4.2)

This problem is solved from t = 0 to t = 2 with p = 0.025 with quadratic polynomial as
approximation function. Solution of this problem can be obtained with similar computational
effort for smaller values of p. All numerical results shown here are obtained on a Pentium IV
processor at 3.00 GHz.

Figure 2 presents the adaptivity and nodes movement for t = 0 to t = 2 seconds with
quadratic elements at some cases. Figures 3–6 present nodes movement and their solutions
with quadratic elements for t = 0 second, t = 0.5 second, t = 1 second and t = 2 seconds,
respectively.

Let us consider to the average error,

Eave =

∑ns
�=1|U(ξ�) − u(ξ�)|

ns
, (4.3)

where ns is number of spacial nodes in Ω, ξ� is a space node, U(ξ�) is the GWMFE solution at
ξ� and u(ξ�) is the exact solution at ξ� .

Table 1 present CPU time, number of function evaluation (NFE) and average error
(Eave) for GWMFE at t = 2 seconds seconds with quadratic element and C1 = 10−3, C2 = 10−4,
and C3 = 10−5 as penalty constants in some meshes. As Table 1 shows, when number of
nodes in each direction are increased, then NFE in ODE15S and therefore CPU time has been
increased and our average error has been decreased.
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5. Conclusions

In this paper, we presented a gradient weighted moving finite-element method based on
polynomial approximations of high degree for the solution of time-dependent PDEs on two-
dimensional space domains. We used a solution-dependent weight function for original MFE
formulation to have better performance and mesh adaptivity. These moving nodes method
are especially suited to problems which develop sharp moving fronts, especially problems
where one needs to resolve the fine-scale structure of the fronts.

A careful treatment of the general second order terms is carried out. Moreover, by
using numerical evaluations of all integrals, we can solve a large class of problems without
extra calculations. The GWMFE is applied to the Burger test equation for transport process
with quadratic polynomial as interpolation function. One can solve this problem with other
nonlinear approximation function as well as other penalty constants. Numerical results are
given to illustrate the good behavior of the GWMFE when using some cases of penalty
constants.
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