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The coupled system of two forced Liénard-type oscillators has applications in diode-based
electric circuits and phenomenological models for the heartbeat. These systems typically exhibit
intermittent transitions between laminar and chaotic states; what affects their performance and,
since noise is always present in such systems, dynamical models should include these effects.
Accordingly, we investigated numerically the effect of noise in two intermittent phenomena:
the intermittent transition to synchronized behavior for identical and unidirectionally coupled
oscillators, and the intermittent transition to chaos near a periodic window of bidirectionally
coupled oscillators. We found that the transition from a nonsynchronized to a synchronized state
exhibits a power-law scaling with exponent 3/2 characterizing on-off intermittency. The inclusion
of noise adds an exponential tail to this scaling.

Copyright q 2009 Ângela Maria dos Santos et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Intermittency is a ubiquitous phenomenon in nonlinear dynamics. It consists of the
intermittent switching between a laminar phase of regular behavior and irregular bursts.
In one-dimensional quadratic-type maps it was first associated with a saddle-node
bifurcation by Pomeau and Manneville, who also described its scaling characteristics [1].
A comprehensive theory of intermittency for such systems is now available [2]. Another
context in which intermittency appears is related to the synchronization of coupled nonlinear
oscillators.

Synchronization of nonlinear oscillators is a subject with a venerable history dating
back from the early observation by Huygens that two pendula suspended from the same
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frame—which provides the mechanical coupling—can synchronize their librations so as to
become antiphase [3]. Most recently, the probability of synchronizing chaotic oscillations has
opened a wide horizon of applications ranging from electronic circuits [4] and lasers [5] to
biological rhythms like heartbeat [6].

A paradigmatic example of a nonlinear oscillator is the van der Pol equation [7]
ẍ + μ(x2 − 1)ẋ + ω2

0x = ρ sin(ωt), which was originally introduced to model the behavior
of a AC-driven circuit with a nonlinear resistance, such as that yielded by a triode
vacuum tube [8] and by Zener diodes [9] but which has also been used in other contexts,
like in the phenomenological description of the heartbeat [10]. Actually the van der Pol
equation belongs to a more general class of Liénard-type oscillators, whose dynamics in the
presence of external forcing has been investigated, showing a rich behavior including crises,
intermittency, and chaos [11].

The question of how two or more Liénard-type oscillators can synchronize their
motions arises in the study of coupled vacuum-tube circuits [12] but is also relevant to the
understanding of the mechanisms coupling the heartbeat with the nerve conduction [11]. The
synchronization of two coupled Liénard-type oscillators, one of them being forced, has been
considered in an earlier work of the authors, where we show the existence of different types
of synchronization, according to the forcing and coupling parameters used [13].

In this work we focus on the influence of parametric noise in intermittency phenomena
numerically observed in two Liénard-type forced oscillators. The first case is related to
the intermittent transition to synchronized behavior in such systems in the presence of
noise. Bearing in mind the usefulness of Liénard-type oscillators to model vacuum-tube
circuits, we can regard the presence of parametric noise as unavoidable, since virtually each
circuit component has a fluctuating magnitude (like resistances, capacitances, or inductances)
within a given noise level [14]. The second case to be treated here is the influence of noise in
the intermittent behavior related to a periodic window existing for a parameter range where
chaotic behavior is dominant.

The rest of the paper is organized as follows. Section 2 introduces the theoretical
model, as well as the basic concepts to be used in the discussion of synchronization. Section 3
considers the case of intermittent transition to synchronization in two identical oscillators
with unidirectional coupling and the presence of noise. Section 4 is devoted to the case of
intermittent transition to chaos in the vicinity of a periodic window, for two nonidentical
oscillators with a bidirectional coupling. Our conclusions are left to the last section.

2. Coupled Oscillators and Their Synchronization

The triode circuit is a standard textbook example of the Van der Pol equation [12, 15].
However, a more realistic description of such a circuit does not lead us to the Van der Pol
but instead to a more general class of Liénard-type equations:

ẍ + μ
(
x2 + σx − 1

)
ẋ +ω2

0x = ρ sin(ωt), (2.1)

where ω0 is the frequency of the unforced oscillations; ρ, ω, are, respectively, the amplitude
and frequency of an external AC-voltage, and μ, σ are coefficients whose values are drawn
from the triode characteristic curve, supposed a third-order polynomial in the grid voltage,
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whose normalized form is represented by the variable x [15]. The particular case σ = 0 yields
the usual AC-driven Van der Pol equation.

Moreover, we can rewrite (2.1) in the form

ẍ + μ(x −w1)(x −w2)ẋ +ω2
0x = ρ sin(ωt), (2.2)

where

w1,2 ≡ −
σ

2
±
[(σ

2

)2
+ 1

]1/2

(2.3)

are the roots of the quadratic resistance, usually of opposite signs.
We consider two such circuits, of which only one is driven by an AC-voltage, and they

are supposed to be almost identical, except for their natural frequencies b1 = ω2
01 and b2 = ω2

02,
which will be considered as variable parameters of the coupled system, whose equations are

ẋ1 = x2, (2.4)

ẋ2 = −μ(x1 −w1)(x1 −w2)x2 − b1x1 + ρ sin(ωt) + c1(x3 − x1), (2.5)

ẋ3 = x4, (2.6)

ẋ4 = −μ(x3 −w1)(x3 −w2)x4 − b2x3 + c2(x1 − x3), (2.7)

where the pairs x1,2 and x3,4 stand for each coupled circuit. We have assumed an asymmetric
diffusive coupling whose strengths, c1 and c2, take on different values. If c1 = 0, we have a
unidimensional coupling, or master-slave configuration, whereas for c1 > 0 (but small) and
c2 > 0, the coupling is bidirectional, although it is strongly asymmetric.

The rationale for using such coupling schemes lies in the modeling of the interaction
between the heart pacemakers, the sino-atrial (SA), and atrio-ventricular (AV) nodes [13].
The SA node is the primary pacemaker of the heart, and the electrical impulse it generates
spreads out through the myocardium, reaching the AV node. Hence, the coupling should
be taken either unidirectional or bidirectional but strongly asymmetric. In both cases we
use to call the (x1, x2) oscillator the driving one, whereas (x3, x4) the response oscillator,
corresponding to the SA and AV nodes, respectively.

We will use throughout this work the following values for the system parameters:
μ = −1.45, w1 = −0.2, w2 = 1.9, ρ = 0.95, and ω = 1.0, letting the normal mode frequencies
(b1,2) and the coupling constants (c1,2) to be the parameters to be varied. We have integrated
numerically the coupled system of first-order differential equations (2.4)–(2.7) by using a
predictor-corrector routine based on the Adams method [16].

For all the cases studied in this paper the system asymptotic behavior will consist of a
periodic or chaotic orbit which encircles the points (x1, x2) = (0, 0) and (x3, x4) = (0, 0) for the
driving and response oscillator, respectively. In such cases we can define geometrical phases
as

φ1(t) = arctan
[
x2(t)
x1(t)

]
,

φ2(t) = arctan
[
x4(t)
x3(t)

]
.

(2.8)
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In cases, however, for which we do not have an orbit encircling a point, as in funnel attractor,
for example, the phase should be defined using other methods, like Poincaré sections or
Hilbert transforms [17].

The winding number, defined as

Ωi = 〈φ̇i(t)〉T , (i = 1, 2), (2.9)

is the average time rate of the phases of both oscillators and stands for their endogenous
frequencies. A weak type of synchronization between the driving and response oscillator
consists in the equality of their winding numbers, Ω1(t) = Ω2(t), regardless of the actual
value each phase takes on, and called frequency synchronization (FS) [18]. When the phases
themselves are equal, we speak of phase synchronization (PS): φ1(t) = φ2(t) [19].

By way of contrast, the strongest type of synchronization is complete synchronization
(CS), for which the positions and velocities themselves (and not only the phases) are equal:
x1(t) = x3(t), x2(t) = x4(t) [4]. However, CS occurs only if the coupled oscillators are identical
[17]. If the coupled oscillators have slightly distinct parameters and the coupling is not too
strong, it is possible to find a weaker effect called lag synchronization (LS), defined as the
approximate equality of the state variables, delayed by a given time lag τ : x1(t) ≈ x3(t − τ),
x2(t) ≈ x4(t − τ) [19].

Finally, if the oscillator parameters are widely different, as in the case we are
investigating here, there is no longer LS because the oscillator positions and velocities differ
by a large amount [13]. Even in this case, however, it is still possible to find generalized
synchronization (GS), which is observed when there exists a functional relationship between
the amplitudes of the two coupled oscillators: x2(t) = F(x1(t)) and can occur for nonidentical
systems [20]. An even weaker effect is generalized lag synchronization (GLS), when the
functional relationship between the variables holds up to a time delay τ : x2(t) = F(x1(t − τ)).

We will introduce extrinsic noise on the driving oscillator, by adding to (2.5) a term
σRn, where σ is the noise level, and Rn is a pseudorandom variable, with values uniformly
distributed in the interval [−1/2,+1/2] and applied at each period of external force. The noisy
term is applied at each integration step, so that it plays the role of a stochastic perturbation
of a deterministic system rather than a stochastic differential equation, which would need
specific integration techniques to be numerically solved [21].

We have considered also this type of noisy term applied on the response oscillator,
when both systems are identical, but the results do not differ appreciably from the case we
consider here. On the other hand, the inclusion parametric noise (i.e., noise terms applied to
system parameters like normal mode frequencies or coupling constants) leads to qualitatively
different phenomena, like GLS states, and which we have considered in a recent paper [22].

3. Intermittent Synchronization in Unidirectional Coupling

We initiate our analysis by the case of unidirectional coupling (c1 = 0), for which the response
oscillator (x3 − x4) is slaved under the driving of the master oscillator (x1 − x2). Moreover,
we will consider both oscillators as being identical, in the sense that b1 = b2 = 1.0, that
is, their normal mode frequencies take on exactly the same value. As a consequence, a CS
state x1 = x3, x2 = x4 is possible and defines a synchronization manifold S in the phase
space. If S is transversely asymptotically stable, there follows that small displacements along
directions transversal to S will shrink down to zero as time tends to infinity. The conditional
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Figure 1: Order parameter for two values of c2 at the neighborhood of the transition to a synchronized
state. The time in the horizontal axis is measured in arbitrary units.

Lyapunov exponents λcond for the response oscillator are computed under the constraint that
the trajectory lies entirely in S for all times. The negativity of all conditional exponents is a
necessary condition for the CS state to be transversely asymptotically stable [17].

A useful numerical diagnostic of CS is the order parameter

R(t) ≡ 1
2

∣∣∣e2πix2(t) + e2πix4(t)
∣∣∣, (3.1)

which measures the degree of coherence between oscillators. For completely incoherent
evolution R approaches zero, whereas for CS states R goes to the unity. Oscillations of
R(t) around values less than unity indicate partial coherence and no synchronization at all.
Figure 1 presents the time evolution of the order parameter for two values of c2, before and
after a transition to CS occurring at c2 = cCR

2 ≈ 0.3845. For c2 � cCR
2 the order parameter

oscillates with an average below unity, whereas for c2� cCR
2 it settles down at unity without

noticeable fluctuations.
The approach to the CS state is characterized by the appearance of weaker forms

of synchronization, like PS, and their breakdown. This is a particularly interesting point
to investigate the role of noise on synchronization properties of our model. The temporal
evolution of the phase difference φ1(t) − φ2(t) between the coupled oscillators is plotted in
Figure 2, starting from an arbitrarily chosen time. For c2� cCR

2 (thick dashed line) the phase
difference is zero, which is an obvious consequence of the CS state. On the other hand, for
c2� cCR

2 (thin dashed line), the phases increase monotonically with time as well as their
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Figure 2: Time evolution of the phase difference between the coupled oscillator with and without noise,
for two values of c2 at the neighborhood of the transition to a synchronized state.

difference, due to absence of synchronization. This phase diffusion can be described by a
Gaussian dependence with time

〈φ1(t) − φ2(t)〉 ≈ 2Dt, (3.2)

where D is the diffusion coefficient, and 〈· · · 〉 stands for an average over many randomly
chosen initial condition. From Figure 2 we estimate that D ∼ 30.

If we add a noise level σ = 0.05 to the precritical case (solid thin line), the phases
initially diffuse but suddenly the phase difference stays for some time at a nearly constant
value, indicating a transient PS state which breaks down and yields phase diffusion again,
and so on. These phase slips, as they are usually called, are characteristic of the onset of
desynchronization [23]. The average duration of laminar PS states increases as the noise level
is diminished (see the dashed line for σ = 0.01 in Figure 2).

In the absence of noise, we observed that the oscillators present FS, characterized by
Ω1 − Ω2 = 0, irrespective of exhibiting a CS state (Figure 3(a)). In such case, even though
the dynamics for each oscillator is chaotic, their phases are correlated enough to warrant the
equality of their time rates. Hence FS can be considered more robust than CS or even PS in
our system. This is even more evident when noise is added to the system (Figure 3(b)). The
FS state survives with small spikes for the interval of c2-values studied, except for a narrow
interval centered at 0.5 for which there is a (still low) peak of winding number mismatch of
∼ 10−3.
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Figure 3: Winding number difference between the coupled oscillator with and without noise, as a function
of the coupling strength.

Another dynamical feature observed in the neighborhood of the synchronization
transition at c2 = cCR

2 ≈ 0.3845 is the presence of intermittent bursts of nonsynchronized
behavior intercalated with laminar intervals of synchronized behavior. These features are
characteristic of the so-called on-off intermittency, where there is an invariant manifold on
which the system would lie during laminar intervals of duration τi, the burst representing
excursions off this manifold [24]. On-off intermittency has been observed in coupled systems,
like coupled map lattices, whose invariant manifold is the synchronization manifold [25, 26].

On-off intermittency has a numerical signature, which is the scaling obeyed by
the statistical distribution P(τ) of the durations of laminar (or interburst) intervals of
synchronization: P(τ) ∼ τ−3/2. The presence of noise in on-off intermittency scenarios
introduces an additional tail of exponential dependence [27]. We actually observed this
universal scaling for values slightly after and before the transition at c2 = cCR

2 , with nonzero
noise levels. Our results are shown in Figures 4(a) and 4(b) for c2 � cCR

2 and c2 � cCR
2 ,

respectively, with a 1% noise level, where the diamonds stand for numerical data, with two
different scaling regions: one power-law scaling for small interburst intervals, with exponent
−3/2 within the numerical accuracy, and an exponential tail for large interburst intervals.
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Figure 4: Probability distribution for the duration of laminar synchronized intervals between consecutive
bursts of nonsynchronized behavior, for (a) c2 = 0.384 � cCR

2 c2 = 0.384 � cCR
2 , and (b) c2 = 0.385 � cCR

2 c2 =
0.385 � cCR

2 with a 1%1% noise level. (c) and (d) correspond to (a) and (b), respectively, with a 5%5% noise
level. The lines shown are least-squares fits evidencing two different scalings for numerical data, and the
symbols stand for the numerical results.

The two scalings are roughly separated by a shoulder which, according to the general
theory of noisy on-off intermittency, defines a crossover time whose value depends on the
noise level [27]. We verified this point by considering, in Figures 4(c) and 4(d), the cases
before and after the synchronization transition, respectively, but with a higher (5%) noise
level. We observe that the crossover time, which is circa 104 for weak noise, decreases to 103

for stronger noise, diminishing the noiseless power-law scaling, as expected.
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Figure 5: Bifurcation diagram for xn = max(x4), the local maxima of x3(t) versus c2.

4. Intermittent Chaotic Bursts in Bidirectional Coupling

Now we present results considering the case where c1 /= 0 and c2 /= 0, what characterizes a
bidirectional form of coupling. We choose low values of c1 � 0.01, because of the strong
asymmetrical character of the bidirectional coupling and kept c2 in the [2.0, 2.2] interval. In
this section, also, we relax the hypothesis we previously made of identical oscillators and
allow for a mismatch of the normal mode frequencies: b1 = 1.0, and b2 = 0.66, the other
parameter values being the same as those used in the previous section.

The dependence of xn = max(x4), which are the local maxima of x4(t), is plotted in
Figure 5 as a function of c2. We can distinguish two different parts in this diagram: (i) a
quasiperiodic region for 0 < c2 < cII = 0.45507; (ii) a period-doubling cascade for c2 > cII .
In the latter, we focus on the narrow period-12 window starting at c2 = cI = 2.101503. We
will consider the effects of noise in the vicinity of the critical points cI and cII , since they are
very sensitive with respect to variations in the coupling strength and are related with sudden
changes in the dynamical behavior of the system.

In the neighborhood of the period-12 window, that is, at c2 = cI , the four-band chaotic
attractor suddenly disappears, and a saddle-node bifurcation occurs forming a stable and an
unstable orbit of period-12. This can be explicitly verified in Figures 6(a) and 6(b), where we
plot the 12th return map for the variable xn = max(x4), respectively, just before and just after
the saddle-node bifurcation. For c2 = 2.101504 � cI (Figure 6(a)) the periodic points are the
intersections of the return map with the 45◦ line, corresponding to the regular time series in
Figure 6(c). When c2 = 2.101470 � cI (Figure 6(b)) there are no intersections with the 45◦ line,
but since we are too close to the bifurcation point, there exists a narrow bottleneck between
the curves. When the trajectory enters such bottlenecks, the resulting behavior is the laminar
interval, followed by chaotic bursts when the trajectory eventually exits the nozzle and is
randomly reinjected to its vicinity (Figure 6(d)).
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Figure 6: Return maps for xn+12xn+12 versus xnxn for (a) c2 = 2.101504 � cIc2 = 2.101504 � cI and (b)
c2 = 2.101470 � cIc2 = 2.101470 � cI . (c) and (d) are the corresponding time series for the cases (a) and
(b), respectively.

Let 〈τint〉 be the average duration of the laminar intervals between consecutive bursts.
If we approach the critical value cI from below, this average duration increases according
to a power-law: 〈τint〉 ∼ (c2 − cI)−	 (Figure 7(a)), where the scaling exponent 	 = 1/2
within the numerical precision. This agrees with the Pomeau-Manneville type-I intermittency
scenario and shows that the essential dynamics leading to intermittent behavior near cI is
one-dimensional [1].

We can now investigate the role of a noise level on this average duration of laminar
intervals. Figure 7(b) plots 〈τ〉 versus c2 − cI for various noise levels. If we are far enough
from the critical value cI , the scaling is essentially the same as in the noiseless case. If the noise
level is too small—for example, 2 × 10−10, represented by circles in Figure 7(b)—the scaling is
practically unchanged even very close to the critical point. However, for higher noise levels,
the scaling holds only to a certain minimum distance, between 10−3 and 10−4, below which
the value of 〈τint〉 is barely affected by the distance c2 − cI . This maximum distance increases
with the noise level [2].

In the context of the heartbeat model described in [13], intermittency can be a highly
undesirable feature, since the irregular alternations between laminar and chaotic states make
it difficult to either control or suppress pathological rhythms, like those characterizing cardiac
arrhythmias [6]. If one tries to control such rhythms, for example, using OGY chaos control,
it is required that the system attractor be chaotic enough so as to present recurrence of
trajectories, a necessary condition to control the system by applying only small perturbation
[28]. As an example of the applicability of our results, let us imagine that an experimentally
obtained data series shows an intermittent alternation between regular and arrhythmic
heartbeats (this can be done by usual electrocardiographic recording).
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Figure 7: Average duration of interburst laminar intervals versus the difference c2 − cIc2 − cI , where cI =
2.101503cI = 2.101503 marks the onset of a period-1212 window. (a) Noiseless case. The solid line is a least
squares fit with slope 0.50.5. (b) The effect of various noise levels: 2.0 × 10−102.0 × 10−10 (empty circles);
5.0 × 10−105.0 × 10−10 (vertical crosses); 8.0 × 10−108.0 × 10−10 (inclined crosses); 2.0 × 10−92.0 × 10−9 (filled
squares).

It is possible, at least in principle, to record the durations of the laminar (interburst)
intervals and make a histogram of the laminar times P(τint), which can be then used to
compute an average duration 〈τ int〉. Let us also suppose that one has a control parameter
p that can be varied over an interval. In an experimental setting this control parameter could
be, for example, an external factor like the amount of some chemical influencing arrhythmic
behavior. For example, cardiac arrhythmias can be induced by the drug ouabain in rabbit
ventricle [29]. Finally, if we were able to record the critical dose pC for which laminar regions
disappear at all and intermittent behavior becomes stable chaos, the characterization of 〈τ int〉
as a function of the parameter difference |p−pc| could provide an empirical verification of the
results we obtained from an analytical model. Moreover, if the scaling law for the numerically
determined probability distribution P(τint) was found to be a power-law with exponent 3/2,
this would be a strong evidence in favor of a universal on-off intermittency mechanism that,
since an invariant manifold is supposed for this to occur, what could shed some light on the
dynamical mechanisms underlying intermittent behavior in this system [24].

5. Conclusions

We have studied the effect of parametric noise in the coupled system of two Liénard-type
oscillators with external periodic forcing, focusing on two different intermittent phenomena
exhibited by the system under distinct types of coupling. In the unidirectional coupling or
master-slave configuration, we have analyzed the occurrence of complete synchronization
of identical oscillators and have determined the necessary coupling strength for a transition
from a nonsynchronized to a synchronized state. Near this transition there is an intermittent
switching between laminar phases of synchronized (albeit chaotic) behavior and bursts of
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nonsynchronized dynamics. We verified the universal 3/2 power-law scaling, obeyed by on-
off intermittency, for the statistical distribution of the duration of the synchronized laminar
phases. The inclusion of noise modifies this scaling according to the general description by
adding an exponential tail (for large times) to the power-law scaling (for short times).

We also verified the presence of other types of synchronization, like phase and
frequency synchronization, and observed that the latter is robust in the sense that it is not
likely to cease with addition of white noise. In the bidirectional coupling of nonidentical
oscillators (because of a mismatch of their natural frequencies), we no longer have
synchronization, and the intermittent phenomenon of interest is the transition to chaos in
the beginning of a periodic window for a parameter range where chaos is the dominant
feature. We verified that this transition obeys the Pomeau-Manneville type-I intermittency
scenario, by considering the statistical properties of the average laminar durations as
well as evidencing the saddle-node bifurcation which is the mechanism underlying the
phenomenon. The addition of noise affects these properties in the way predicted for
one-dimensional maps. Finally, the results of this paper can be applied to a number of
physical systems described by Liénard-type oscillators. Two representative examples are
electronic circuits using tunnel diodes, like Zener diode, and models of the heartbeat. The
statistical nature of our numerical results makes them amenable to further comparisons with
experimental investigations of intermittent behavior.
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