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This paper reviewed the research on the vibration of orthotropic membrane, which commonly
applied in the membrane structural engineering. We applied the large deflection theory of
membrane to derive the governing vibration equations of orthotropic membrane, solved it, and
obtained the power series formula of nonlinear vibration frequency of rectangular membrane
with four edges fixed. The paper gave the computational example and compared the two results
from the large deflection theory and the small one, respectively. Results obtained from this paper
provide some theoretical foundation for the measurement of pretension by frequency method;
meanwhile, the results provide some theoretical foundation for the research of nonlinear vibration
of membrane structures and the response solving of membrane structures under dynamic loads.
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1. Introduction

The membrane structure is a new structure system, which has been rising during the
recent several dozens of years. Because of its economy, beauty, and less dead weight, it
is widely applied to large span structures, such as large-scale stadium, exhibition center,
works of decoration, and so on. The application of tensile membrane structure was the most
extensive in each kind of membrane structure systems. The tensile membrane structure’s
stiffness is formed by the zonal and meridional pretensions. The tallying degree of the actual
pretension value and the design pretension value directly influences the normal utilization
and safety after the construction finished [1, 2]. Therefore, the nondestructive monitoring of
the membrane structure’s pretension is very important and necessary after the construction
finished.
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At present, most researches focused on design and construction of membrane
structures; however, there is little research on the pretension measurement of membrane
structures [1, 2]. The main methods of the pretension measurement include strain method,
frequency method, deflection method, and “cable analogy” method [3]. If we study the
application of frequency method, the vibration theory of membrane must be involved.
Many scholars studied about the vibration theory of membrane. Their researches involve
the problem of free vibration of a confocal composite elliptical membrane [4], the
problem of fundamental frequency of rectangular membranes with an internal oblique
support [5], the problem of free vibration of composite rectangular membranes with
an oblique and a bent interface [6, 7], the problem of free in-plane vibration of an
axially moving membrane [8]. However, these researches did not aim at this kind of
orthotropic membrane that was used in construction field. Moreover, these researches
have not obtained the power series formula of nonlinear vibration frequency of the
orthotropic membrane.

In this paper, we studied the vibration of orthotropic membranes according to the large
deflection theory of membrane [9, 10] and obtained the power series formula of nonlinear
vibration frequency of rectangular membranes with four edges fixed. The paper gave the
computational example and compared the two results from the large deflection theory and
the small one, respectively.

2. Governing Equations and Boundary Conditions

The studied rectangular membrane is orthotropic. Its two orthogonal directions are the two
principal fiber directions, and the material characteristics of the two principal fiber directions
are different. Assume that the studied rectangular membrane is fixed on four edges. The two
principal fiber directions are x and y, respectively. a and b denote the length of x and y
direction, respectively; N0x and N0y denote initial tension in x and y, respectively, as shown
in Figure 1.

According to the large deflection theory and D’Alembert’s principle of membranes
[8–10], the vibration partial differential equation and consistency equation of orthotropic
membrane are
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(2.1)

where ρ denotes aerial density of membrane; Nx and Ny denote tension in x and y,
respectively; N0x and N0y denote initial tension in x and y, respectively; Nxy denotes shear
force; w denotes deflection: w(x, y, t); h denotes membrane’s thickness; E1 and E2 denote
Young’s modulus in x and y, respectively; G denotes shearing modulus; μ1 and μ2 denote
Poisson’s ratio in x and y, respectively.

While the membrane is in vibration, the effect of shearing stress is so small that we may
take Nxy = 0. Introducing the stress function and letting Nx = h(∂2ϕ/∂y2), Ny = h(∂2ϕ/∂x2),
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Figure 1: Rectangular membrane with four edges fixed.

N0x = h·σ0x, and N0y = h·σ0y, (2.1) can be simplified as follows:
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where ϕ denotes stress function: ϕ(x, y, t); σ0x and σ0y denote initial tensile stress in x and y,
respectively.

The corresponding boundary conditions can be expressed as follows:

w(0, y, t) = 0, w(a, y, t) = 0,

w(x, 0, t) = 0, w(x, b, t) = 0.
(2.4)

3. Solution of Free Vibration Frequency

Functions that satisfy the boundary conditions (2.4) are taken as follows:

w(x, y, t) =W(x, y)T(t),

ϕ(x, y, t) = φ(x, y)T2(t),
(3.1)

where W(x, y) is the given mode shape function, and φ(x, y) and T(t) are the unknown
functions.

Assume that the mode shape function is as follows:

W(x, y) = sin
mπx

a
sin

nπy

b
, (3.2)

where m and n are integers and denote the sine half-wave number in x and y, respectively.
Equation (3.2) satisfies the boundary conditions automatically.
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Substituting (3.1) into (2.3) yields
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Substituting (3.2) into (3.3) yields
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Assume that the solution of (3.4) is
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b

. (3.5)

Substituting (3.5) into (3.4) yields
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Substituting (3.1) into (2.2), according to the Galerkin method [8, 10], yields
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Obviously, (3.7) is a nonlinear differential equation with respect to T(t), and it can be
expressed as follows:
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Substituting the values of A, B, and C into (3.8) and dividing by ρab/4h on two ends
yields
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In (3.12), the value of H is determined by the initial conditions. Assume that the initial
displacement is T |t=0 = T0. T0 is the amplitude of the membrane, so the initial velocity is
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0 ).
Integrating (3.11) by the separate variable method, we can obtain the period of the

vibration of the membrane:
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Letting T/T0 = sin θ, (3.15) can be transformed into
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where p = 0, 1, 2, 3, . . . .
Therefore, the vibration frequency of the membrane is
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where M = (hπ2/ρ)((m2/a2)σ0x + (n2/b2)σ0y), N = (π4h/16ρ)(E1m
4/a4 + E2n

4/b4), and T0

is the amplitude of the membrane.
In (3.19), letting T0 → 0, (3.19) can be transformed into the formula obtained

according to the small deflection:

ω = π

√
h

ρ
·
√
σ0x·m2

a2
+
σ0y·n2

b2
. (3.20)

4. Computational Examples and Discussion

Take the membrane material commonly applied in project as an example. Young’s moduli in
x and y are E1 = 1.4×106 KN/m2 and E2 = 0.9×106 KN/m2, respectively; the aerial density of
membranes is ρ = 1.7 kg/m2; the membrane’s thickness is h = 1.0 mm. Calculate the vibration
frequency of the membrane according to (3.19).

We can draw the conclusion from the result of Table 1. If we exchange the two
lengths of the two orthogonal directions and consider the orthotropic characteristic of the
membrane, the result is dissimilar with the one before the exchange; however, if we only
exchange the two lengths of the two orthogonal directions and do not consider the orthotropic
characteristic, the result is similar with the one before the exchange. Therefore, we need to
consider the orthotropic characteristic of membranes in practical engineering.

We can draw the conclusion from the result of Table 2. The initial displacement
(the amplitude) has influenced the vibration frequency of the rectangle membrane when
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Table 1: T0 = 0.1 m, σ0x = σ0y = 5.0 × 103 KN/m2, and m = n = 1.

M a = 1, a = 1, a = 2, a = 1, a = 3, a = 1, a = 4, a = 1, a = 5,
b = 1 b = 2 b = 1 b = 3 b = 1 b = 4 b = 1 b = 5 b = 1

Rad/s 344.231 273.032 249.679 245.268 237.578 260.131 233.909 258.752 232.316
Hz 54.786 43.455 39.738 39.036 37.812 41.401 37.227 41.182 36.974

Table 2: a = 1 m, b = 1 m, σ0x = σ0y = 5.0 × 103 KN/m2, and m = n = 1.

M T0 = 0.2 T0 = 0.15 T0 = 0.10 T0 = 0.05 T0 = 0.01 T0 = 0.005 T0 = 0.001 T0 = 0.0001 T0 → 0
Rad/s 544.651 439.21 344.231 270.86 242.227 286.325 240.962 240.949 240.948
Hz 86.684 69.902 54.786 43.109 38.552 45.570 38.350 38.348 38.348

Table 3: a = 1 m, b = 1 m, σ0x = σ0y = 5.0 × 103 KN/m2, and T0 = 0.10 m.

Order m = 1, n = 1 m = 1, n = 2 m = 2, n = 1 m = 2, n = 2 m = 1, n = 3 m = 3, n = 1 m = 3, n = 3
Rad/s 344.231 745.731 865.641 1089.30 1486.92 1799.04 2308.23
Hz 54.786 118.687 137.771 173.368 236.650 286.326 367.367

Table 4: a = 1 m, b = 1 m, σ0x = σ0y = 5.0 × 103 KN/m2, and T0 = 0.05 m.

Order m = 1, n = 1 m = 1, n = 2 m = 2, n = 1 m = 2, n = 2 m = 1, n = 3 m = 3, n = 1 m = 3, n = 3
Rad/s 270.86 499.358 546.065 688.462 880.846 1016.96 1317.63
Hz 43.109 79.475 86.909 109.572 140.191 161.854 209.707

Table 5: a = 1 m, b = 1 m, σ0x = σ0y = 5.0 × 103 KN/m2, and T0 = 0.01 m.

Order m = 1, n = 1 m = 1, n = 2 m = 2, n = 1 m = 2, n = 2 m = 1, n = 3 m = 3, n = 1 m = 3, n = 3
Rad/s 242.227 386.497 389.087 492.030 556.943 566.445 756.548
Hz 38.552 61.513 61.925 78.309 88.640 90.153 120.408

Table 6: a = 1 m, b = 1 m, and σ0x = σ0y = 5.0 × 103 KN/m2.

Order m = 1, n = 1 m = 1, n = 2 m = 2, n = 1 m = 2, n = 2 m = 1, n = 3 m = 3, n = 1 m = 3, n = 3
Rad/s 240.949 380.974 380.974 481.898 538.779 538.779 722.847
Hz 38.348 60.634 60.634 76.697 85.749 85.749 115.045

calculated according to the large deflection theory. The frequency enlarged with the increase
of the initial displacement, and the larger the initial displacement is, the larger the effect on
the frequency is and vice versa. When the initial displacement approaches zero, the result is
consistent with that obtained according to the small deflection theory.

The results from Table 3 to Table 6 are plotted as shown in Figure 2.
We can draw conclusions from the analysis of Figure 2. While order keeps unchanged,

all frequency results based on the large deflection theory are larger than the corresponding
ones based on the small deflection theory. The larger the initial displacement is, the larger the
frequency is and vice versa. Specially, the smaller the initial displacement is, the closer the
two results based on large and small deflection theories are.
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Figure 2: Comparative analysis of the results based on the large deflection theory and the small one.

The above conclusions are analyzed as follows.

(i) We considered the rigidity change caused by geometrical large deflection of
membrane when calculating the frequency according to the large deflection theory.
When the lateral displacement of membrane increased, the inner force increased,
and the lateral rigidity also increased; then the vibration was quickened. Therefore,
the membrane’s vibration frequency will enlarge with the increase of initial
displacement.

(ii) When initial displacement of membrane is very little, the change of lateral rigidity
is also very little in the process of vibration, so it is negligible. In this case, the
computational result based on the large deflection theory is very close to that based
on the small deflection theory, which considers no changes of the lateral rigidity in
the process of vibration.

5. Conclusions

(i) We applied the large deflection theory of membranes and D’Alembert’s principle
derived the governing vibration equations of rectangular membrane with four
edges fixed, solved it, and obtained the power series formula of nonlinear vibration
frequency of rectangular membranes with four edges fixed.

(ii) The frequency formula obtained in this paper is dependent on the initial conditions,
as we considered the change of the lateral rigidity in the process of vibration.
Therefore, the formula has reflected the geometric nonlinear characteristic of
membrane structure’s vibration. This is more tally with the actual situation and
more reasonable than the result that is calculated according to the small deflection
theory.
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(iii) The nonlinear governing equation and the power series formula obtained in this
paper provide some theoretical foundation for the measurement of pretension by
frequency method; meanwhile, the results provide some theoretical foundation
for the research of nonlinear vibration of membrane structures and the response
solving of membrane structures under dynamic loads.

According to (3.20) (the frequency formula of the small deflection theory), by
calculating the vibration frequency of the membrane, the results are listed in Table 6.
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