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This work focuses on the problem of automatic loop shaping in the context of robust control.
More specifically in the framework given by Quantitative Feedback Theory (QFT), traditionally
the search of an optimum design, a non convex and nonlinear optimization problem, is simplified
by linearizing and/or convexifying the problem. In this work, the authors propose a suboptimal
solution using a fixed structure in the compensator and evolutionary optimization. The main idea
in relation to previous work consists of the study of the use of fractional compensators, which give
singular properties to automatically shape the open loop gain function with a minimum set of
parameters, which is crucial for the success of evolutionary algorithms. Additional heuristics are
proposed in order to guide evolutionary process towards close to optimum solutions, focusing on
local optima avoidance.
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1. Introduction

It is a well-known fact that there is no general procedure to exactly solve nonlinear nonconvex
optimization problems when the solutions belong to continuous solution sets ([1]). In the
case of solutions belonging to discrete solution sets, it is always possible to find the optimal
solution by a branch and bound type exhaustive search ([2]). Branch and bound techniques
can also be applied to continuous solution set problems, specially when combined with
interval analysis ([3, 4]). The obtained solution is, in general, only close to optimal, according
to a certain accuracy factor. A major drawback of branch and bound techniques is that they
are a very costly approach in terms of computation time. The only way to quickly obtain
an (approximate) solution to this sort of problem is to use some kind of randomized search
algorithm, like random algorithms ([5]) or evolutionary algorithms ([6]) according to the
particular problem to be solved.
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Quantitative Feedback Theory is a robust frequency domain control design method-
ology which has been successfully applied in practical problems from different domains
[7]. One of the key design steps in QFT, equivalent to controller design, is loop shaping
of the open loop gain function to a set of restrictions (or boundaries) given by the
design specifications and the (uncertain) model of the plant. Although this step has been
traditionally performed by hand, the use of CACSD tools (e.g., the QFT MATLAB Toolbox
[8]) has made the manual loop shaping much more simple. However, the problem of
automatic loop shaping is of enormous interest in practice, since the manual loop shaping can
be hard for the nonexperienced engineer, and thus it has received a considerable attention,
specially in the last three decades.

Optimal QFT loop computation is a nonlinear nonconvex optimization problem, for
which there is not yet an optimization algorithm which computes a globally optimum
solution in a reasonable time, in terms of interactive design purposes. It must be noticed,
however, that the work by Nataraj and others on this subject, based on deterministic
optimization procedures, combining branch and bound optimization and interval analysis
techniques, is very promising (see e.g., [9, 10]).

Other typical approaches to solve this problem have tried to find approximate
solutions in different ways. For instance, some authors have simplified the problem somehow,
in order to obtain a different optimization problem for which there exists a closed solution or
an optimization algorithm which does guarantee a global optimum in a shorter computation
time. A trade-off between necessarily conservative simplification of the problem and
computational solvability has to be chosen. This is the approach in, for instance, [11, 12].
Some authors have investigated the loop shaping problem in terms of particular structures,
with a certain degree of freedom, which can be shaped to the particular problem to be solved.
This is the case in [13–15]. Another possibility is to use randomized search algorithms, able
to directly face nonlinear and nonconvex optimization problems, at the cost of returning an
only close to optimal solution, and not guaranteeing that, in general, the returned solution is
not far from the optimum. This is the approach adopted in [16, 17], based on evolutionary
algorithms.

Evolutionary algorithms are computationally demanding, specially as the dimension
of the search space increases. In this paper the authors study the use of evolutionary
algorithms-based optimization, proposing the addition, with respect to previous work, of
some heuristics, very much specific to the particular problem under consideration, which
help to improve obtained solutions accuracy and computation time needed to obtain
these solutions. In this sense, a good structure for the compensator, in terms of using
a reduced set of parameters, but with a rich frequency domain behavior, is of crucial
importance. This is the main heuristic proposed in this paper: to use evolutionary algorithms
together with a flexible structure, able to get a close to optimum solution, but with a
reduced number of parameters. In previous work, the compensator has been fixed to a
rational structure, with a finite (but no necessarily small) number of zeros and poles. In
this work, the main contribution is to introduce a fractional compensator that, with a
minimum number of parameters, gives a flexible structure in the frequency domain regarding
automatic loop shaping. In fact, it can be approximated by a rational compensator, but
with a considerably large number of parameters. This dramatic reduction in the number of
parameters has shown to be of capital importance for the success of evolutionary algorithms
in the solution of the automatic loop shaping problem. Other applied heuristics have to do
with including some features in the objective function that guide the evolutionary search
towards close to optimum solutions, paying special attention to prevent the search from
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Figure 1: Two degrees of freedom control system configuration.

getting stacked in local minima, which is specially likely to happen in the problem under
consideration.

In this work, following [18–21] it is considered the particular case of minimum phase
open loop gain functions, for which the investigated compensators can give a good structure
with a reduced set of parameters. Some first steps towards the nonminimum phase case are
given in [18].

From here onwards, the structure of the paper stands as follows. In Section 2 a brief
introduction to QFT is given; in Section 3 the proposed solution for the QFT automatic loop
shaping problem by evolutionary algorithms is presented; in Section 4 this procedure is
applied to a typical benchmark problem. Finally, Section 5 presents the conclusions.

2. Introduction to QFT

The basic idea in QFT ([7]) is to define and take into account, along the control design
process, the quantitative relationship between the amount of uncertainty to deal with and
the amount of control effort to use. Typically, the QFT control system configuration (see
Figure 1) considers two degrees of freedom: a controller C(s), in the closed loop, which
manages uncertainty and disturbances affecting u(t) or y(t); and a precompensator, F(s),
designed after C(s), used to satisfy tracking specifications.

Consider an uncertain plant, represented as the set of transfer functions P = {P(s) =
P0(s)Q(s), Q ∈ Q}, with P0(s) being the nominal plant and Q being a set of transfer functions
representing uncertainty. For a certain frequency ω, the template TP(jω) is defined as the
Nichols chart (NC) region ([22]) given by

TP(ω) =̇
{(

∠P
(
jω

)
,
∣∣P

(
jω

)∣∣
dB

)
∈ NC, P ∈ P

}
. (2.1)

The design of the controller C(s) is accomplished in the Nichols chart, by shaping the
nominal open loop transfer function, L0(s) = P0(s)C(s). A discrete set of design frequencies
Ω is chosen. Given quantitative specifications on robust stability and robust performance
on the closed loop system, the set of boundaries B = {Bω,ω ∈ Ω} is computed. Each Bω

defines the allowed region Aω (conversely, forbidden region Fω = NC\Aω) in NC for L0(jω),
so that L0(jω) ∈ Aω (conversely, L0(jω) /∈ Fω) for allω ∈ Ω (boundaries satisfaction) implies
specification satisfaction by L(s) = P(s)C(s) for allP(s) ∈ P. For example, in Figure 9 we
have the following.

(i) The open lines horizontally crossing the Nichols plane from −360◦ to 0◦ are
performance boundaries. In this example, for each ω ∈ Ω = {0.1, 0.5, 2, 15, 100},
A(jω) is defined as the region above Bω.
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(ii) The closed line around the point (0 dB, −180◦) is a robust stability boundary,
defining A(jω) (conversely F(jω)) as the region outside (conversely inside) Bω.
In this example, this boundary is a Universal High-Frequency Boundary (UHFB),
a stability boundary called universal because the region inside it, FUHFB, is not
forbidden only for a particular frequency ω, but for all ω ∈ R

+, so it imposes
L0(jω)/∈ FUHFB for all ω ∈ R

+.

The basic step in the design process, loop shaping, consists of the following nonlinear
nonconvex constrained optimization problem: design of L0(s) which satisfies boundaries
(constraints) and minimizes the high-frequency gain (optimization criterion—[23]), defined
as

Khf =̇ lim
s→ 0

seL0(s), (2.2)

where e is L0 excess of poles over zeros. The comparison in terms of this optimization criterion
of two nominal open loops L01(s) and L02(s), with respective excess of poles over zeros e1

and e2, only makes sense if e1 = e2. The comparison is performed in terms of the loops high-
frequency gains, K01 and K02 , respectively.

Note that this criterion is defined irrespective of the particular structure used for L0(s).
It has been shown ([23]) that for minimum phase L0(s) this optimum exists, it is unique and,
in general, has an infinite number of poles and zeros, and so it is not implementable. For
this reason it is referred along this work as the QFT theoretical optimum, Lqto(s), with optimal
high-frequency gain Kqto.

Since Lqto(s) is not practical as a loop design, a more practical definition of optimum
can be stated. Define X =̇ {x = (x1, . . . , xn)}, xi ∈ R, i = 1 · · ·n, as the set of controller structure
parameters to be instantiated. Consider LX(s) an open loop structure parameterized by X,
that is, each x ∈ X defines Lx(s), a particular instance of LX(s), with high-frequency gain
KLx . Define KLO =̇ min{KLx , x ∈ X} ≤ Kqto, the minimum high-frequency gain that can be
achieved by any LX(s) instance. An L-optimal transfer function or LO is defined as an LX(s)
instance La such that KLa = KLO .

For a given LX(s) open loop structure, KLO represents the best approach to Kopt

that can be achieved with that structure. The ability of a structure LX(s) to achieve Lqto(s)
shape is called close-to-optimality, defined as CO(L) =̇KLO − Kqto. Since computing LO is
in general still a hard optimization problem, and thus KLO is not known, it is common
to compute instead suboptimal transfer functions LsOi with high-frequency gain KLsOi as
close to KLO as possible, with i ∈ N. This is the approach considered in this work, using
evolutionary algorithms to compute an LsOi with KLsOi which approaches KLO as much as
possible. A measure of how accurately a certain LsO1 approaches KLO can only be established
in relative terms, that is, by comparing it to another LsO2 in terms of their high-frequency
gains.

The meaning of this optimum definition is minimizing the cost of feedback related
with sensor noise amplification at high frequencies by minimizing |L0(jω)| at high
frequencies, which, due to phase/magnitude relations given by Bode integrals ([24]), is
equivalent to minimize

∫
R+∠L0(jω)dω, subject to B satisfaction. Figures 2 and 3 show the

typical shape of a QFT optimal loop Lqto(jω), with polygonal line simplified versions of
Lqto(jω) and boundaries in B. For frequencies ω ∈ [0, ωa2], ∠Lqto(jω) minimization is
limited by performance boundaries. For frequencies ω ∈ [ωa2,∞], ∠Lqto(jω) minimization
is only limited by the UHFB (which makes Lqto(jω) tightly follow the right and bottom
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Figure 2: Nichols plot of Lqto(jω), QFT theoretical optimal loop, exhibiting typical Bode Step in the
frequency range [ωM1, ω2].
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Figure 3: Bode plot of Lqto(jω), QFT theoretical optimal loop, exhibiting typical Bode Step in the frequency
range [ωM1, ω2].

sides of the UHFB) and the specified excess of poles over zeros e. Note that ωc is not
directly established in the specifications, but indirectly, as a consequence of boundaries
in B.

Note the shape of Lqto(jω) in the frequency range [ωM1, ω2]; see Figures 2 and 3.
It is called Bode step ([18, 23, 25], first defined in [25]), a frequency band where Lqto(jω)
has constant magnitude and a fast phase decrease (according to ∠Lqto(jω) minimization
objective, once the UHFB does not constrain this objective), surrounded by frequencies where
∠Lqto(jω) is constant (απ and −eπ/2, resp.) and |Lqto(jω)| decreases. Bode step is very typical
of QFT optimal loops, and when designing a suboptimal loop LsO, the designer has to try to
make LsO exhibit a Bode step-like shape in order to succeed in accurately approaching Lqto.
Note that a Bode step in LsO(jω) can be interpreted as LsO(jω) tightly following the bottom
part of the UHFB.
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3. QFT Automatic Controller Design by Evolutionary Optimization

The used method for automatic QFT controller design consists of using a fixed structure in the
compensator with a certain number n of free parameters xi ∈ R, i = 1 · · ·n, which constitute
the solution space X =̇ {x = (x1, . . . , xn)} of the nonconvex nonlinear global optimization to
be performed by evolutionary algorithms. As it was said in the introduction, there are two
critical factors which determine the efficiency of such an approach. One is the dimension of
the search space, n, which exponentially increases the computational cost in terms of time.
The second factor is the use of adequate heuristics which guide the evolutionary search
towards close to optimum solutions.

The main contribution of this work has to do with the first factor: to use a fractional
structure in the compensator is proposed as a key idea to get flexible structures, able to yield
close to optimum solutions, but with a reduced n. Several structures from literature have been
adapted to solve the QFT loop shaping problem, including some structures proposed by the
authors in previous works. These structures are introduced in Sections 3.1.1–3.1.4.

The second contribution of this work has to do with the second factor. Some ad hoc
heuristics, with features very much specific to the particular problem under consideration,
have been developed in order to help evolutionary search to improve obtained solutions
accuracy and computation time needed to obtain these solutions, specially in terms of
local minima avoidance. These heuristics are presented in Section 3.2. Section 3.3 describes
the algorithm used for evolutionary optimization, detailing the objective function, which
includes these heuristics.

In Section 4 a design example is solved by using these heuristics and all the fractional
structures. The results obtained by each fractional structure are compared.

3.1. Fractional Structures

3.1.1. TID

TID controller [26] is a modified version of PID controller, where the proportional term
is replaced by a tilted (fractional) term, with transfer function s−eT , which permits a better
approach to theoretical optimum. The resulting controller, including a low pass filter, is given
by

CTID(s) = k

(
T

seT
+

1
s
+

qDs

q + s

)
1

(1 + s/wh)
nh
. (3.1)

3.1.2. PIλDμ

PIλDμ controller [27, 28] is a PID generalization in which both integrator and derivative terms
have real order, λ and μ, respectively. In this work, the multiplicative version of PIλDμ given
in [29] will be used, with transfer function

CPIλDμ(s) = kcx
μ

(
λ1s + 1

s

)λ( λ2s + 1
xλ2s + 1

)μ

. (3.2)

CRONE 2 (Section 3.1.3) is a particular case of (3.2), where some parameters are linked, and
so flexibility is reduced compared to (3.2).
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3.1.3. CRONE-Based Controllers

The CRONE approach [30, 31] defines three generations of fractional controllers based on
the use of frequency-band noninteger differentiators. First and second generations (CRONE
1 and CRONE 2) use real non-integer differentiation, whereas third generation (CRONE 3)
use complex non-integer differentiation. Three CRONE structures-based compensators are
studied. The first one uses the transfer function structure common to CRONE 1 and 2. The
basic component of this structure is an order n differentiator in the form of the implementable
band-defined transfer function. An order nI band-limited integrator and an order nF lowpass
filter are added to manage accuracy and robustness and control effort problems, being the
open loop structure finally defined as

LCR2(s) = k

(
ωl

s
+ 1

)nI
(

1 + s/ωh

1 + s/ωl

)n 1
(s/ωh + 1)nF

. (3.3)

The application of the CRONE 2 structure to the QFT problem is quite straightforward.
The second compensator uses CRONE 3 structure, consisting of the substitution of

the (real) order n integrodifferentiator in CRONE 2 for the real part Dr(s) of a (complex)
order n = a + ib integrodifferentiator in the form of the implementable band-defined transfer
function

D(s) = Dr(s) + iDi(s) =
(
C0

1 + s/ωh

1 + s/ωl

)a+ib

(3.4)

with C0 = ωh/ωu = ωu/ωl and ωu =
√
ωlωh. The open loop structure L(s) in CRONE 3 is

finally defined as

LCR3(s) = k

(
ωl

s
+ 1

)nI
(
C0

1 + s/ωh

1 + s/ωl

)a

× cos
[
b Log

(
C0

1 + s/ωh

1 + s/ωl

)]
1

(s/ωh + 1)nF
.

(3.5)

The third compensator is decoupled CRONE 3 ([32]), a modified version of CRONE
3 structure (3.5), where some parameters are decoupled in order to obtain higher flexibility.
Frequencies ωh and ωl are decoupled by defining new frequencies ω′

h
, ω′

l
, and ωh4. C0 is

decoupled by redefining C0 in cos() as C′
0 = cC0, where c is a new free parameter, C0 =

ω′
h
/ωu = ωu/ω

′
l
, and ωu =

√
ω′

l
ω′

h
. The new structure to be shaped is

LdecCR3(s) = k

(
ωl

s
+ 1

)nI
(
C0

1 + s/ωh

1 + s/ωl

)a

× cos

[

b Log

(

cC0
1 + s/ω′

h

1 + s/ω′
l

)]
1

(s/ωh4 + 1)nF
.

(3.6)

For both CRONE 3 and decoupled CRONE 3, a detailed study of the parameters involved,
its interrelations and their allowed ranks in order to obtain desired behavior, is developed
in [32]. In [33] a CRONE-based structure is proposed for the design of open loops based on
Bode optimum-like specifications.
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3.1.4. FCT Terms

Fractional order Complex Terms (FCTs) [19, 34] are terms

Ti =

(
ω2

ni

s2 + 2δiωnis +ω2
ni

)ei

(3.7)

with ei ∈ R, ei > 0 corresponding to poles and ei > 0 corresponding to zeros. Different
combinations of these terms can be used depending on the problem to be solved. For a typical
tracking problem with a minimum phase plant, the structure

L0 = KT1T2T3 (3.8)

with K ∈ R
+, two FCT poles and one FCT zero, achieves very good results.

3.2. Heuristics

Once the problem of a large number of parameters to be optimized has been solved by the use
of fractional structures, the main problem is the fact that, due to the typically convex nature
of the constraints in the solutions space, the evolutionary search can easily get stacked in local
minima. The main goal for the heuristics design has been to help the evolutionary search to
quickly avoid these local minima when they are detected.

The objective function used as the criterion for the natural selection of individuals
during the evolutionary optimization process, O(X), is a multiobjective real function which
returns a to-be-minimized real value related with nonviolation of boundaries (constraint),
stability (constraint), and minimization of Khf (to-be-optimized value). Violation of
boundaries and lack of stability are, in fact, constraints, but due to how evolutionary
algorithms work, they have to be translated into to-be-optimized values, as Khf originally
is. A first approach could be to assign a large value to any solution which violates any
boundary or is unstable. But this does not differentiate between solutions which violate a
certain boundary completely, or only a little bit, which produces a blind O(X) in the sense that
is not able to look for the way to become out of the violation of a certain given constraint. In
order to avoid the evolutionary optimization getting stack in such situations, it is necessary to
guide it by establishing, by adequately shaping O(X), that the violation of a certain constraint
by a certain solution Xa is not as important as the violation produced by another solution Xb,
so O(Xa) < O(Xb). This way, the evolutionary algorithm will prefer the survival of Xa instead
of Xb, so that better solutions survive, even if they do not satisfy constraints. This scheme,
repeated generation after generation, leads to solutions that do respect constraints. These are
some of the components of O(X) intended to guide the evolutionary optimization towards
solutions satisfying constraints.

(i) For open boundaries, let Bω be an open boundary, and consider that it is defined
as Bω(p) : R → R, a function that assigns to every phase p in NC the magnitude
of Bω at that phase. For certain solutions Xa and Xb, it should happen |LXi(jω)| ≥
Bω(∠LXi(jω)), i = {a, b}. Assume that this constrain is not satisfied; that is, Bω

is violated, by both Xa and Xb. Xa is considered better than Xb when LXa(jω) is
closer to Bω than LXb is, in terms of magnitude. More formally, the penalty for this



Mathematical Problems in Engineering 9

violation included in O(X) is a monotonically increasing function of Bω(∠LX(jω))−
|LX(jω)|. This choice, made generation after generation, contributes to get solutions
X such that LX(jω) is over Bω, thus satisfying Bω constraint.

(ii) For closed boundaries, let Bω be a closed boundary, and consider that it is defined
by Biω(p) : R → R, i = u, l, two functions that assign to every phase p in NC the
upper and lower magnitudes of Bω at that phase, respectively (bivalued boundary).
For certain solutions Xa and Xb, it should happen |LXi(jω)| ≥ Buω(∠LXi(jω)) and
|LXi(jω)| ≤ Blω(∠LXi(jω)), i = {a, b}. Assume that this constrain is not satisfied;
that is, Bω is violated, by both Xa and Xb. Xa is considered better than Xb when
LXa(jω) is closer to Buω or Blω than LXb is, in terms of NC Euclidean distance. This
choice, made generation after generation, contributes to get solutions X such that
LX(jω) is out of Bω, thus satisfying Bω constraint.

Another important consideration, in order to avoid the evolutionary search getting
stacked, is an O(X) which gives more importance to constraints satisfaction than to khf

minimization. This way, the evolutionary search first searches for valid solutions, and then,
once they have been achieved, it optimizes among them.

3.3. Algorithm

This section describes the optimization algorithm which has been implemented for
controllers synthesis. It consists on the use of commercial evolutionary algorithm software
(the Genetic and evolutionary algorithm toolbox for use with MATLAB (GEATbx, [35])) together
with an ad hoc objective function, programmed by the authors, implementing the heuristics
described in Section 3.2.

The evolutionary algorithm is, in particular, a multiple subpopulations evolutionary
search algorithm. In this kind of evolutionary search, each subpopulation evolves in an
isolated way for a few generations (as it happens in a single population evolutionary
algorithm). After that, one or more individuals are exchanged between subpopulations. The
way this process models species evolution is more similar to nature, compared to single
population evolutionary algorithms, which helps to avoid local minima. The basic structure
of this kind of algorithm is the following (adapted from [35]):

PROCEDURE Multipopulation Evolutionary Search Algorithm (search space)

BEGIN PROCEDURE

INITIALIZATION, consisting on:

creation of initial population // set of randomly chosen

// points from search space,

// grouped in species

evaluation of individuals =

OBJECTIVE FUNCTION(initial population);
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WHILE NOT(any termination criteria is met)

BEGIN WHILE

NEW POPULATION GENERATION: // consisting on...

fitness assignment selection;

recombination;

mutation;

evaluation of offspring = OBJECTIVE FUNCTION(offspring);

reinsertion;

migration;

competition;

END WHILE;

RESULT = best individual in last population;

END PROCEDURE;

This is the code which implements the objective function O(X) described in Section
3.2:

PROCEDURE Objective Function (set of individuals)

BEGIN PROCEDURE

FOR EACH individual IN set of individuals, indexed as i

SBV = Compute Stability Boundary Violation(individual);

SRV = Compute Stability Ray Violation(individual);

PBV = Compute Performance Boundary Violation(individual);

NBV = Compute Noise Boundary Violation(individual);

PSP = Compute Phases Separation Penalization(individual);

MPP = Compute Maximum Phase Penalization(individual);

HFG = Compute High Frequency Gain(individual);
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Constraints Violation =

BIG VALUE ∗ (weights[1] ∗ SBV

+ weights[2] ∗ SRV

+ weights[3] ∗ PBV

+ weights[4] ∗ NBV);

Technical Penalizations =

BIG VALUE ∗ (weights[5] ∗ PSP

+ weights[6] ∗ MPP);

Optimization Criterion =

weights[7] ∗ HFG;

RESULT[i] = Constraints Violation

+ Technical Penalizations

+ Optimization Criterion;

END FOR;

END PROCEDURE;

Values SBV, SRV, PBV and NBV are related with a direct violation of any of the
problem constraints. This is the reason they are amplified by BIG VALUE so that any solution
satisfying constraints is preferred (has a lower objective value) compared to any other which
does not satisfy any of the constraints.

Values PSP and MPP are related with technical issues, which are necessary to
consider in order to avoid nonreal solutions. Nonreal solutions are solutions that, due to
intrinsic limitations of discrete computation, such as the need to consider a finite number
of points to represent boundaries and loops, would satisfy the algorithm discrete translation
of continuous constraints, but not the original continuous constraints. These values are also
amplified by BIG VALUE.

Value HFG is directly related with the optimization criterion, high-frequency gain
minimization. It is not amplified by BIG VALUE, and so it is only considered, in practice,
when no constraint is violated.

Weights are conceived to give more importance to a certain penalization compared to
others, but have not been used for the moment; that is, all of them are equal.

As explained in Section 3.2, SBV, SRV, PBV, and NBV values correspond to a gradient,
related with how much a certain boundary is violated, so that the objective function
distinguishes different degrees of violation of a certain constraint, so that it helps the
evolutionary algorithm to approach solutions which do not violate that constraint. For
instance, consider the following MATLAB code, corresponding to the implementation of the
function Compute Performance Boundary Violation (CPBV).

PROCEDURE Compute Perform Boundary Violation(loop points,boundaries)

loop phases = loop points.phases;
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loop magnitudes = loop points.magnitudes;

bnd phases = boundaries.phases;

bnd magnitudes = boundaries.magnitudes;

nphases = length(bnd phases);

bnd phases indexes =

mod(round(loop phases∗(nphases/360)+nphases),nphases);
bnd phases indexes = nphases - bnd phases indexes;

minimum allowed magnitudes = bnd magnitudes(bnd phases indexes);

magnitude differences =

loop magnitudes - minimum allowed magnitudes;

negative differences =

magnitude differences .∗ (magnitude differences < 0);

squared differences = negative differences.̂ 2;

RESULT = sum(squared differences);

END PROCEDURE;

For each design frequency ω, this procedure checks whether the loop is below the
performance boundary at that frequency, Bω, and in that case quantifies how much below it
is, which is called magnitude difference in the code. These magnitude differences are squared, so
that bigger magnitude differences are considered much worse than small differences. After
that, these values are summed up to obtain the final boundary violation indicator, so that
this indicator doubles when the loop violates boundaries at two frequencies, compared to
a single violation, is triple when there are three violating frequencies, and so on. For an
example of CPBV function behaviour, consider Figures 4, 5, and 6, representing loops Lex1,
Lex2, and Lex3, respectively, corresponding to the first loop design in Section 4 (based on a PID
controller). In Figure 4, performance boundaries are violated by Lex1 at design frequencies
w1 = 0.1 rad/s and w2 = 0.5 rad/s, by about 5 dB. The function yields a boundary violation
indicator CPBV(Lex1) = 4.1e3. Using BIG VALUE = 1e6, this produces an objective function
value around O(Lex1) = 4.1e9, which is a big penalization. The evolutionary algorithm will
prefer individuals (loops) with lower objective function values. For instance, in Figure 5
performance boundaries are violated only at design frequency w1 = 0.1 rad/s, by 1 or 2 dB.
CPBV function yields a boundary violation index CPBV(Lex2) = 1.5e3, which corresponds to
an objective function value O(Lex2) = 1.5e9, still a big penalization, but lower than O(Lex1).
This way, the evolutionary algorithm tends to move the loop, at each frequency ω ∈ Ω, out
of F(jω) (forbidden area) and towards A(jω) (allowed area), producing a design like Lex3 in
Figure 6, where no boundary is violated, and so CPBV(Lex3) = 0 and O(Lex3) is contributed
only by the optimization criterion, with no penalization by constraints violation, yielding
O(Lex3) = 152.

Figure 7 shows the evolution, for an optimization of the loop structure shown in
Figures 4, 5 and 6, of O(Li), where i is an index for each generation in the evolutionary
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Figure 4: Lex1 loop, with CPBV(Lex1) = 4.1e3 and O(Lex1) = 4.1e9.
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Figure 5: Lex2 loop, with CPBV(Lex2) = 1.5e3 and O(Lex2) = 1.5e9.

algorithm execution, and Li is the best individual (loop) in generation i, best in the sense of
minimizing the objective function. During the first three generations there are some boundary
violations, which produce big objective function values. These values decrease as generation
index i increases, due to the effect of the implemented heuristics. From fourth generation
there is no boundary violation, so BIG VALUE is not applied any more, and so from that
point the task of the evolutionary algorithm is reduced to get better and better values for the
optimization criterion. This process can be better visualized in Figure 8, where scale has been
adapted for this purpose. This figure permits checking how the objective function converges
to a certain value, in this case around 152, from a certain generation, in this case around
generation 130.
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Figure 6: Lex3 loop, with CPBV(Lex3) = 0 and O(Lex3) = 152.
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Figure 7: Evolution of O(Li) with generation index i, big scale, showing the effect of boundaries being
violated at first generations.

4. Design Example

To illustrate the behavior of the proposed optimization method, the QFT Toolbox for
MATLAB [8] Benchmark Example number 2 is used. It has also been used, for instance, in
[16, 17]. In [16], two rational loops are designed, a second-order one, with Khf = 136.6 dB,
and a third-order one, with Khf = 130 dB, with npe = 3 in both cases. A common npe = 3 will
be used along this section, so that loops can be compared in terms of Khf. In those structures
which cannot get npe = 3 by themselves, a term

H(s) =
1

(1 + s/ωh)
nh

(4.1)

is added to fix npe = 3.
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Figure 8: Evolution of O(Li) with generation index i, reduced scale, showing the minimization of
optimization criterion, once constraints are satisfied.
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Figure 9: PID-based loop design.

For comparison purposes, a classical PID (TID with eT = 0) based design (Figure 9)
is also considered, with Khf = 152 dB and parameters in (3.1): k = 9.08 ∗ 106, T = 9.9 ∗ 105,
q = 184.9, D = 1.97, wh = 2091.3, nh = 2.

The result obtained with TID controller is shown in Figure 10, with Khf = 140 dB,
improving PID. Parameters in (3.1) are k = 3.86 ∗ 10−5, T = 4.4 ∗ 105, eT = 0.36, q = 5685.4,
D = 0.77, wh = 7625.2, nh = 2.

PIλDμ improves TID result by another 12 dB, with Khf = 128 dB, Figure 11. Parameters
in (3.2), with term (4.1), are kc = 2.79, x = 101 0, μ = 0, λ = 0.38, λ1 = 0.0083, λ2 = 1010,
ωh = 951.87, nh = 2.

CRONE 2 structure yields the loop shown in Figure 12, with corresponding Khf =
129.5 dB, and parameters in (3.3), are k = 2.98 ∗ 106, ωl = 2588, nI = 1.28, ωh = 1.65 ∗ 107,
n = 3.16, nF = 3. This result is slightly worse than PIλDμ’s, which could be expected, since
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Figure 10: TID-based loop design.
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Figure 11: PIλDμ-based loop design.

CRONE 2 is the same structure as PIλDμ, but with some parameters linked, which implies
less flexibility.

In Figure 13 it is shown a design using CRONE 3 structure, with Khf = 126.8 dB, and
parameters in (3.5), are k = 0.0084, ωl = 153, nI = 1.4, C0 = 2.3, ωh = 825, a = 0.85, b = 0.34,
nF = 3. The result is slightly better than using CRONE 2.

In Figure 14 it is shown a design using decoupled CRONE 3 structure, with Khf =
105.3 dB, and parameters in (3.6), are k = 1.46, ωl = 7, nI = 1.07, C0 = 11.2, ωh = 256.9,
ωl = 7.1, a = 1.5, b = 0.45, c = 0.7, ω′

h = 2 ∗ 104, ω′
l = 166, ωh4 = 446, nF = 3. This result

significantly improves the original CRONE 3 design (in more than 20 dB).
Finally, in Figure 15 it is shown the result obtained with the FCT structure (3.8), with

Khf = 94.2 dB, which improves decoupled CRONE 3 result by more than 10 dB. Parameters
for (3.8), are K = 8.3, ωn1 = 2.02, e1 = 0.16, δ1 = 2.32, ωn2 = 743.6, e2 = 1.4, δ2 = 0.28,
ωn3 = 7145, e3 = −0.57, δ3 = 2.55.
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Figure 12: CRONE-2-based loop design.
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Figure 13: CRONE-3-based loop design.

Table 1: Khf comparison.

CONTROLLER Khf (dB)
PID 152
TID 140
PIλDμ 128
CRONE 2 129.5
CRONE 3 126.8
decoupled CRONE 3 105.3
FCT 94.2
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Figure 14: Decoupled CRONE-3-based loop design.

0.1
0.512

15

100

0.1

0.5
1
2
15

−150

−100

−50

0

50

100

M
ag

(L
(j
ω
))

(d
B
)

−350 −300 −250 −200 −150 −100 −50 0

Ang (L(jω)) (degrees)

Figure 15: FCT-based loop design.

Figure 15 shows a comparison of the noise amplification at the plant input, TN(s) =
−C/(1+L), achieved by each design. Table 1 summarizes the results obtained in terms of Khf.
As it can be easily checked, there is a direct correlation between Khf and TN(s). Note how
the most flexible the used structure is (and so the best Khf it achieves) and the better Bode
step-like shape its associated loop achieves.

5. Conclusions

An automatic QFT controller design procedure, based on evolutionary algorithms optimiza-
tion on the parameters of a fixed structure, has been proposed. The key idea behind this
proposal is the introduction of a structure with few parameters (a must in order to get good
results from evolutionary optimization) but, at the same time, flexible enough, thanks to
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its fractional nature, to get results which are close to the optimum. Fractional structures
have been proposed as ideal candidates. Additional heuristics, focused on guiding the
evolutionary search to prevent it from getting stacked in local minima, have been proposed.
These structures and heuristics have achieved very good results in terms of QFT classical
optimization criterion.
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