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1. Introduction

In this paper, we conside the Hermitian positive definite solutions of the matrix equation:

X +A∗X−2A = I, (1.1)

where A is an n × n nonsingular matrix, I denotes the identity matrix, and A∗ the conjugate
transpose of A.

In many physical applications [1] (such as super-resolution image restoration, a
new image processing branch, which restores one better image of higher resolution from
a degraded image sequence of lower resolution, algorithms of super-resolution image
restoration can be used wherever image resolution is not contented, and image sequence
can be obtained), we must solve a system of linear equations [2]:

Mx = f, (1.2)
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where the positive definite matrixM arises from a finite different approximation to an elliptic
partial differential equation. The solving of the System Mx = f can be transformed to the
solving of the equations X ±A∗X−2A = I, and the nonlinear matrix equation (1.1), appears in
such many applications including control theory, ladder networks, dynamic programming,
stochastic filtering, statistic, and super-resolution image restoration. For such decomposition
to exist thematrixXmust be a positive definite solution to thematrix equationsX+A∗X−2A =
I.

We know that the study of the Hermitian positive definite solutions of the matrix
equation has three basic problems, the theoretic issue on solvability; the numerical solution;
the analysis of the perturbation.

Because of the wide mathematical and physical background, in recent years, the
existence of Hermitian positive solutions for nonlinear matrix equation received wide
attention (1.1) [3], for various values of q. In [3], Ivanov et al. construct iterative methods
for obtaining positive definite solutions of the matrix equation (1.1) and give some
sufficient conditions for the existence of a positive definite solution. Moreover, Ferrante
and Levy [4] studied the equation X = Q + NX−1N∗, and presented an algorithm
which converges to the positive definite solution for a wide range of conditions. Cheng
[5] presented some sufficient conditions and new necessary conditions for the existence
of Hermitian positive definite solutions. In [6], Ivanov discussed sufficient conditions
for existence the minimal Xs and special Xl positive definite solutions are derived
and iterative procedures for computing these solutions. The problem in the Hermitian
positive definite solutions of the matrix equation has been extensively researched in
[7–12].

Throughout this paper, let ‖ · ‖ denote the spectral norm for square matrices unless
otherwise noted, that is, ‖A‖ =

√
maxiλi, where the λi are the eigenvalues of AA∗, I the

identity matrix, and A∗ the conjugate transpose of A. The notation X > 0 means that X is a
positive definite Hermitian matrix, A > B is used to indicate that A − B > 0, that is, A − B be
Hermitian positive definite.

In this paper, motivated by the results mentioned earlier, we give some necessary and
sufficient conditions for the existence of a Hermitian positive definite solution of (1.1), and
these necessary and sufficient conditions are different to [3, 5]. Based on them,we also present
some properties of the coefficient matrix A are presented and two equivalent equations of
(1.1) when the matrix equation has a Hermitian positive definite solution.

2. Preliminaries and Lemmas

The following are several basic properties and are useful in this paper.

Lemma 2.1. The spectral norm is monotonic norm, that is, if 0 < A ≤ B, then ‖A‖ ≤ ‖B‖.

Lemma 2.2. If M is positive definite Hermitian matrix, then there is a unique positive definite
Hermitian matrixW such that M = W2.

Lemma 2.3 (see [3, Corollary 2.1]). If X is a positive definite solution of (1.1), then

I < X < I +A∗A. (2.1)
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Lemma 2.4 (see [13, Theorem 4]). If (1.1) has a solution, then

‖A‖ < 1. (2.2)

Moreover, if A has order > 2, then ‖A‖ can take any value in the interval [0, 1) for (1.1) to have a
solution.

3. The Main Results

In this section, we present our main results.

Theorem 3.1. The matrix equation (1.1) has a Hermitian positive definite solution X if and only if
A unitary equivalent to Λ2Z, that is, A can be factorized as

A = U∗Λ2ZU, (3.1)

where Λ = diag(
√
λ1,

√
λ2, . . . ,

√
λs), λi are the eigenvalues of X, i = 1, 2, . . . , n, X = U∗Λ2U, and

the columns of

(
Λ

Z

)

(3.2)

are orthonormal. In this case X = U∗Λ2U is a Hermitian positive definite solution of (1.1) and all
Hermitian positive definite solutions of (1.1) can be formed in this way. By the result mentioned
earlier, the solving of (1.1) can be transformed to the solving of the equation

Λ1 + C∗Λ−2
1 C = I, (3.3)

where C = UAU∗ is a nonsingular Hermitian matrix, Λ1 = diag(λ1, λ2, . . . , λs), λi are the
eigenvalues of X, i = 1, 2, . . . , n.

Proof. If the matrix equation (1.1) has a Hermitian positive definite solution X, then there
exists a unitary matrix U satisfied X = U∗Λ1U where Λ1 = diag(λ1, λ2, . . . , λn), λi (i =
1, 2, . . . , n) are the eigenvalues of X. Let Λ1 = Λ2, then Λ = diag(

√
λ1,

√
λ2, . . . ,

√
λs), we

rewrite the matrix equation (1.1) as

U∗Λ2U +A∗
(
U∗Λ2U

)−2
A = I, (3.4)

so

U∗Λ2U +A∗U∗Λ−4UA = I. (3.5)
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Because U is a unitary matrix, hence

Λ2 + (U∗)−1A∗U∗Λ−4UAU−1 = (U∗)−1IU−1 = I. (3.6)

Thus

(
Λ

Λ−2UAU∗

)∗( Λ

Λ−2UAU∗

)

= I. (3.7)

Let Z = Λ−2UAU∗, then A = U∗Λ2ZU and by (3.3), it is easy to see that the columns of

(
Λ

Z

)

(3.8)

are orthonormal.
Conversely, suppose that A has the decomposition (3.1) and X = U∗Λ2U, where U is

a unitary matrix. Since the columns of

(
Λ

Z

)

(3.9)

are orthonormal, so

(
Λ

Λ−2UAU∗

)∗( Λ

Λ−2UAU∗

)

= I, (3.10)

that is,

Λ2 + (U∗)−1A∗U∗Λ−4UAU−1 = (U∗)−1IU−1 = I. (3.11)

Then, we have

X +A∗X−2A = U∗Λ2U +A∗(U∗ΛU)−4A

= U∗ΛU +
(
U∗Λ2ZU

)∗
U∗Λ−4UU∗Λ2ZU

= I.

(3.12)

Hence X is a Hermitian positive definite solution of (1.1).
The proof of Theorem 3.1 is complete.
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Theorem 3.2. If the matrix equation (1.1) has a Hermitian positive definite solution X, then

‖A‖1/2 < λ < 1, λ < 1 − ‖A‖, (3.13)

where λ = max{λi, i = 1, 2, . . . , n}, λ = min{λi, i = 1, 2, . . . , n}, λi, i = 1, 2, . . . , n are the
eigenvalues of X.

Proof. By Theorem 3.1, if Λ1 is a Hermitian positive definite solution of (3.3), then we have

Λ1 > 0, C∗Λ−2
1 C > 0, (3.14)

thus

C∗Λ−2
1 C = I −Λ1 > 0, (3.15)

hence I −Λ1 > 0, that is,

0 < λi < 1, (3.16)

where λi, i = 1, 2, . . . , n.
Without loss of generality, suppose 0 < λ1 < λ2 < · · · < λn < 1, then λ = λn < 1. By the

proof of Theorem 3.1, we have

(
Λ−1

1 UA
)∗(

Λ−1
1 UA

)
= U∗(I −Λ1)U. (3.17)

Let
∑

= diag(σ1, σ2, . . . , σn) ≥ 0 such that Λ1 +
∑2 = I, where σ1 ≥ σ2 ≥ · · · ≥ σn. Since λ < 1,

then
∑

= diag(σ1, σ2, . . . , σn) > 0, 1 > σ1 ≥ σ2 ≥ · · · ≥ σn > 0, and σ1 =
√
1 − λ1, that is,

σ1 =
√
1 − λ. (3.18)

Now let

B = Λ−1
1 UAU∗ = (b1, b2, . . . , bn), (3.19)

where bi is n-column vector, then B∗B =
∑
, so B is column orthogonal and b∗i bi = σ2

i , i =
1, 2, . . . , n. Let vi = bi/σi, i = 1, 2, . . . , n, and with CS factorization theorem, extend them to
form an orthogonal basis of Cn. Thus V = (v1, v2, , vn) is a unitary matrix such that B = V

∑
,

and hence

A = U∗Λ1V
∑

U. (3.20)
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So

‖A‖ =
∥
∥∥U∗Λ1V

∑
U
∥
∥∥

=
∥
∥
∥Λ1V

∑∥
∥
∥

≤ ‖Λ1‖
∥
∥
∥
∑∥

∥
∥

= λ
2(
1 − λ

)
,

(3.21)

thus we have

‖A‖ ≤ λ
2
, (3.22)

that is,

‖A‖1/2 ≤ λ,

‖A‖ ≤ 1 − λ,
(3.23)

that is,

λ ≤ 1 − ‖A‖. (3.24)

The proof of Theorem 3.2 is complete.

Theorem 3.3. If the matrix equation (1.1) has a Hermitian positive definite solution X, let α =
max{λ2i , i = 1, 2, . . . , n}, β = max{1 − λi, i = 1, 2, . . . , n}, λ = min{λi, i = 1, 2, . . . , n}, where
λi, i = 1, 2, . . . , n are the eigenvalues of X, then

(1) A∗A < βΛ2 < βαI;

(2) λI < Λ < I − αA∗A.

Proof. By Theorem 3.1, C = UAU∗, where U is a unitary matrix, hence A∗A = UC∗CU∗.
Let α = max{λ2i , i = 1, 2, . . . , n}, β = max{1 − λi, i = 1, 2, . . . , n}, λ = min{λi, i =

1, 2, . . . , n}, where λi, i = 1, 2, . . . , n be the eigenvalues of X.
(1) By Theorem 3.1, Λ1 is a Hermitian positive definite solution of (3.3), thus

Λ < αI, C∗Λ−2
1 C = I −Λ1 < I, (3.25)

hence

C∗Λ−2
1 C = (I −Λ1) < βI, Λ2

1 < αI < I. (3.26)
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So

A∗A = U∗C∗CU < βU∗Λ2
1U < αβI. (3.27)

(2) SinceΛ1 is a Hermitian positive definite solution of (3.3),C is a nonsingular matrix,
that is, C∗Λ−2

1 C = I −Λ1, by (1) Λ−2
1 > αI, then

C∗Λ−2
1 C > αC∗C, (3.28)

so

αA∗A = UαC∗CU∗ < I −Λ1, (3.29)

thus we have

λI < Λ1 < I − αA∗A. (3.30)

The proof of Theorem 3.3 is complete.

Theorem 3.4. Suppose A and B are two positive definite Hermitian matrices, and A > B, then there
exist a nonsingular matrices T which satisfied

(1)

T ∗AT = I, T ∗BT = Λ, (3.31)

where Λ = diag(λ1, λ2, . . . , λn), λi are the eigenvalues of A−1B, i = 1, 2, . . . , n;

(2) 0 < λi < 1, and the columns of

(
Λ1/2

(A − B)1/2T

)

(3.32)

are orthonormal, i = 1, 2, . . . , n.

Proof. (1) Since the matrixA is positive definite Hermitian, then there exists a unique positive
definite Hermitian matrix W such that A = W2. We note

F =
(
W−1

)∗
BW−1 = WBW−1. (3.33)

It is to prove that F is Hermitian matrix also, so there exists a unitary matrix U such that
U∗FU = Λ, where Λ = diag(λ1, λ2, . . . , λn), λi are the eigenvalues of F. Hence we have the
following equation

U∗
(
W−1

)∗
BW−1U = Λ. (3.34)
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Let T = W−1U, then T is nonsingular. Since

det(λI − F) =
det(W(λI − F)W)

det(A)

=
det(λW∗W −W∗FW)

det(A)

=
det(λA − B)

det(A)

=
det

(
λA −AA−1B

)

det(A)

= det
(
λI −A−1B

)
,

(3.35)

so the eigenvalue of A−1B is equal to the eigenvalue of F.
(2) If (3.31) is hold, then we have

T ∗(A − B)T = I −Λ. (3.36)

Since A > B, T is nonsingular, so T ∗(A − B)T is positive definite Hermitian.
Thus I −Λ > 0, that is, 0 < λi < 1, i = 1, 2, . . . , n. It is easy to see that the columns of

(
Λ1/2

(A − B)1/2T

)

(3.37)

are orthonormal.
The proof of Theorem 3.4 is complete.

Theorem 3.5. The matrix equation (1.1) has a Hermitian positive definite solution X if and only if
A has the following factorization:

A = TΛ−1/2Z, (3.38)

whereΛ = diag(λ1, λ2, . . . , λn), λi, i = 1, 2, . . . , n are the eigenvalues ofX−3, T ∗XT = I, T ∗X−2T =
Λ and the columns of

(
T−1

Z

)

(3.39)

are orthonormal. In this caseX = (T−1)∗T−1 is a Hermitian positive definite solution and all Hermitian
positive definite solutions can be formed in this way.
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Proof. If the matrix equation (1.1) has a Hermitian positive definite solution X, then by
Theorem 3.3, there exists a nonsingular matrix T which satisfied

T ∗XT = I, T ∗X−2T = Λ, (3.40)

hence

X =
(
T−1

)∗
T−1, X−2 =

(
T−1

)∗
ΛT−1. (3.41)

So (1.1) is equivalent to

(
T−1

)∗
T−1 +A∗

(
T−1

)∗
ΛT−1A = I, (3.42)

or equivalently

(
T−1

Λ1/2T−1A

)∗(
T−1

Λ1/2T−1A

)

= I. (3.43)

Let Λ1/2T−1A = Z, then A = TΛ−1/2Z and (3.43) means that the columns of

(
T−1

Λ1/2T−1A

)

(3.44)

are orthonormal.
Conversely, suppose that A has the decomposition A = TΛ−1/2Z and X = (T−1)∗T−1,

where U is a unitary matrix. Since the columns of

(
T−1

Z

)

(3.45)

are orthonormal, so

(
T−1

Λ1/2T−1A

)∗(
T−1

Λ1/2T−1A

)

= I. (3.46)

Hence

(
T−1

)∗
T−1 +A∗

(
T−1

)∗
ΛT−1A = I. (3.47)

Then we have

X +A∗X−2A =
(
T−1

)∗
T−1 +

(
T−1

)∗
ΛT−1 = I. (3.48)

The proof of Theorem 3.5 is complete.
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Theorem 3.6. The matrix equation (1.1) has a Hermitian positive definite solution X if and only if
A has the following factorization:

A = TZ, (3.49)

whereΛ = diag(λ1, λ2, . . . , λn), λi, i = 1, 2, . . . , n are the eigenvalues ofX3, T ∗XT = Λ, T ∗X−2T =
I and the columns of

(
Λ1/2T−1

Z

)

(3.50)

are orthonormal. In this case X = (T−1)∗ΛT−1 is a Hermitian positive definite solution and all
Hermitian positive definite solutions can be formed in this way.

Proof. If the matrix equation (1.1) has a Hermitian positive definite solution X, then by
Theorem 3.3, there exists a nonsingular matrix T which satisfied

T ∗XT = Λ, T ∗X−2T = I, (3.51)

hence

X =
(
T−1

)∗
ΛT−1, X−2 =

(
T−1

)∗
T−1. (3.52)

So (1.1) is equivalent to

(
T−1

)∗
ΛT−1 +A∗

(
T−1

)∗
T−1A = I, (3.53)

or equivalently

(
Λ1/2T−1

T−1A

)∗(
Λ1/2T−1

T−1A

)

= I. (3.54)

Let T−1A = Z, then A = TZ, and (3.54) means that the columns of

(
Λ1/2T−1

T−1A

)

(3.55)

are orthonormal.
Conversely, suppose thatA has the decompositionA = TZ andX = (T−1)∗ΛT−1, where

U is a unitary matrix. Since the columns of

(
Λ1/2T−1

Z

)

(3.56)
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are orthonormal, then

(
Λ1/2T−1

T−1A

)∗(
Λ1/2T−1

T−1A

)

= I. (3.57)

Thus

(
T−1

)∗
ΛT−1 +A∗

(
T−1

)∗
T−1A = I. (3.58)

Then we have

X +A∗X−2A =
(
T−1)∗ΛT−1 +

(
T−1)∗T−1 = I. (3.59)

The proof of Theorem 3.6 is complete.

Theorem 3.7. The matrix equation (1.1) has a Hermitian positive definite solution X if and only
if ΛT is unitary, where Λ =

√
Λ1 + I, Λ1 = diag(λ1, λ2, . . . , λn), λi, i = 1, 2, . . . , n are the

eigenvalues of X−1A∗X−2A.

Proof. If the matrix equation (1.1) has a Hermitian positive definite solution X, then by
Theorem 3.3, there exists a nonsingular matrix T which satisfied

T ∗XT = I, T ∗A∗X−2AT = Λ1, (3.60)

hence

X =
(
T−1

)∗
T−1, A∗X−2A =

(
T−1

)∗
Λ1T

−1. (3.61)

So (1.1) is equivalent to

(
T−1

)∗
T−1 +

(
T−1

)∗
Λ1T

−1 = I, (3.62)

that is,

(
T−1

)∗
(I + Λ1)T−1 = I. (3.63)

Let Λ =
√
Λ1 + I, then (3.63) is equivalent to

(
T−1

)∗
Λ2T−1 = I. (3.64)
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So

(
ΛT−1

)∗(
ΛT−1

)
= I. (3.65)

Thus ΛT is unitary.
The proof of Theorem 3.7 is complete.

Similarly, we have the following theorem.

Theorem 3.8. The matrix equation (1.1) has a Hermitian positive definite solution X if and only
if ΛT is unitary, where Λ =

√
Λ1 + I, Λ1 = diag(λ1, λ2, . . . , λn), λi, i = 1, 2, . . . , n are the

eigenvalues of A−1X2(A−1)∗X.

Remark 3.9. By Theorems 3.7 and 3.8, the solving of (1.1) is transformed to the solving of

T ∗T = Λ, (3.66)

whereΛ = diag(λ1−1, λ2−1, . . . , λn)−1, λi, i = 1, 2, . . . , n are the eigenvalues ofA−1X2(A−1)∗X
or X−1A∗X−2A is a nonsingular Hermitian matrix.

It is easy to see that every eigenvalue λi of A−1X2(A−1)∗X or X−1A∗X−2A satisfied

λi > 1. (3.67)
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