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Let E be a real uniformly convex Banach space, and let{Ti : i ∈ I} be N nonexpansive mappings
from E into itself with F = {x ∈ E : Tix = x, i ∈ I}/=φ, where I = {1, 2, . . . ,N}. From
an arbitrary initial point x1 ∈ E, hybrid iteration scheme {xn} is defined as follows: xn+1 =
αnxn + (1 − αn)(Tnxn − λn+1μA(Tnxn)), n ≥ 1, where A : E → E is an L-Lipschitzian mapping,
Tn = Ti, i = n(modN), 1 ≤ i ≤ N, μ > 0, {λn} ⊂ [0, 1), and {αn} ⊂ [a, b] for some a, b ∈ (0, 1).
Under some suitable conditions, the strong and weak convergence theorems of {xn} to a common
fixed point of the mappings {Ti : i ∈ I} are obtained. The results presented in this paper extend
and improve the results of Wang (2007) and partially improve the results of Osilike, Isiogugu, and
Nwokoro (2007).
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1. Introduction

Let E be a Banach space endowed with the norm ‖ · ‖. A mapping T : E → E is said to be
nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for any x, y ∈ E. F : E → E is said to be L-Lipschitzian
if there exists constant L > 0 such that ‖Fx − Fy‖ ≤ L‖x − y‖ for any x, y ∈ E.

Let H be a Hilbert space with inner product 〈·, ·〉 and associated with norm ‖ · ‖, A :
H → H is said to be η-strong monotone if there exists η > 0 such that

〈Ax −Ay, x − y〉 ≥ η‖x − y‖2, ∀x, y ∈ H. (1.1)

The interest and importance of construction of fixed points of nonexpansive mappings
stemmainly from the fact that it may be applied in many areas, such as imagine recovery and
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signal processing (see, e.g., [1–3]). Especially, numerous problems in physics, optimization,
economics, traffic analysis, and mechanics reduce to find a solution of equilibrium problem.
The equilibrium problem is to find

x∗ ∈ C such that f
(
x∗, y

) ≥ 0, ∀y ∈ C, (1.2)

whereC is a nonempty closed convex subset of a Hilbert spaceH, f is a bifunction fromC×C
to R, and R is the set of real numbers.

It has been shown by Blum and Oettli [4] and Noor and Oettli [5] that variational
inequalities and mathematical programming problems can be viewed as a special realization
of the abstract equilibrium problems. Given a mapping T : C → H, let f(x, y) = 〈Tx, y − x〉
for all x, y ∈ C. It is well-known that x∗ ∈ C is a solution of (1.2) if and only if 〈Tx∗, y−x∗〉 ≥ 0
for all y ∈ C. Very recently, Yao et al. [6] find a common element of the set of solutions
of equilibrium problem (1.2) and the set of common fixed points of a finite family of
nonexpansive mappings by using an iterative scheme of a finite family of nonexpansive
mappings. See the references therein for more details. Therefore, the topic on construction
of fixed points of nonexpansive mappings is useful for equilibrium problems in physics,
optimization, traffic analysis, and so forth.

Motivated by earlier results of Xu and Kim [7] and Yamada [8], some authors [9–
14] further extended hybrid iteration method used this method to approximate fixed points
of nonexpansive mappings, and obtained some strong and weak convergence theorems for
nonexpansive mappings.

Recently, Wang [12] introduced an explicit hybrid iteration method for nonexpansive
mappings and obtained the following convergence theorem.

Theorem 1.1 ([12]). Let H be a Hilbert space, let T : H → H be a nonexpansive mapping with
F(T) = {x ∈ H : Tx = x}/=φ, and let A : H → H be a η-strong monotone and L-Lipschizian
mapping. For any given x1 ∈ H, {xn} is defined by

xn+1 = αnxn + (1 − αn)Tλn+1xn, n ≥ 1, (1.3)

where Tλn+1xn = Txn − λn+1μA(Txn). If {αn} ⊂ [0, 1) and {λn} ⊂ [0, 1) satisfy the following
conditions: (1) α ≤ αn ≤ β for some α, β ∈ (0, 1); (2)

∑∞
n=2λn < ∞; (3) 0 < μ < 2η/L2, then,

(1) {xn} converges weakly to a fixed point of T .

(2) {xn} converges strongly to a fixed point of T if only if lim infn→∞d(xn, F(T)) = 0.

Very recently, Osilike et al. [11] extended Wang’s results to arbitrary Banach spaces
without the strong monotonicity assumption imposed on the hybrid operator and obtained
the following result.

Theorem 1.2 ([11]). Let E be an arbitrary Banach space endowed with the norm ‖ · ‖, let T : E → E
be a nonexpansive mapping with F(T)/=φ, and let A : E → E be an L-Lipschitzian mapping. Let
{xn} be the sequence generated from an arbitrary x1 ∈ E by

xn+1 = αnxn + (1 − αn)Tλn+1xn, n ≥ 1, (1.4)
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where Tλn+1xn = Txn−λn+1μA(Txn), μ > 0, and {αn} ⊂ [0, 1) and {λn} ⊂ [0, 1) satisfy the following
conditions: (1) 0 < α ≤ αn ≤ 1 for all n ≥ 1 and some α ∈ (0, 1); (2)

∑∞
n=1(1 − αn) = ∞; (3)∑∞

n=2λn < ∞, then,

(1) limn→∞‖xn − p‖ exists for each p ∈ F(T),

(2) limn→∞‖xn − Txn‖ = 0,

(3) {xn} converges strongly to a fixed point of T if and only if lim infn→∞d(xn, F(T)) = 0.

Motivated by above work, we obtain the strong and weak convergence theorems for a
finite family of nonexpansive mappings in uniformly convex Banach space by using hybrid
iteration method. The results presented in this paper extend and improve the results of Wang
[12] and partially improve the results of Osilike et al. [11].

2. Preliminaries

Throughout this paper, we denote I = {1, 2, . . . ,N}.
A mapping T : K → E is said to be demicompact if, for any sequence {xn} in K

such that ‖xn − Txn‖ → 0 (n → ∞), there exists subsequence {xnj} of {xn} such that {xnj}
converges strongly to x∗ ∈ K.

For studying the strong convergence of fixed points of a nonexpansive mapping,
Senter and Dotson [15] introduced condition (A). Later on, Maiti and Ghosh [16], Tan
and Xu [17] studied condition (A) and pointed out that Condition (A) is weaker than the
requirement of demicompactness for nonexpansive mappings. A mapping T : K → K with
F(T) = {x ∈ K : Tx = x}/=φ is said to satisfy condition (A) if there exists a nondecreasing
function f : [0,∞) → [0,∞) with f(0) = 0 and f(t) > 0 for all t ∈ (0,∞) such that
‖x − Tx‖ ≥ f(d(x, F(T))) for all x ∈ K, where d(x, F(T)) = inf{‖x − q‖ : q ∈ F(T)}.

A family of mappings {Ti : i ∈ I} from E into itself with F = {x ∈ E : Tix = x, i ∈ I} is
said to satisfy condition (B) if there exists a nondecreasing function f : [0,∞) → [0,∞) with
f(0) = 0 and f(t) > 0 for all t ∈ (0,∞) such that

∑N
i=1‖x − Tix‖/N ≥ f(d(x, F)) for all x ∈ E.

A Banach space E is said to satisfy Opial’s condition if, for any sequence {xn} in E,
xn ⇀ x implies that lim supn→∞‖xn−x‖ < lim supn→∞‖xn−y‖ for all y ∈ Ewith y /=x, where
xn ⇀ x denotes that {xn} converges weakly to x.

A mapping T with domain D(T) and range R(T) in E is said to be demi-closed at p
if whenever {xn} is a sequence in D(T) such that {xn} converges weakly to x∗ ∈ D(T) and
{Txn} converges strongly to p, then Tx∗ = p.

In the coming Lemma we will use the following well-known results.

Lemma 2.1 ([18]). Let {αn} and {tn} be two nonnegative sequences satisfying

αn+1 ≤ (1 + an)αn + bn, ∀n ≥ 1. (2.1)

If
∑∞

n=1an < ∞ and
∑∞

n=1bn < ∞, then limn→∞αn exists.
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Lemma 2.2 (see [19]). Let E be a real uniformly convex Banach space and let a, b be two constant
with 0 < a < b < 1. Suppose that {tn} ⊂ [a, b] is a real sequence and {xn}, {yn} are two sequences in
E. Then the conditions

lim
n→∞

∥
∥tnxn + (1 − tn)yn

∥
∥ = d, lim sup

n→∞
‖xn‖ ≤ d, lim sup

n→∞

∥
∥yn

∥
∥ ≤ d, (2.2)

imply that limn→∞‖xn − yn‖ = 0, where d ≥ 0 is a constant.

Lemma 2.3 (see [20]). Let E be a real uniformly convex Banach space, let K be a nonempty closed
convex subset of E, and let T : K → K be a nonexpansive mapping. Then I − T is demiclosed at zero.

3. Main Results

Theorem 3.1. Let E be a real uniformly convex Banach space endowed with the norm ‖ · ‖, let I =
{1, 2, . . . ,N}, {T : i ∈ I} be N nonexpansive mappings from E into itself with F = {x ∈ E : Tix =
x, i ∈ I}/=φ, and let A : E → E be an L-Lipschitzian mapping. For any given x1 ∈ E, {xn} is
defined by

xn+1 = αnxn + (1 − αn)Tλn+1xn, n ≥ 1, (3.1)

where Tλn+1xn = Tnxn − λn+1μA(Tnxn), μ > 0, Tn = Ti, i = n(modN), 1 ≤ i ≤ N. If {αn} and
{λn} ⊂ [0, 1) satisfy the following conditions:

(1) a ≤ αn ≤ b for all n ≥ 1 and some a, b ∈ (0, 1),

(2)
∑∞

n=2λn < ∞,

then

(1) limn→∞‖xn − q‖ exists for each q ∈ F,

(2) limn→∞‖xn − Tixn‖ = 0 for each i ∈ I,

(3) {xn} converges strongly to a common fixed point of {Ti : i ∈ I} if and only if
lim infn→∞d(xn, F) = 0.

Proof. (1) For any q ∈ F, we have

‖xn+1 − q‖ =
∥∥∥αn

(
xn − q

)
+ (1 − αn)

(
Tλn+1xn − q

)∥∥∥

≤ αn

∥∥xn − q
∥∥ + (1 − αn)

∥∥xn − q
∥∥ + λn+1(1 − αn)μ‖A(Tnxn)‖

≤ ∥∥xn − q
∥∥ + (1 − αn)λn+1μ

∥∥A(Tnxn) −A
(
q
)∥∥ + (1 − αn)λn+1μ

∥∥A
(
q
)∥∥

≤ [
1 + (1 − a)μLλn+1

]∥∥xn − q
∥∥ + (1 − a)λn+1μ

∥∥A
(
q
)∥∥.

(3.2)

Since
∑∞

n=2λn < ∞, it follows from Lemma 2.1 that limn→∞‖xn − q‖ exists.
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(2) Since limn→∞‖xn − q‖ exists for any q ∈ F, {xn} is bounded. So are {A(Tnxn)} and
{Tnxn}. Thus we may assume that limn→∞‖xn − q‖ = d, that is,

lim
n→∞

∥
∥
∥αn

(
xn − q

)
+ (1 − αn)

(
Tλn+1xn − q

)∥∥
∥ = d. (3.3)

Since limn→∞‖xn − q‖ = d, limn→∞λn = 0 and

‖Tλn+1xn − q‖ = ‖Tnxn − λn+1μA(Tnxn) − q‖
≤ ‖xn − q‖ + λn+1μ‖A(Tnxn)‖,

(3.4)

we have

lim sup
n→∞

‖Tλn+1xn − q‖ ≤ d. (3.5)

Thus, it follows from Lemma 2.2 that

lim
n→∞

‖xn − Tλn+1xn‖ = 0. (3.6)

In addition,

‖xn − Tλn+1xn‖ = ‖xn − Tnxn + λn+1μA(Tnxn)‖
≥ ||xn − Tnxn|| − λn+1μ||A(Tnxn)||,

(3.7)

so

‖xn − Tnxn‖ ≤ ‖xn − Tλn+1xn‖ + λn+1μ‖A(Tnxn)‖. (3.8)

Therefore, it follows from (3.6) that

lim
n→∞

‖xn − Tnxn‖ = 0. (3.9)

On the other hand, since

xn+1 = αnxn + (1 − αn)
[
Tnxn − λn+1μA(Tnxn)

]
, (3.10)

we have

xn+1 − Tnxn = αn(xn − Tnxn) − (1 − αn)λn+1μA(Tnxn). (3.11)
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Thus, it follows from (3.9) that

lim
n→∞

‖xn+1 − Tnxn‖ = 0. (3.12)

From (3.9) and (3.12), we can obtain

lim
n→∞

‖xn+1 − xn‖ = 0. (3.13)

Further, for any positive integer k, we also have

lim
n→∞

‖xn+k − xn‖ = 0. (3.14)

For each i ∈ I,

‖xn − Tn+ixn‖ = ‖xn − xn+i + xn+i − Tn+ixn+i + Tn+ixn+i − Tn+ixn‖
≤ 2||xn − xn+i|| + ||xn+i − Tn+ixn+i||.

(3.15)

It follows from (3.9) and (3.14) that limn→∞‖xn − Tn+ixn‖ = 0. This implies that limn→∞‖xn −
Tixn‖ = 0 for each i ∈ I.

(3) Suppose that {xn} converges strongly to a common fixed point q of the mappings
{Ti : i ∈ I}, then limn→∞‖xn − q‖ = 0. Since 0 ≤ d(xn, F) ≤ ‖xn − q‖, we have
lim infn→∞d(xn, F) = 0.

Conversely, suppose that lim infn→∞d(xn, F) = 0. Since {xn} is bounded, there exists
constant M > 0 such that ‖xn − q‖ ≤ M. From (3.2), for any q ∈ F, we obtain

‖xn+1 − q‖ ≤ [
1 + (1 − a)μLλn+1

]‖xn − q‖ + (1 − a)λn+1μ‖A
(
q
)‖ ≤ ‖xn − q‖ + λn+1δ, (3.16)

where δ = (1 − a)μ[LM + ‖A(q)‖]. Furthermore, we have

d(xn+1, F) ≤ d(xn, F) + λn+1δ. (3.17)

It follows from Lemma 2.1 that limn→∞d(xn, F) exists. Since lim infn→∞d(xn, F) = 0, we
obtain that limn→∞d(xn, F) = 0. We now show that {xn} is a Cauchy sequence.

For arbitrary ε > 0, there exists positive integer N1 such that d(xn, F) < ε/4 for all n ≥
N1. In addition, since

∑∞
n=2λn < ∞, there exists positive integer N2 such that

∑∞
j=nλj < ε/4δ

for all n ≥ N2. Taking N = max{N1,N2}, for any n,m ≥ N, from (3.16), we have

‖xn − xm‖ ≤ ∥∥xn − q
∥∥ +

∥∥xm − q
∥∥ ≤ 2

∥∥xN − q
∥∥ + 2δ

∞∑

j=N

λj+1. (3.18)
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Taking the infimum in above inequalities for all q ∈ F, we obtain

‖xn − xm‖ ≤ 2d(xN, F) + 2δ
∞∑

j=N

λj+1 < ε. (3.19)

This implies that {xn} is a Cauchy sequence. Therefore there exists p ∈ E such that {xn}
converges strongly to p. Since limn→∞‖xn−Tixn‖ = 0 for each i ∈ I, it follows from Lemma 2.3
that p ∈ F. This completes the proof.

From Lemma 2.3 and limn→∞‖xn − Tixn‖ = 0 for each i ∈ I, using routine method, we
can easily show the following weak convergence theorem, whose proof is omitted.

Theorem 3.2. Let E be a real uniformly convex Banach space satisfying Opial’s condition, let {Ti :
i ∈ I} be N nonexpansive mappings from E into itself with F = {x ∈ E : Tx = x}/=φ, and let
A : H → H be an L-Lipschitzian mapping. For any given x1 ∈ E, {xn} is defined as in Theorem 3.1,
and {αn} ⊂ [0, 1) and {λn} ⊂ [0, 1) satisfy the conditions appeared in Theorem 3.1. Then {xn}
converges weakly to a common fixed point of the mappings of {Ti : i ∈ I}.

Example 3.3. Let E = R be endowed with standard norm ‖ · ‖ = | · |, where R is real number
set. Define T1 : [0,∞) → [0,∞) and T2 : [0,∞) → [0,∞) by T1x = 1/2 + x/(1 + x) and
T2x = 1/2 + x2/(1 + x) for all x ∈ [0,∞), respectively. Obviously, T1 and T2 are nonexpansive
mappings, and 1 is a common fixed point of T1 and T2. Let A : [0,∞) → [0,∞) be defined by
Ax = 2x + 1 for all x ∈ [0,∞). We now chose parameters {αn}, {λn} and μ as follows:

αn = 0.8 − 1
2n

, λn =
1

(n + 1)2
, n ≥ 1; μ = 1. (3.20)

It is easy to see thatA is a 2-Lipschitzian mapping and {αn}, {λn}, and μ satisfy the conditions
of Theorem 3.2. Then {xn} is generated by

xn+1 =
(
0.8 − 1

2n

)
xn +

(
0.2 +

1
2n

)
Tnxn − (1 − αn)

1

(n + 1)2
A(Tnxn), n ≥ 1, (3.21)

where T2n−1 = T1 and T2n = T2. It follows from Theorem 3.2 that {xn} converges strongly to
the common fixed point 1 of T1 and T2. As x1 = 2, by using Mathematical 5.0 to compute {xn},
we know that x10 = 0.82893, x20 = 0.935807, x50 = 0.994619, and x100 = 0.999272. This example
shows that the algorithm is efficient for approximating common fixed points of nonexpansive
mappings.

Remark 3.4. By using Theorem 3.1 and Lemma 2.3, we can easily prove that {xn} converges
strongly to a common fixed point of the mappings of {Ti : i ∈ I} if one of the mappings
{Ti : i ∈ I} is demicompact or {Ti : i ∈ I} satisfies condition (B). Therefore the results
presented in this paper improve and extend the results of Wang [12] and partially improve
the results of Osilike et al. [11].

Remark 3.5. We do not know how to overcome the constraint condition
∑∞

n=1‖Tnxn−Tn+1xn‖ <
∞when we try to extend Theorem 3.1 to arbitrary Banach spaces.
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