
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2009, Article ID 679736, 24 pages
doi:10.1155/2009/679736

Research Article
Order Level Inventory Models for
Deteriorating Seasonable/Fashionable Products
with Time Dependent Demand and Shortages

K. Skouri1 and I. Konstantaras1, 2

1 Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece
2 Hellenic Army Academy, Vari 16673, Attica, Greece

Correspondence should be addressed to I. Konstantaras, ikonst@cc.uoi.gr

Received 18 September 2008; Revised 3 July 2009; Accepted 20 July 2009

Recommended by Wei-Chiang Hong

An order level inventory model for seasonable/fashionable products subject to a period of
increasing demand followed by a period of level demand and then by a period of decreasing
demand rate (three branches ramp type demand rate) is considered. The unsatisfied demand is
partially backlogged with a time dependent backlogging rate. In addition, the product deteriorates
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1. Introduction

It is observed that the life cycle of many seasonal products, over the entire time horizon,
can be portrayed as a period of growth, followed by a period of relatively level demand
and finishing with a period of decline. So researchers commonly use a time-varying demand
pattern to reflect sales in different phases of product life cycle. Resh et al. [1] and Donaldson
[2] are the first researchers who considered an inventory model with a linear trend in
demand. Thereafter, numerous research works have been carried out incorporating time-
varying demand patterns into inventory models. The time dependent demand patterns,
mainly, used in literature are, (i) linearly time dependent and, (ii) exponentially time
dependent (Dave and Patel [3], Goyal [4], Hariga [5], Hariga and Benkherouf [6], Yang et al.
[7]). The time dependent demand patterns reported above are unidirectional, that is, increase
continuously or decrease continuously. Hill [8] proposed a time dependent demand pattern
by considering it as the combination of two different types of demand in two successive
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time periods over the entire time horizon and termed it as “ramp-type” time dependent
demand pattern. Then, inventory models with ramp type demand rate also are studied by
Mandal and Pal [9], Wu et al. [10] and Wu and Ouyang [11], Wu [12], Giri et al. [13], and
Manna and Chaudhuri [14]. In these papers, the determination of the optimal replenishment
policy requires the determination of the time point, when the inventory level falls to zero.
So the following two cases should be examined: (1) this time point occurs before the point,
where the demand is stabilized, and (2) this time point occurs after the point, where the
demand is stabilized. Almost all of the researchers examine only the first case. Deng et al.
[15] reconsidered the inventory model of Mandal and Pal [9] and Wu and Ouyang [11]
and studied it exploring these two cases. Skouri et al. [16] extend the work of Deng et al.
[15] by introducing a general ramp type demand rate and considering Weibull distributed
deterioration rate.

The assumption that the goods in inventory always preserve their physical characteris-
tics is not true in general. There are some items, which are subject to risks of breakage, deteri-
oration, evaporation, obsolescence, and so forth. Food items, pharmaceuticals, photographic
film, chemicals, and radioactivesubstances are few items in which appreciable deterioration
can take place during the normal storage of the units. A model with exponentially decaying
inventory was initially proposed by Ghare and Schrader [17]. Covert and Phillip [18] and
Tadikamalla [19] developed an economic order quantity model with Weibull and Gamma
distributed deterioration rates, respectively. Thereafter, a great deal of research efforts have
been devoted to inventory models of deteriorating items, the details can be found in the
review articles by Raafat [20], and Goyal and Giri [21].

In most of the above-mentioned papers, the demand during stockout period is totally
backlogged. In practice, there are customers who are willing to wait and receive their orders
at the end of stockout period, while others are not. In the last few years, considerable
attention has been paid to inventory models with partial backlogging. The backlogging
rate can be modelled taking into account the customers’ behavior. The first paper in which
customers’ impatience functions are proposed seems to be that by Abad [22]. Chang and
Dye [23] developed a finite horizon inventory model using Abad’s reciprocal backlogging
rate. Skouri and Papachristos [24] studied a multiperiod inventory model using the negative
exponential backlogging rate proposed by Abad [22]. Teng et al. [25] extended Chang
and Dye ’s [23] and Skouri and Papachristos’ [24] models, assuming as backlogging rate
any decreasing function of the waiting time up to the next replenishment. Research on
models with partial backlogging continues with Wang [26] and San Jose et al. [27] and
[28].

Manna and Chaudhuri [14] noted that ramp type demand pattern is generally
followed by new brand of consumer goods coming to the market. But for fashionable
products as well as for seasonal products, the steady demand will never be continued
indefinitely. Rather it would be followed by decrement with respect to time after a period
of time and becomes asymptotic in nature. Thus the demand may be illustrated by three
successive time periods that classified time dependent ramp-type function, in which in the
first phase the demand increases with time and after that it becomes steady, and towards
the end in the final phase it decreases and becomes asymptotic. Chen et al. [29] proposed a
search procedure based on Nelder-Mead algorithm to find a solution for the case of inventory
systems with shortage allowance and nonlinear demand pattern. Also, Chen et al. [30]
proposed a net present value approach for the previous inventory system without shortages.
For both models, the demand rate is a revised version of the Beta distribution function and
so is a differentiable with respect to time.
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The purpose of the present paper is to study an order level inventory model when
the demand is described by a three successive time periods that classified time dependent
ramp-type function. Any such function has points, at least one, where differentiation is not
possible, and this introduces extra complexity in the analysis of the relevant models. The
unsatisfied demand is partially backlogged with time dependent backlogging rate, and units
in inventory are subject to deterioration with Weibull-distributed deterioration rate.

The rest of the paper is organized as follows. In the next section the assumptions
and notations for the development of the model are provided. The model starting with no
shortages is studied in Section 3, and the corresponding one starting with shortages is studied
in Section 4. For each model the optimal policy is obtained. Numerical examples highlighting
the results obtained are given in Section 5. The paper closes with concluding remarks in
Section 6.

2. Notation and Assumptions

The following notations and assumptions are used in developing the model:

Notations

T The constant scheduling period (cycle)

t1 The time when the inventory level reaches zero

S The maximum inventory level at each scheduling period (cycle)

c1 The inventory holding cost per unit per unit time

c2 The shortage cost per unit per unit time

c3 The cost incurred from the deterioration of one unit

c4 The per unit opportunity cost due to the lost sales

μ The time point that increasing demand becomes steady

γ The time point, after μ, until the demand is steady and then decreases

I(t) The inventory level at time t ∈ [0, T].

Assumptions

(1) The ordering quantity brings the inventory level up to the order level S.
Replenishment rate is infinite.

(2) Shortages are backlogged at a rate β(x), which is a nonincreasing function of
x(β′(x) ≤ 0) with 0 ≤ β(x) ≤ 1, β(0) = 1, and x is the waiting time up to
the next replenishment. Moreover it is assumed that β(x) satisfies the relation
β(x) + Tβ′(x) ≥ 0, where β′(x) is the derivate of β(x). The cases with β(x) = 1
(or 0) correspond to complete backlogging (or complete lost sales) models.

(3) The time to deterioration of the item is distributed as Weibull (a, b); that is, the
deterioration rate is θ(t) = abtb−1 (a > 0, b > 0, t > 0). There is no replacement or
repair of deteriorated units during the period T . For b = 1, θ(t) becomes constant,
which corresponds to exponentially decaying case.
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(4) The demand rate D(t) is a time dependent ramp-type function and is of the
following form:

D(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(t), 0 < t < μ,

f
(
μ
)
= g
(
γ
)
, μ ≤ t ≤ γ,

g(t), γ < t,

(2.1)

where f(t) is a positive, continuous, and increasing function of t, and g(t) is a positive,
continuous and decreasing function of t.

3. The Mathematical Formulation of
the Model Starting with No Shortages

The replenishment at the beginning of the cycle brings the inventory level up to S. Due to
demand and deterioration, the inventory level gradually depletes during the period (0, t1)
and falls to zero at t = t1. Thereafter shortages occur during the period (t1, T), which are
partially backlogged. Consequently, the inventory level, I(t), during the time interval 0 ≤ t ≤
T, satisfies the following differential equations:

dI(t)
dt

+ θ(t)I(t) = −D(t), 0 ≤ t ≤ t1, I(t1) = 0, (3.1)

dI(t)
dt

= −D(t)β(T − t), t1 ≤ t ≤ T, I(t1) = 0. (3.2)

The solutions of these differential equations are affected from the relation between t1,
μ, and γ through the demand rate function. Since the demand has three components in three
successive time periods, the following cases: (i) t1 < μ < γ < T , (ii) μ < t1 < γ < T, and
(iii) μ < γ < t1 < T must be considered to determine the total cost and then the optimal
replenishment policy.

Case 1 (t1 < μ < γ < T). In this case, (3.1) becomes

dI(t)
dt

+ abtb−1I(t) = −f(t), 0 ≤ t ≤ t1, I(t1) = 0. (3.3)

Equation (3.2) leads to the following three:

dI(t)
dt

= −f(t)β(T − t), t1 ≤ t ≤ μ, I(t1) = 0, (3.4)

dI(t)
dt

= −f(μ)β(T − t), μ ≤ t ≤ γ, I
(
μ−
)
= I
(
μ+
)
, (3.5)

dI(t)
dt

= −g(t)β(T − t), γ ≤ t ≤ T. (3.6)
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The solutions of (3.3), (3.4), (3.5), and (3.6), are, respectively,

I(t) = e−at
b∫ t1

t f(x)e
axb

dx, 0 ≤ t ≤ t1, (3.7)

I(t) = −
∫ t

t1

f(x)β(T − x)dx, t1 ≤ t ≤ μ, (3.8)

I(t) = −f(μ)
∫ t

μ

β(T − x)dx −
∫μ

t1

f(x)β(T − x)dx, μ ≤ t ≤ γ, (3.9)

I(t) = −
∫ t

γ

g(x)β(T − x)dx −
∫μ

t1

f(x)β(T − x)dx − f
(
μ
)
∫ γ

μ

β(T − x)dx, γ ≤ t ≤ T. (3.10)

The total amount of deteriorated items during [0, t1] is

D =
∫ t1

0
f(t)eat

b

dt −
∫ t1

0
f(t)dt. (3.11)

The cumulative inventory carried in the interval [0, t1] is found from (3.7) and is

I1 =
∫ t1

0
I(t)dt =

∫ t1

0
e−at

b

[∫ t1

t

f(x)eax
b

dx

]

dt. (3.12)

Due to (3.8), (3.9), and (3.10), the time-weighted backorders during the interval [t1, T] are

I2 =
∫T

t1

[−I(t)]dt

=
∫μ

t1

[−I(t)]dt +
∫ γ

μ

[−I(t)]dt +
∫T

γ

[−I(t)]dt

=
∫μ

t1

(
μ − t

)
f(t)β(T − t)dt + f

(
μ
)
∫ γ

μ

[∫ t

μ

β(T − x)dx

]

dt +
∫ γ

μ

[∫μ

t1

f(x)β(T − x)dx

]

dt

+
∫T

γ

[∫ t

γ

g(x)β(T − x)dx

]

dt +
∫T

γ

[∫μ

t1

f(x)β(T − x)dx

]

dt + f
(
μ
)
∫T

γ

[∫ γ

μ

β(T − x)dx

]

dt.

(3.13)

The amount of lost sales during [t1, T] is

L =
∫μ

t1

(
1 − β(T − t)

)
f(t)dt + f

(
μ
)
∫ γ

μ

(
1 − β(T − t)

)
dt +

∫T

γ

(
1 − β(T − t)

)
g(t)dt. (3.14)
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The total cost in the time interval [0, T] is the sum of holding, shortage, deterioration,
and opportunity costs and is given by

TC1(t1) = c1I1 + c2I2 + c3D + c4L

= c1

{∫ t1

0
e−at

b

[∫ t1

t

f(x)eax
b

dx

]

dt

}

+ c3

{∫ t1

0
f(t)eat

b

dt −
∫ t1

0
f(t)dt

}

+ c2

{∫μ

t1

(
μ − t

)
f(t)β(T − t)dt + f

(
μ
)
∫ γ

μ

[∫ t

μ

β(T − x)dx

]

dt

+
∫ γ

μ

[∫μ

t1

f(x)β(T − x)dx

]

dt +
∫T

γ

[∫ t

γ

g(x)β(T − x)dx

]

dt

+
∫T

γ

[∫μ

t1

f(x)β(T − x)dx

]

dt + f
(
μ
)
∫T

γ

[∫ γ

μ

β(T − x)dx

]

dt

}

+ c4

{∫μ

t1

(
1 − β(T − t)

)
f(t)dt + f

(
μ
)
∫ γ

μ

(
1 − β(T − t)

)
dt +
∫T

γ

(
1 − β(T − t)

)
g(t) dt

}

.

(3.15)

Case 2 (μ < t1 < γ < T). In this case, (3.1) reduces to the following two:

dI(t)
dt

+ abtb−1I(t) = −f(t), 0 ≤ t ≤ μ, I
(
μ−) = I

(
μ+),

dI(t)
dt

+ abtb−1I(t) = −f(μ), μ ≤ t ≤ t1, I(t1) = 0.
(3.16)

Equation (3.2) leads to the following two:

dI(t)
dt

= −f(μ)β(T − t), t1 ≤ t ≤ γ, I(t1) = 0,

dI(t)
dt

= −g(t)β(T − t), γ ≤ t ≤ T, I
(
γ−
)
= I
(
γ+
)
.

(3.17)

Their solutions are, respectively,

I(t) = e−at
b

[∫μ

t

f(x)eax
b

dx + f
(
μ
)
∫ t1

μ

eax
b

dx

]

, 0 ≤ t ≤ μ,

I(t) = e−at
b

f
(
μ
)
∫ t1

t

eax
b

dx, μ ≤ t ≤ t1,

I(t) = −f(μ)
∫ t

t1

β(T − x)dx, t1 ≤ t ≤ γ,

I(t) = −
∫ t

γ

g(x)β(T − x)dx − f
(
μ
)
∫ γ

t1

β(T − x)dx, γ ≤ t ≤ T.

(3.18)
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The total amount of deteriorated items during [0, t1] is

D = I(0) −
∫ t1

0
D(t)dt =

∫μ

0
f(t)eat

b

dt + f
(
μ
)
∫ t1

μ

eat
b

dt −
∫μ

0
f(t)dt − f

(
μ
)(
t1 − μ

)
. (3.19)

The total inventory carried during the interval [0, t1] is

I1 =
∫ t1

0
I(t)dt =

∫μ

0
I(t)dt +

∫ t1

μ

I(t)dt

=
∫μ

0
e−at

b

[∫μ

t

f(x)eax
b

dx + f
(
μ
)
∫ t1

μ

eax
b

dx

]

dt + f
(
μ
)
∫ t1

μ

e−at
b

[∫ t1

t

eax
b

dx

]

dt.

(3.20)

The time-weighted backorders during the interval [t1, T] are

I2 =
∫T

t1

[−I(t)]dt =
∫ γ

t1

[−I(t)]dt +
∫T

γ

[−I(t)]dt

=
∫ γ

t1

f
(
μ
)
∫ t

t1

β(T − x)dx dt +
∫T

γ

∫ t

γ

g(x)β(T − x)dx dt + f
(
μ
)
∫T

γ

∫ γ

t1

β(T − x)dx dt.

(3.21)

The lost sales in the interval [t1, T] are

L = f
(
μ
)
∫ γ

t1

[
1 − β(T − t)

]
dt +

∫T

γ

[
1 − β(T − t)

]
g(t)dt. (3.22)

The inventory cost for this case is

TC2(t1) = c1I1 + c2I2 + c3D + c4L

= c1

{∫μ

0
e−at

b

[∫μ

t

f(x)eax
b

dx + f
(
μ
)
∫ t1

μ

eax
b

dx

]

dt + f
(
μ
)
∫ t1

μ

e−at
b

[∫ t1

t

eax
b

dx

]

dt

}

+ c2

{∫ γ

t1

f
(
μ
)
∫ t

t1

β(T − x)dx dt +
∫T

γ

∫ t

γ

g(x)β(T − x)dx dt

+f
(
μ
)
∫T

γ

∫ γ

t1

β(T − x)dx dt

}

+ c3

{∫μ

0
f(t)eat

b

dt + f
(
μ
)
∫ t1

μ

eat
b

dt −
∫μ

0
f(t)dt − f

(
μ
)(
t1 − μ

)
}

+ c4

{

f
(
μ
)
∫ γ

t1

[
1 − β(T − t)

]
dt +

∫T

γ

[
1 − β(T − t)

]
g(t)dt

}

.

(3.23)
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Case 3 (μ < γ < t1 < T). In this case, (3.1) reduces to the following three:

dI(t)
dt

+ abtb−1I(t) = −f(t), 0 ≤ t ≤ μ , I
(
μ−) = I

(
μ+),

dI(t)
dt

+ abtb−1I(t) = −f(μ), μ ≤ t ≤ γ, I
(
γ−
)
= I
(
γ+
)
,

dI(t)
dt

+ abtb−1I(t) = −g(t), γ ≤ t ≤ t1, I(t1) = 0.

(3.24)

Equation (3.2) leads to the following:

dI(t)
dt

= −g(t)β(T − t), t1 ≤ t ≤ T, I( t1) = 0. (3.25)

Their solutions are, respectively,

I(t) = e−at
b

[∫μ

t

f(x)eax
b

dx + f
(
μ
)
∫ γ

μ

eax
b

dx +
∫ t1

γ

g(x)eax
b

dx

]

, 0 ≤ t ≤ μ, (3.26)

I(t) = e−at
b

[

f
(
μ
)
∫ γ

t

eax
b

dx +
∫ t1

γ

g(x)eax
b

dx

]

, μ ≤ t ≤ γ, (3.27)

I(t) = e−at
b

∫ t1

t

g(x)eax
b

dx, γ ≤ t ≤ t1, (3.28)

I(t) = −
∫ t

t1

g(x)β(T − x)dx, t1 ≤ t ≤ T. (3.29)

The total amount of deteriorated items during [0, t1] is

D = I(0) −
∫ t1

0
D(t)dt

=
∫μ

0
f(x)eax

b

dx + f
(
μ
)
∫ γ

μ

eax
b

dx +
∫ t1

γ

g(x)eax
b

dx

−
∫μ

0
f(t)dt − f

(
μ
)(
γ − μ

) −
∫ t1

γ

g(t)dt.

(3.30)
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The total inventory carried during the interval [0, t1], using (3.26), (3.27), and (3.28) is

I1 =
∫ t1

0
I(t)dt =

∫μ

0
I(t)dt +

∫ γ

μ

I(t)dt +
∫ t1

γ

I(t)dt

=
∫μ

0
e−at

b

[∫μ

t

f(x)eax
b

dx + f
(
μ
)
∫ γ

μ

eax
b

dx +
∫ t1

γ

g(x)eax
b

dx

]

dt

+
∫ γ

μ

e−at
b

[

f
(
μ
)
∫ γ

t

eax
b

dx +
∫ t1

γ

g(x)eax
b

dx

]

dt +
∫ t1

γ

e−at
b

[∫ t1

t

g(x)eax
b

dx

]

dt.

(3.31)

The time-weighted backorders during the interval [t1, T] are

I2 =
∫T

t1

[−I(t)]dt =
∫T

t1

∫ t

t1

g(x)β(T − x)dx. (3.32)

The lost sales in the interval [t1, T] are

L =
∫T

t1

[
1 − β(T − t)

]
g(t)dt. (3.33)

The inventory cost for this case is

TC3(t1) = c1I1 + c2I2 + c3D + c4L

= c1

{∫μ

0
e−at

b

[∫μ

t

f(x)eax
b

dx + f
(
μ
)
∫ γ

μ

eax
b

dx +
∫ t1

γ

g(x)eax
b

dx

]

dt

+
∫ γ

μ

e−at
b

[

f
(
μ
)
∫ γ

t

eax
b

dx +
∫ t1

γ

g(x)eax
b

dx

]

dt +
∫ t1

γ

e−at
b

[∫ t1

t

g(x)eax
b

dx

]

dt

}

+ c2

{∫T

t1

∫ t

t1

g(x)β(T − t)dx

}

+ c4

{∫T

t1

[
1 − β(T − t)

]
g(t)dt

}

+ c3

{∫μ

0
f(x)eax

b

dx + f
(
μ
)
∫ γ

μ

eax
b

dx +
∫ t1

γ

g(x)eax
b

dx

−
∫μ

0
f(t)dt − f

(
μ
)(
γ − μ

) −
∫ t1

γ

g(t)dt

}

.

(3.34)

Finally the total cost function of the system over [0, T] takes the following form:

TC(t1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

TC1(t1), if t1 ≤ μ,

TC2(t1), if μ < t1 < γ,

TC3(t1), if γ ≤ t1.

(3.35)
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It is easy to check that this function is continuous at μ and γ . The problem now is the
minimization of this, three branches, function TC(t1). This requires, separately, studying each
of these branches and then combining the results to state the algorithm giving the optimal
policy.

3.1. The Optimal Replenishment Policy

In this subsection we present the results, which ensure the existence of a unique optimal value
for t1, say t∗1, which minimizes the total cost function. Although the optimality procedure
requires the constrained optimization of the functions TC1(t1),TC2(t1), and TC3(t1), we will,
firstly, search for their unconstrained minimum. The first- and second-order derivatives of
TC1(t1), TC2(t1), and TC3(t1) are, respectively,

dTC1(t1)
dt1

= f(t1)h(t1),

d2TC1(t1)
dt1

2
=

df(t1)
dt1

h(t1) + f(t1)
dh(t1)
dt1

,

dTC2(t1)
dt1

= f
(
μ
)
h(t1),

d2TC2(t1)
dt1

2
= f
(
μ
)dh(t1)

dt1
,

dTC3(t1)
dt1

= g(t1)h(t1),

d2TC3(t1)
dt1

2
=

dg(t1)
dt1

h(t1) + g(t1)
dh(t1)
dt1

,

(3.36)

where

h(t1) = c1e
at1

b

∫ t1

0
e−at

b

dt + c3
(
eat1

b − 1
)
− c2(T − t1)β(T − t1) − c4

(
1 − β(T − t1)

)
. (3.37)

Equation (3.37) is the same as (16) of the paper of Skouri et al. [16]. So, following
the methodology proposed by Skouri et al. [16], the algorithm, which gives the optimal
replenishment policy, is as follows.

Step 1. Compute t∗1 from h(t1) = 0.

Step 2. If t∗1 ≤ μ, then the optimal order quantity is given by

Q∗ =
∫ t∗1

0
f(t)eat

b

dt +
∫μ

t∗
1

β(T − t)f(t)dt + f
(
μ
)
∫ γ

μ

β(T − t)dt +
∫T

γ

β(T − t)g(t)dt (3.38)

and the total cost is given by TC1(t∗1 ).
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If μ < t∗
1
< γ, then the optimal order quantity is given by

Q∗ =
∫μ

0
f(t)eat

b

dt + f
(
μ
)
∫ t∗1

μ

eat
b

dt + f
(
μ
)
∫ γ

t∗1

β(T − t)dt +
∫T

γ

g(t)β(T − t)dt (3.39)

and the total cost is given by TC2(t∗1 ).
If γ < t∗

1
< T, then the optimal order quantity is given by

Q∗ =
∫μ

0
f(t)eat

b

dt + f
(
μ
)
∫ γ

μ

eat
b

dt +
∫ t∗1

γ

g(t)eat
b

dt +
∫T

t∗1

g(t)β(T − t)dt (3.40)

and the total cost is given by TC3(t∗1 ).

Remark 3.1. The previous analysis shows that t∗1 is independent from the demand rate D(t).
This very interesting result agrees with the classical result, in many order level inventory
systems, that the point t∗1 is independent from the demand rate (Naddor [31, page 67]).

3.2. The Special Case β(x) = 1 and a = 0

If we are considering the case that there is no deterioration of the product (a = 0) and
unsatisfied demand is complete backlogged (β(x) = 1), then the total cost function of the
model starting with no shortages over [0, T] takes the following form:

TC(t1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1

∫ t1

0

∫ t1

t

f(x)dx dt + c2

∫μ

t1

∫ t

t1

f(x)dx dt + c2f
(
μ
)
∫ γ

μ

(
t − μ

)
dt + c2

∫ γ

μ

∫μ

t1

f(x)dx dt

+c2

∫T

γ

∫ t

γ

g(x)dx dt dt + c2f
(
μ
)(
γ − μ

)(
T − γ

)
+ c2

∫T

γ

∫μ

t1

f(x)dx dt,

t1 < μ < γ < T,

c1

∫μ

0

∫μ

t

f(x)dx dt + c1

∫μ

0

∫ t1

μ

f
(
μ
)
dx dt + c1

∫ t1

μ

∫ t1

t

f
(
μ
)
dx dt + c2

∫ γ

t1

∫ t

t1

f
(
μ
)
dx dt

+c2

∫T

γ

∫ t

γ

g(x)dxdt + c2

∫T

γ

∫ γ

t1

f
(
μ
)
dx dt, μ < t1 < γ < T,

c1

∫μ

0

∫μ

t

f(x)dx dt + c1

∫μ

0

∫ γ

μ

f
(
μ
)
dxdt + c1

∫μ

0

∫ t1

γ

g(x)dxdt + c1

∫ γ

μ

∫ γ

t

f
(
μ
)
dx dt

+c1

∫ γ

μ

∫ t1

γ

g(x)dx dt + c1

∫ t1

γ

∫ t1

t

g(x)dx dt + c2

∫T

t1

∫ t

t1

g(x)dx dt,

μ < γ < t1 < T.

(3.41)
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Following the previous procedure for the optimal replenishment policy, the optimal value of
t1, say t∗1, is given by the very simple and known, in classical order level inventory system
(Naddor [31]), equation:

t∗1 =
c2T

c1 + c2
. (3.42)

4. The Mathematical Formulation of
the Model Starting with Shortages

In this section the inventory model starting with shortages is studied. The cycle now starts
with shortages, which occur during the period (0, t1), and are partially backlogged. At time
t1 a replenishment brings the inventory level up to S. Demand and deterioration of the items
deplete the inventory level during the period (t1, T) until this falls to zero at t = T . Again the
three cases t1 < μ < γ < T , μ < t1 < γ < T, and μ < γ < t1 < T must be examined.

Case 4 (t1 < μ < γ < T). The inventory level, I(t), 0 ≤ t ≤ T satisfies the following differential
equations:

dI(t)
dt

= −f(t)β(t1 − t), 0 ≤ t ≤ t1, I(0) = 0,

dI(t)
dt

+ abtb−1I(t) = −f(t), t1 ≤ t ≤ μ, I
(
μ−
)
= I
(
μ+
)
,

dI(t)
dt

+ abtb−1I(t) = −f(μ), μ ≤ t ≤ γ, I
(
γ−
)
= I
(
γ+
)
,

dI(t)
dt

+ abtb−1I(t) = −g(t), γ ≤ t ≤ T, I(T) = 0.

(4.1)

The solutions of (4.1), are, respectively,

I(t) = −
∫ t

0
f(x)β(t1 − x)dx, 0 ≤ t ≤ t1, (4.2)

I(t) = e−αt
b

[∫μ

t

eαx
b

f(x)dx + f
(
μ
)
∫ γ

μ

eαx
b

dx +
∫T

γ

eαx
b

g(x)dx

]

, t1 ≤ t ≤ μ, (4.3)

I(t) = e−αt
b

[

f
(
μ
)
∫ γ

t

eαx
b

dx +
∫T

γ

eαx
b

g(x)dx

]

, μ ≤ t ≤ γ, (4.4)

I(t) = e−at
b

∫T

t

eax
b

g(x)dx, γ ≤ t ≤ T. (4.5)

The total amount of deteriorated units during [t1, T] is

D = e−at
b
1

[∫μ

t1

f(x)eax
b

dx + f
(
μ
)
∫ γ

μ

eαx
b

dx +
∫T

γ

eαx
b

g(x)dx

]

−
∫μ

t1

f(x)dx − (γ − μ
)
f
(
μ
) −
∫T

γ

g(x)dx.

(4.6)
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The total inventory carried during the interval [t1, T] is found using (4.3), (4.4), and (4.5) and
is

I1 =
∫μ

t1

e−at
b

[∫μ

t

eαx
b

f(x)dx + f
(
μ
)
∫ γ

μ

eαx
b

dx +
∫T

γ

eαx
b

g(x)dx

]

dt

+
∫ γ

μ

e−αt
b

[

f
(
μ
)
∫ γ

t

eαx
b

dx +
∫T

γ

eαx
b

g(x)dx

]

dt +
∫T

γ

e−at
b

[∫T

t

eax
b

g(x)dx

]

dt.

(4.7)

Due to (4.2) the time-weighted backorders during the time interval [0, t1] are

I2 =
∫ t1

0

∫ t

0
f(x)β(t1 − x)dx dt. (4.8)

The amount of lost sales during [0, t1] is

L =
∫ t1

0

[
1 − β(t1 − t)

]
f(t)dt. (4.9)

The inventory cost during the time interval [0, T] is the sum of holding, shortage,
deterioration, and opportunity costs and is given by

TC1(t1) = c1I1 + c2I2 + c3D + c4L

= c1

(∫μ

t1

e−at
b

[∫μ

t

eαx
b

f(x)dx + f
(
μ
)
∫ γ

μ

eαx
b

dx +
∫T

γ

eαx
b

g(x)dx

]

dt

)

+ c1

(∫ γ

μ

e−αt
b

[

f
(
μ
)
∫ γ

t

eαx
b

dx +
∫T

γ

eαx
b

g(x)dx

]

dt +
∫T

γ

e−at
b

[∫T

t

eax
b

g(x)dx

]

dt

)

+ c2

∫ t1

0

∫ t

0
f(x)β(t1 − x)dx dt + c4

∫ t1

0

[
1 − β(t1 − t)

]
f(t)dt

+ c3

[

e−at
b
1

[∫μ

t1

f(x)eax
b

dx + f
(
μ
)
∫ γ

μ

eαx
b

dx +
∫T

γ

eαx
b

g(x)dx

]

−
∫μ

t1

f(x)dx − (γ − μ
)
f
(
μ
) −
∫T

γ

g(x)dx

]

.

(4.10)
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Case 5 (μ < t1 < γ < T). The inventory level, I(t), 0 ≤ t ≤ T satisfies the following differential
equations:

dI(t)
dt

= −f(t)β(t1 − t), 0 ≤ t ≤ μ, I(0) = 0,

dI(t)
dt

= −f(μ)β(t1 − t), μ ≤ t ≤ t1, I
(
μ−) = I

(
μ+),

dI(t)
dt

+ abtb−1I(t) = −f(μ), t1 ≤ t ≤ γ, I
(
γ−
)
= I
(
γ+
)
,

dI(t)
dt

+ abtb−1I(t) = −g(t), γ ≤ t ≤ T, I(T) = 0.

(4.11)

The solutions of (4.11), are, respectively,

I(t) = −
∫ t

0
f(x)β(t1 − x)dx, 0 ≤ t ≤ μ,

I(t) = −
∫μ

0
f(x)β(t1 − x)dx − f

(
μ
)
∫ t

μ

β(t1 − x)dx, μ ≤ t ≤ t1,

I(t) = e−αt
b

[

f
(
μ
)
∫ γ

t

eαx
b

dx +
∫T

γ

eαx
b

g(x)dx

]

, t1 ≤ t ≤ γ,

I(t) = e−at
b

∫T

t

eax
b

g(x)dx, γ ≤ t ≤ T.

(4.12)

The total cost of this case is obtained with a similar way of the previous cases and is,

TC2(t1) = c1

[∫ γ

t1

e−αt
b

(

f
(
μ
)
∫ γ

t

eαx
b

dx +
∫T

γ

eαx
b

g(x)dx

)

dt

+
∫T

γ

(

e−at
b

∫T

t

eax
b

g(x)dx

)

dt

]

+ c3

[

e−at
b
1

(∫ γ

t1

f
(
μ
)
eax

b

dx +
∫T

γ

eax
b

g(x)dx

)

− f
(
μ
)(
γ − t1

) −
∫T

γ

g(x)dx

]

+ c2

[∫μ

0

[∫ t

0
f(x)β(t1 − x)dx

]

dt

+
∫ t1

μ

[∫μ

0
f(x)β(t1 − x)dx + f

(
μ
)
∫ t

μ

β(t1 − x)dx

]

dt

]

+ c4

[∫μ

0

[
1 − β(t1 − t)

]
f(t)dt + f

(
μ
)
∫ t1

μ

[
1 − β(t1 − t)

]
dt

]

.

(4.13)
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Case 6 (μ < γ < t1 < T). The inventory level, I(t), 0 ≤ t ≤ T for this case satisfies the following
differential equations:

dI(t)
dt

= −f(t)β(t1 − t), 0 ≤ t ≤ μ, I(0) = 0, (4.14)

dI(t)
dt

= −f(μ)β(t1 − t), μ ≤ t ≤ γ, I
(
μ−) = I

(
μ+), (4.15)

dI(t)
dt

= −g(t)β(t1 − t), γ ≤ t ≤ t1, I
(
γ−
)
= I
(
γ+
)
, (4.16)

dI(t)
dt

+ abtb−1I(t) = −g(t), t1 ≤ t ≤ T, I(T) = 0. (4.17)

The solutions of (4.14), (4.15), (4.16), and (4.17), are, respectively,

I(t) = −
∫ t

0
f(x)β(t1 − x)dx, 0 ≤ t ≤ μ,

I(t) = −
∫μ

0
f(x)β(t1 − x)dx − f

(
μ
)
∫ t

μ

β(t1 − x)dx, μ ≤ t ≤ γ,

I(t) = −
∫ t

γ

g(x)β(t1 − x)dx −
∫μ

0
f(x)β(t1 − x)dx − f

(
μ
)
∫ γ

μ

β(t1 − x)dx, γ ≤ t ≤ t1,

I(t) = e−at
b

∫T

t

eax
b

g(x)dx, t1 ≤ t ≤ T.

(4.18)

The total cost of this case is obtained with a similar way of the previous cases and is,

TC3(t1) = c1

[∫T

t1

e−αt
b

∫T

t

eax
b

g(x)dx dt

]

+ c3

[

e−at
b
1

∫T

t1

eax
b

g(x)dx −
∫T

t1

g(x)dx

]

+ c2

[∫μ

0

[∫ t

0
f(x)β(t1 − x)dx

]

dt +
∫ γ

μ

[∫μ

0
f(x)β(t1 − x)dx + f

(
μ
)
∫ t

μ

β(t1 − x)dx

]

dt

]

+ c2

[∫ t1

γ

(∫ t

γ

g(x)β(t1 − x)dx +
∫μ

0
f(x)β(t1 − x)dx + f

(
μ
)
∫ γ

μ

β(t1 − x)dx

)

dt

]

+ c4

[∫μ

0

[
1 − β(t1 − t)

]
f(t)dt + f

(
μ
)
∫ γ

μ

[
1 − β(t1 − t)

]
dt +

∫ t1

γ

[
1 − β(t1 − t)

]
g(t)dt

]

.

(4.19)
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Finally the total cost function of the system over [0, T] takes the following form:

TC(t1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

TC1(t1), if t1 ≤ μ,

TC2(t1), if μ < t1 < γ,

TC3(t1), if γ ≤ t1.

(4.20)

It is easy to check that this function is continuous at μ and γ . The problem now is the
minimization of this, three branches, function TC(t1). This requires, separately, studying each
of these branches and then combining the results to state the algorithm giving the optimal
policy.

4.1. The Optimal Replenishment Policy

In this subsection we derive the optimal replenishment policy, that is, we calculate the value,
say t∗1, which minimizes the total cost function. Taking the first-order derivative of TC1(t1),
say K1(t1), and equating it to zero gives:

K1(t1) = −
(
c1 + c3αbt

b−1
1

)
e−αt

b
1

[∫μ

t1

eαx
b

f(x)dx + f
(
μ
)
∫ γ

μ

eαx
b

dx +
∫T

γ

eαx
b

g(x)dx

]

+
∫ t1

0

[
c2β(t1 − t) + c2(t1 − t)β′(t1 − t) − c4β

′(t1 − t)
]
f(t)dt = 0.

(4.21)

If t∗
1
is a root of (4.21), for this root the second-order condition for minimum is

[
c1 + c3αb

(
t∗
1

)b−1 − c3(b − 1)
(
t∗
1

)−1]
αb
(
t∗
1

)b−1
e−αt

∗b
1

×
[∫μ

t∗
1

eαx
b

f(x)dx + f
(
μ
)
∫ γ

μ

eαx
b

dx +
∫T

γ

eαx
b

g(x)dx

]

+
[
c1 + c3αb

(
t∗
1

)b−1]
f
(
t∗
1

)
+
[
c2 − c4β

′(0)
]
f
(
t∗
1

)

+
∫ t∗1

0

[
2c2β′

(
t∗
1
− t
)
+ c2
(
t∗
1
− t
)
β′′
(
t∗
1
− t
) − c4β

′′(t∗
1
− t
)]
f(t)dt > 0.

(4.22)

So, if (4.22) holds and t∗
1
≤ μ, then the value of order level, S, is

S∗ = I
(
t∗1
)
= e−αt

∗
1
b

[∫μ

t∗1

eαx
b

f(x)dx + f
(
μ
)
∫ γ

μ

eαx
b

dx +
∫T

γ

eαx
b

g(x)dx

]

, (4.23)
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the ordering quantity is

Q∗ =
∫ t∗1

0
f(x)β

(
t∗
1
− x
)
dx + S∗, (4.24)

and the total cost is TC1(t∗1 ).
Equating the first-order derivative of TC2(t1), say K2(t1), to zero gives

K2(t1) = −
(
c1 + c3αbt

b−1
1

)
e−αt

b
1

(

f
(
μ
)
∫ γ

t1

eαx
b

dx +
∫T

γ

eαx
b

g(x)dx

)

+
∫μ

0

[
c2β(t1 − t) + c2(t1 − t)β′(t1 − t) − c4β

′(t1 − t)
]
f(t)dt

+ f
(
μ
)
∫ t1

μ

[
c2β(t1 − t) + c2(t1 − t)β′(t1 − t) − c4β

′(t1 − t)
]
dt = 0.

(4.25)

If t∗
1
is a root of (4.25), for this root the second-order condition for minimum is

[
c1 + c3αbt

∗b−1
1

]
αbt∗

b−1
1

e−α(t
∗
1)

b

(

f
(
μ
)
∫ γ

t∗
1

eαx
b

dx +
∫T

γ

eαx
b

g(x)dx

)

− c3αb(b − 1)t∗
(b−2)

1
e−α(t

∗
1)

b

(

f
(
μ
)
∫ γ

t∗
1

eαx
b

dx +
∫T

γ

eαx
b

g(x)dx

)

+
[
c1 + c3αb

(
t∗
1

)b−1]
f
(
μ
)

+ f
(
μ
)(
c2 − c4β

′(0)
)
+
∫μ

0

[
2c2β′

(
t∗
1
− t
)
+ c2
(
t∗
1
− t
)
β′′
(
t∗
1
− t
) − c4β

′′(t∗
1
− t
)]
f(t)dt

+ f
(
μ
)
∫ t∗

1

μ

[
2c2β′

(
t∗
1
− t
)
+ c2
(
t∗
1
− t
)
β′′
(
t∗
1
− t
) − c4β

′′(t∗
1
− t
)]
dt > 0.

(4.26)

So, if (4.26) holds and μ < t∗1 < γ , then the value of S is

S∗ = I
(
t∗1
)
= e−αt

∗
1
b

[

f
(
μ
)
∫ γ

t∗1

eαx
b

dx +
∫T

γ

eαx
b

g(x)dx

]

. (4.27)

the ordering quantity is

Q∗ =
∫μ

0
f(x)β

(
t∗
1
− x
)
dx + f

(
μ
)
∫ t∗1

μ

β
(
t∗
1
− x
)
dx + S∗, (4.28)

and the total cost is TC2(t∗1 ).
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Equating the first-order derivative of TC3(t1), say K3(t1), to zero gives

K3(t1) = −
(
c1 + c3αbt

b−1
1

)
e−αt

b
1

∫T

t1

eαx
b

g(x)dx

+
∫μ

0

[
c2β(t1 − t) + c2(t1 − t)β′(t1 − t) − c4β

′(t1 − t)
]
f(t)dt

+ f
(
μ
)
∫ γ

μ

[
c2β(t1 − t) + c2(t1 − t)β′(t1 − t) − c4β

′(t1 − t)
]
dt

+
∫ t1

γ

[
c2β(t1 − t) + c2(t1 − t)β′(t1 − t) − c4β

′(t1 − t)
]
g(t)dt = 0.

(4.29)

If t∗
1
is a root of (4.29), for this root the second-order condition for minimum is

[
c1 + c3αbt

∗b−1
1

]
αbt∗

b−1
1

e−α(t
∗
1)

b

∫T

t∗1

eαx
b

g(x)dx

− c3αb(b − 1)t∗
(b−2)

1
e−α(t

∗
1)

b
∫T

t∗1

eαx
b

g(x)dx +
[
c1 + c3αb

(
t∗
1

)b−1]
g
(
t∗1
)

+ g
(
t∗1
)(
c2 − c4β

′(0)
)
+
∫μ

0

[
2c2β′

(
t∗
1
− t
)
+ c2
(
t∗
1
− t
)
β′′
(
t∗
1
− t
) − c4β

′′(t∗
1
− t
)]
f(t)dt

+ f
(
μ
)
∫ γ

μ

[
2c2β′

(
t∗
1
− t
)
+ c2
(
t∗
1
− t
)
β′′
(
t∗
1
− t
) − c4β

′′(t∗
1
− t
)]
dt

+
∫ t∗1

γ

[
2c2β′

(
t∗
1
− t
)
+ c2
(
t∗
1
− t
)
β′′
(
t∗
1
− t
) − c4β

′′(t∗
1
− t
)]
g(t)dt > 0.

(4.30)

So, if (4.30) holds and t∗1 > γ, then the value of S is

S∗ = I
(
t∗1
)
= e−a(t

∗
1)

b

∫T

t∗1

eax
b

g(x)dx, (4.31)

the ordering quantity is

Q∗ =
∫μ

0
f(x)β

(
t∗1 − x

)
dx + f

(
μ
)
∫ γ

μ

β
(
t∗1 − x

)
dx +

∫ t∗1

γ

g(x)β
(
t∗1 − x

)
dx + S∗, (4.32)

and the total cost is TC3(t∗1 ).

Remark 4.1. Due to (4.21), (4.25), and (4.29) the function TC(t1) is differentiable at the point
μ and γ .
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In the previous analysis there is no guarantee that t∗
1
exists and corresponds to the

minimum. Its uniqueness is also another issue. The proposition, which follows, provides
sufficient conditions for existence, uniqueness, and validity of t∗

1
.

Let us set

Δ1 = K1
(
μ
)

= −
(
c1 + c3αbμ

b−1
)
e−αμ

b

[

f
(
μ
)
∫ γ

μ

eαx
b

dx +
∫T

γ

eαx
b

g(x)dx

]

+
∫μ

0

[
c2β
(
μ − t

)
+ c2
(
μ − t

)
β′
(
μ − t

) − c4β
′(μ − t

)]
f(t)dt,

Δ2 = K2
(
γ
)

= −
(
c1 + c3αbγ

b−1
)
e−αγ

b

(∫T

γ

eαx
b

g(x)dx

)

+
∫μ

0

[
c2β
(
γ − t

)
+ c2
(
γ − t

)
β′
(
γ − t

) − c4β
′(γ − t

)]
f(t)dt

+ f
(
μ
)
∫ γ

μ

[
c2β
(
γ − t

)
+ c2
(
γ − t

)
β′
(
γ − t

) − c4β
′(γ − t

)]
dt

(4.33)

and h(t) = c2β(t) + c2tβ
′(t) − c4β

′(t).
The following proposition can be easily proved observing that K1(0) < 0 and

K3(T) > 0.

Proposition 4.2. If b < 1, h′(t) > 0, t ∈ [0, T] and

(1) Δ1 > 0, then (4.21) has one root, say t∗
1
, which is the unique optimal value of the problem.

(2) Δ1 < 0, and Δ2 > 0 then (4.25) has one root, say t∗
1
, which is the unique optimal value of

the problem.

(3) Δ1 < 0, and Δ2 < 0 then (4.29) has one root, say t∗
1
, which is the unique optimal value of

the problem.

We note that the above proposition ensures the existence, uniqueness, and validity of
t1. If the conditions of this proposition do not hold, then the following procedure can be used
to calculate the optimal replenishment policy.

Step 1. (1) Find the global minimizing point, t∗1, for TC1(t1). This will be one of the following
points:

(a) root of (4.21), (an interior point of [0, μ]) which satisfies (4.22)

(b) t∗1 = 0,

(c) t∗1 = μ.

Then calculate TC1(t∗1).
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(2) Find the global minimizing, t∗1, for TC2(t1). This will be one of the following points:

(a) a root of (4.25), (an interior point of [μ, T])which satisfies (4.26),

(b) t∗1 = μ,

(c) t∗1 = γ.

Then calculate TC2(t∗1).
(3) Find the global minimizing, t∗1, for TC3(t1). This will be one of the following points:

(a) a root of (4.29), (an interior point of [μ, T])which satisfies (4.30),

(b) t∗1 = γ,

(c) t∗1 = T.

Then calculate TC3(t∗1).

Step 2. Find the min {TC1(t∗1), TC2(t∗1), TC3(t∗1)} and accordingly select the optimum t∗1.

Remark 4.3. The analysis shows that, in this model, t∗1 is dependent from the demand rate
D(t).

5. Numerical Examples

The examples, which follow, illustrate the results obtained.

Example 5.1. The input parameters are c1 = $3 per unit per year, c2 = $15 per unit per year,
c3 = $5 per unit, c4 = $20 per unit, μ = 0.12 year, γ = 0.9, a = 0.001, b = 2, T = 1 year,
f(t) = 3e4.5t, g(t) = 3e4.5μ−0.8(t−γ), and β(x) = e−0.2x.

Model Starting with No Shortages

Using (3.37) the optimal value of t1 is μ < t∗1 = 0.860 < γ , and consequently the optimal
ordering quantity is Q∗ = 4.98 (from (3.39)) and the minimum cost is TC(t∗1) = 6.631 (from
(3.23)).

Model Starting with Shortages

Using (4.25) the optimal value of t1 is μ < t∗1 = 0.163 < γ, and consequently the optimal
ordering quantity is Q∗ = 4.98 (from (4.28)), and the minimum cost is TC(t∗1) = 6.329 (from
(4.13)).

Example 5.2. This example is identical to Example 5.1, except that γ = 0.7, f(t) = 20e3.5t, and
g(t) = 20e3.5μ − 50(t − γ).

Model Starting with No Shortages

Again t∗1 = 0.860 but now γ < t∗1, the optimal ordering quantity is Q∗ = 27.49 (from (3.40)),
and the minimum cost is TC(t∗1) = 35.855 (from (3.34)).
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Table 1: Sensitivity analysis for model starting without shortages.

The initial cost parameters: c1 = 3, c2 = 15, c3 = 5, c4 = 20

D(t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3e4.5t, 0 < t < 0.12,

f(0.12) = g(0.9), 0.12 ≤ t ≤ 0.9,

3e4.5×0.12−0.8(t−0.9), 0.9 < t.

D(t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

20e3.5t, 0 < t < 0.12,

f(0.12)=g(0.7), 0.12≤ t≤0.7,
20e3.5×0.12− 50(t − 0.7), 0.7 < t.

t∗1 Q∗ TC(t∗1) Q∗ TC(t∗1)

0.75 0.962 4.99 1.851 27.52 9.686

c1
1.50 0.926 4.98 3.562 27.51 18.868
4.50 0.803 4.96 9.290 27.44 51.073
6.00 0.752 4.95 11.612 27.38 64.638

3.25 0.698 4.94 5.397 27.29 30.362

c2
7.50 0.787 4.97 6.075 27.42 33.535
22.5 0.896 4.98 6.900 27.50 36.895
30.0 0.918 4.99 7.058 27.51 37.482

1.25 0.860 4.98 6.626 27.49 35.832

c3
2.50 0.860 4.98 6.628 27.49 35.840
7.50 0.860 4.98 6.633 27.49 35.870
10.0 0.860 4.98 6.635 27.49 35.885

5.00 0.838 4.98 6.459 27.47 35.166

c4
10.0 0.846 4.98 6.522 27.48 35.423
30.0 0.872 4.98 6.720 27.49 36.206
40.0 0.882 4.98 6.795 27.50 36.497

Model Starting with Shortages

Using (4.25) the optimal value of t1 is μ < t∗1 = 0.148 < γ , and consequently the optimal
ordering quantity is Q∗ = 27.48 (from (4.28)) and the minimum cost is TC(t∗1) = 33.008 (from
(4.13)).

In Tables 1 and 2 some sensitivity analysis for the models starting without and
with shortages, respectively, is performed, for the above examples, by changing the cost
parameter values −75%,−50%,+50% and, +100% taking one at a time and keeping the
remaining unchanged. From these two examples and the sensitivity analysis is evident the
following.

(1) For the model starting without shortages, although the time when shortages
occur (t∗1) is identical for the two examples, the ordering quantities and costs are significant
different, obviously because of the demand rate.

(2) For the two models the changes in the total optimal costs indicate that the models
are highly sensitive to the error on the estimation of the parameter value c1, moderately
sensitive to the error on c2, while low sensitivity is to the error on the estimation of the
parameters c3 and c4. In presented examples, the costs related to storage inventory (c1 and
c3) are less than costs related to unsatisfied demand (c2 and c4) maybe this explains the low
sensitivity to the error on the estimation of the parameter c4. While the small deterioration
rate maybe implies low sensitivity with respect to c3.



22 Mathematical Problems in Engineering

Table 2: Sensitivity analysis for model starting with shortages.

The initial cost parameters: c1 = 3, c2 = 15, c3 = 5, c4 = 20

D(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3e4.5t, 0 < t < 0.12,

f(0.12) = g(0.9), 0.12 ≤ t ≤ 0.9,

3e4.5×0.12−0.8(t−0.9), 0.9 < t.

D(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

20e3.5t, 0 < t < 0.12,

f(0.12) = g(0.7), 0.12 ≤ t ≤ 0.7,

20e3.5×0.12 − 50(t − 0.7), 0.7 < t.

t∗1 Q∗ TC(t∗1) t∗1 Q∗ TC(t∗1)

0.75 0.056 4.99 1.811 0.048 27.52 9.407

c1
1.50 0.098 4.99 3.440 0.087 27.51 17.910
4.50 0.218 4.97 8.835 0.200 27.43 46.126
6.00 0.269 4.96 11.024 0.246 27.37 57.618

3.25 0.320 4.94 5.120 0.294 27.30 26.794

c2
7.50 0.234 4.97 5.775 0.214 27.41 30.158
22.5 0.128 4.98 6.616 0.116 27.50 34.483
30.0 0.107 4.99 6.798 0.095 27.51 35.410

1.25 0.162 4.98 6.323 0.148 27.48 32.979

c3
2.50 0.162 4.98 6.325 0.148 27.48 32.989
7.50 0.163 4.98 6.333 0.148 27.48 33.027
10.0 0.163 4.98 6.337 0.148 27.48 33.047

5.00 0.185 4.98 6.155 0.169 27.46 32.113

c4
10.0 0.176 4.98 6.219 0.161 27.46 32.440
30.0 0.151 4.98 6.422 0.137 27.48 33.487
40.0 0.141 4.98 6.502 0.128 27.49 33.896

(3) The errors in cost parameters are attenuated when translated into changes in the
optimal ordering quantity.

6. Concluding Remarks

In this paper, an order level inventory model for deteriorating items has been studied.
The basic assumption of the model is based on time dependent three branches ramp type
demand rate. The demand of seasonable and fashionable products can be described well
with this function, as the nature of demand of these products is increasing at the beginning
of the season, steady in the mid of the season, and decreasing at the end of the season. To
the best of our knowledge this demand pattern studied for the first time, at least, using
so general functions for the nonsteady periods. In addition a time dependent backlogging
and deterioration rate are assumed. The inventory model is studied under two different
replenishment policies: (a) starting with no shortages and (b) starting with shortages. An
algorithm to obtain the optimal policy is proposed.

Moreover from this model follows as special cases the following ones.

(1) If f(t) = D0t, t ∈ [0, μ], g(x) = f(μ), μ = γ and β(x) = 1/(1 + δx), this model
reduces to that of Wu [12].

(2) If in addition to (1), β(x) = 1 (case of complete backlogging), then it further reduces
to that of Wu et al. [10].
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(3) If b = 1 (i.e., constant deterioration rate), f(t) = D0t, g(x) = f(μ), μ = γ , and
β(x) = 1, then the models reduce to those of Wu and Ouyang [11], Mandal and Pal
[9], and Deng et al. [15].

(4) If g(x) = f(μ), μ = γ , this model gives the one model proposed by Skouri et al. [16].
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