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The paper presents a linear model of ferroresonant circuit with flux reflection. The proposed
model—flux reflection model—derives from observations of typical flux waveforms of nonlinear
coil during ferroresonant steady states. Simulation results of the flux reflection model are
compared with simulation results of the usual nonlinear model as well as with measurements
carried out on the physical model of the ferroresonant circuit. The flux reflection model enables
a novel comprehension of the ferroresonant circuit behavior and simplifies the modeling of the
nonlinear coil in the ferroresonant circuit.
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1. Introduction

A ferroresonant circuit is a circuit which comprises a linear capacitor in series with a nonlinear
coil, driven by a sine-wave voltage. The ferroresonant circuit can exhibit several bifurcations
and a chaotic steady state [1–5]. Common research procedures comprise the measurements
of ferroresonant circuit and the computer simulation of the mathematical model based on
state-equations of the circuit.

The nonlinearity of the model caused by the nonlinear magnetization characteristic
of the coil is the driving force on the route to the chaotic steady state, which is marked by
the bifurcations that are initiated by varying values of a circuit parameter. Complex models,
that comprehend more nonlinear elements, are needed to match results of measurements
and simulation completely [6, 7]. In order to obtain the complex behavior of the circuit, the
nonlinear element that comprises the magnetization nonlinearity is only necessary. Therefore,
the model comprises the magnetization nonlinearity iL(ϕ), implying the core saturation of the
coil. The winding resistance of the coil is neglected, and the resistor, that represents the core
losses of the coil, is assumed to be linear. State equations of the ferroresonant circuit, Figure 1,
are

dϕ

dt
= uL = ̂U sinωt − uC,
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uL =
dϕ

dt
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Nonlinear coil model
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Figure 1: Ferroresonant circuit.
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C

[
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R

(
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)

+ iL
(

ϕ
)

]

.

(1.1)

The magnetization nonlinearity iL(ϕ) is odd-symmetric and monotonically increasing.
It can be presented in various forms, for example, in a polynomial form [8, 9] or piecewise
linear form [10, 11]. Thereby, the polynomial form is obtained often by an interpolation of a
piecewise linear form. The magnetization nonlinearity is based on measurements carried out
on a nonlinear coil regarding the above-mentioned assumptions made about properties of
the coil. For example, one ought to rely on the results of standard measurements carried out
on the nonlinear coil by the manufacturer [11, 12]. Because of a limited thermal endurance of
the coil, measurements cannot be carried out by applying the sine-wave voltage for the full
range of flux and voltage peak values which occur in some operation modes of ferroresonant
circuit. However, the importance of this problem is often ignored by a simple extrapolation
of magnetization nonlinearity obtained by measurements.

Further problem of modeling based on standard measurements is that the parameters
of model depend on the number of measurements, that is, on the number of measured values
on U-I characteristic. Namely, a piecewise linear form of the magnetization nonlinearity, that
is obtained by a small number of measurements, would not be as smooth as necessary; in the
case of polynomial form of the magnetization nonlinearity, a small number of measurements
could result with a significant interpolation error.

In the paper a novel kind of modeling the magnetization characteristic of the coil in
the ferroresonant circuit is presented. The modeling will be based on a characteristic behavior
that nonlinear coil exhibits in a ferroresonant circuit. The behavior will be identified from the
flux waveforms obtained by measurements and by computer simulation.

The preliminary purpose of obtained novel model of the ferroresonant circuit is to
enable a new comprehension of the circuit behavior and to simplify the modeling of nonlinear
coil in the ferroresonant circuit by reducing the number of model parameters.

2. Measurements and Nonlinear Model

In order to notice the characteristic behavior of a coil in ferroresonant circuit, the ferroresonant
steady states are obtained by measurements carried out on a ferroresonant circuit that is
realized in laboratory and by computer simulation carried out on a typical nonlinear model
of the ferroresonant circuit.
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The ferroresonant circuit realized in the laboratory is composed of the capacitor C =
20μF and the primary winding of the toroidal iron-cored two-windings transformer used as
a nonlinear coil. The transformer was designed for the nominal apparent power of 200 VA
and for the nominal primary voltage of 30 V. The core is strip-wounded, made of Ni-Fe alloy
(Trafoperm N3). The autotransformer of 10 kVA nominal apparent power is used as a variable
voltage source in all experiments.

To simplify calculations, throughout the rest of the paper all the variables and
parameters of the ferroresonant circuit are expressed in relation to reference quantities, that
is, in a per-unit system:

ϕ = ϕ
ω

Uref
, uC =

uC
Uref

, ω =
ω

ωref
, iL =

iL
Iref

,
̂

U =
̂U

Uref
,

Uref = 31.2 V, Iref = 0.19 A, ωref = 314 s−1.

(2.1)

The simulation is carried out using a typical nonlinear model of ferroresonant circuit,
with the polynomial form of magnetization nonlinearity:

dϕ

dt
= uL = ̂U sinωt − uC,

duC
dt

=
1

C

[

1

R

(

̂U sinωt − uC
)

+ iL
(

ϕ
)

]

,

ω = 1, C = 1,

(2.2a)

iL
(

ϕ
)

= f
(

ϕ
)

sign
(

ϕ
)

,

f
(

ϕ
)

=
√

0.034 · ϕ2 + 5.54 · 10−3 · ϕ20 + 1.05 · 10−5 · ϕ38,

R = 2.

(2.2b)

The magnetization characteristic iL(ϕ) and the iron-core losses R are derived from measured
P-U and U-I characteristic of the nonlinear coil [12].

During measurements and simulation the steady states are obtained by varying the

amplitude ̂

U of source voltage within the range:

0 < ̂

U ≤ 3. (2.3)

The step of the amplitude variation is Δ ̂

U = 0.05 in simulation, as well as in measurements.
Simulation is carried out by using the 4th order Runge-Kutta method with 10000 integration
steps per period, j = 1, . . . , 10000.

Characteristic steady states and bifurcations obtained by simulation and measure-
ments are shown in Tables 1 and 2, respectively. There is no significant disagreement between
results of simulation and measurements with the exception of the pitchfork bifurcation and
the period-four steady state, which are not noticed in measurements.
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Table 1: Steady states and bifurcations of the nonlinear model of ferroresonant circuit obtained by
simulation.

Increasing ̂U Decreasing ̂U Steady states and bifurcations

0 < ̂

U < 1.05 0 < ̂

U < 0.75 Monoharmonic steady state
̂

U = 1.05 — Forward ferroresonant jump

— ̂

U = 0.75 Reverse ferroresonant jump

1.05 ≤ ̂

U < 1.7 0.75 ≤ ̂

U < 1.7 Odd higher harmonic steady state
̂

U = 1.7 Pitchfork bifurcation

1.7 ≤ ̂

U < 2.4 Even and odd higher harmonic steady state
̂

U = 2.4 Period-doubling bifurcation

2.4 ≤ ̂

U < 2.55 Period-two steady state
̂

U = 2.55 Period-doubling bifurcation

2.55 ≤ ̂

U < 2.65 Period-four steady state

2.65 < ̂

U < 3 Chaotic steady state

Table 2: Steady states and bifurcations of the ferroresonant circuit realized in the laboratory obtained by
measurements.

Increasing ̂

U Decreasing ̂

U Steady states and bifurcations

0 < ̂

U < 1 0 < ̂

U < 0.7 Monoharmonic steady state
̂

U = 1 — Forward ferroresonant jump

— ̂

U = 0.7 Reverse ferroresonant jump

1 ≤ ̂

U < 1.4 0.7 ≤ ̂

U < 1.4 Odd higher harmonic steady state
̂

U = 1.4 Pitchfork bifurcation

1.7 ≤ ̂

U < 2.2 Even and odd higher harmonic steady state
̂

U = 2.2 Period-doubling bifurcation

2.2 ≤ ̂

U < 2.6 Period-two steady state

Not obtained Period-doubling bifurcation
Period-four steady state

2.6 < ̂

U < 3 Chaotic steady state

By that means, Figure 3 implies that the peak value of flux ̂Φ is in all polyharmonic
steady states limited by the value Φsat ≈ 1.5, called here as a flux saturation value:

∣

∣ϕ
∣

∣ ≤ Φsat. (2.4)

From simulation as well as measurements it is observed that during all steady states
the slope of flux, immediately before and after the moment each time the flux reaches the

peak value ̂Φ, changes the sign only, that is, holding the same absolute value nearly. As it is
seen in Figure 2, for instance, at the moment t1, we assume

dϕ

dt

∣

∣

∣

∣

t1−0
≈ −

dϕ

dt

∣

∣

∣

∣

t1+0
. (2.5)

This property is named here as a flux reflection.
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Figure 2: Typical ferroresonant steady state waveform of flux obtained by measurements (bold line) and

simulation (thin line) for source voltage amplitude ̂

U = 1.1.
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Figure 3: Peak values of flux obtained by measurements (bold line) and by computer simulation (thin

line): (a) by increasing the source voltage amplitude ̂

U, (b) by decreasing the source voltage amplitude ̂

U.

3. Flux Reflection Model

Novel presentation of magnetization nonlinearity is based on observed limitation (2.4) and
reflection (2.5) of flux values. Thereby, the magnetization characteristic for values |ϕ| < Φsat

is approximated by a linear inductance iL(ϕ) ≈ (1/L)ϕ. In a case of the polynomial form of
magnetization nonlinearity (2.2b) the linear inductance L = 5.4 is approximated as shown on
Figure 4.

By the reducing of the nonlinear magnetization characteristic to the linear inductance
L, the state-equations of the ferroresonant circuit, (2.2a) and (2.2b), become linear between
two flux reflections, that is, for flux values |ϕ| < Φsat:

dϕ

dt
= uL = ̂U sinωt − uC,

duC
dt

=
1

C

[

1

R

(

̂U sinωt − uC
)

+
1

L
ϕ

]

,

ω = 1, C = 1, R = 2, L = 5.4.

(3.1)
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Φsat ≈ 1.5
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Figure 4: (a) Polynomial form of the magnetization nonlinearity. (b) Zoomed linear part of the magnetiza-
tion nonlinearity.
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Figure 5: Magnetization characteristic iL(ϕ) of the flux reflection model and the alternation of flux slope
sign shown on iR(uL) characteristic.
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Figure 6: Part of the magnetization characteristic zoomed near the saturation value Φsat.

Thereby, the observed properties of a ferroresonant circuit—the limitation of flux
values (2.4) and the flux reflection (2.5)—can be realized easily, using the following
pseudocode:

FOR each integration step j

calculate
dϕ

dt

∣

∣

∣

∣

j+1
as defined by used iterative method

IF
∣

∣ϕ
(

j
)∣

∣ > Φsat THEN

set
dϕ

dt

∣

∣

∣

∣

j+1
to be equal to −

dϕ

dt

∣

∣

∣

∣

j

END IF

END FOR

(3.2)

The proposed flux reflection model, defined by state-equations (3.1) and pseudocode
(3.2), could be comprehended as a piecewise linear model also. However, contrary to a typical
piecewise linear model, this model comprises only one set of state-equations, that is, the
magnetization characteristic iL(ϕ) with only one linear segment. As it is shown on Figures
5 and 6 and determined by the pseudocode (3.2), the segment is limited by the saturation
value Φsat which triggers the alternation of flux slope sign and, at this way, causes the change
of flux trend. For instance, the open arrows on Figure 6 indicate the increasing of flux value
before the flux reflection and the decreasing of flux values after the flux reflection. Figures 5
and 6 show the flux reflection for the case ϕ ≥ Φsat only. The depiction of the flux reflection
for the case ϕ ≤ −Φsat can be derived from the mirror symmetry of flux reflection model
easily.
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Table 3: Steady states and bifurcations of the flux reflection model of ferroresonant circuit.

Increasing ̂U Decreasing ̂U Steady states and bifurcations

0 < ̂

U < 1.15 0 < ̂

U < 0.8 Monoharmonic steady state, Figure 7(a)
̂

U = 1.15 — Forward ferroresonant jump

— ̂

U = 0.8 Reverse ferroresonant jump

1.15 ≤ ̂

U < 1.7 0.8 ≤ ̂

U < 1.7 Odd higher harmonic steady state, Figure 7(b)
̂

U = 1.7 Pitchfork bifurcation

1.7 ≤ ̂

U < 2.25 Even and odd higher harmonic steady state, Figure 7(c)

Not obtained

Period-doubling bifurcation
Period-two steady state
Period-doubling bifurcation
Period-four steady state

2.25 ≤ ̂

U ≤ 3 Chaotic steady state, Figure 7(d)

4. Comparison of the Flux Reflection Model and the Nonlinear Model

The flux reflection model can be considered as a model of the ferroresonant circuit only if the
flux reflection model reveals a complex behavior of the ferroresonant circuit. Therefore, the
steady states of the flux reflection model are obtained in the same way as for the ferroresonant
circuit realized in laboratory and for the nonlinear model in Section 2, that is, by varying the

amplitude ̂

U with the step of the amplitude variation Δ ̂

U = 0.05 within a range:

0 < ̂

U ≤ 3. (4.1)

Between two flux reflections the flux reflection model is described by linear state
equations (3.1). Thus, these equations can be solved analytically. However, as it is shown in
the appendix in detail, at the start of transient state, that is, in moment t = 0, it is not possible
to determine explicitly the ranges of parameter values and values of initial conditions at
which a particular steady state would arise; it is only possible to solve (3.1) for a given set of
parameter values and values of initial conditions.

In the paper the steady states solutions are obtained in the same way as for the
nonlinear model in Section 2, that is, by simulation that is carried out numerically, using the
4th order Runge-Kutta method with 10000 integration steps per period, j = 1, . . . , 10000.

The route to the chaotic steady state with bifurcations and corresponding steady states

is obtained by varying the source voltage amplitude ̂

U, (3.1), as shown on Table 3. Figure 7
shows the flux waveforms corresponding to each of steady states of the flux reflection model
shown in Table 3.

The results of simulation based on the nonlinear model and results of measurements,
shown on Tables 1 and 2, differ from results of simulation based on the flux reflection model
shown on Table 3. For instance, the period-two steady state as well as period-four steady state
and corresponding period-doubling bifurcations, are not obtained by simulation based on
flux reflection model. The reason for this could be the approximation of the maximum value
of flux by a constant saturation value Φsat. Namely, on Figure 3 during the polyharmonic
steady states the maximum value of flux is constant only nearly, that is, it is not equal to the
chosen saturation value (Φsat = 1.5).
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Figure 7: Flux waveforms of the flux reflection model: (a) monoharmonic steady state, (b) odd higher
harmonic steady state, (c) even and odd higher harmonic steady state, and (d) chaotic steady state.

The main shortcoming of the flux reflection model is the inherent limitation of
inductive component of the coil current iL

∣

∣

∣iL(t)
∣

∣

∣ ≤
∣

∣

∣iL
[

ϕ(t1 + 0)
]

∣

∣

∣ ≈
∣

∣

∣iL
(

Φsat

)∣

∣

∣ =
∣

∣

∣

∣

1

L
Φsat

∣

∣

∣

∣

(4.2)

which does not exist in the actual ferroresonant circuit.
In spite of that, the proposed model reveals a complex steady state behavior of

the ferroresonant circuit. Besides of a new comprehension of the circuit behavior, the flux
reflection model enables a simple modeling of the nonlinear coil. It is sufficient to carry out
the simple measurements to determine the value of linear inductance L and the saturation
value Φsat.

5. Additional Simulation

The additional simulation is carried out in order to investigate the sensitivity of flux reflection
model on the value of linear inductance L and on the saturation value Φsat. The step of the

source voltage amplitude variation is Δ ̂

U = 0.05. Simulation is carried out by using the 4th
order Runge-Kutta method with 10000 integration steps per period.
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Figure 8: Influence of saturation value Φsat and linear inductance L on the initiation of (a) forward
ferroresonant jump, (b) reverse ferroresonant jump, (c) pitchfork bifurcation, and (d) chaotic steady state.

Figure 8 shows results of simulation. For easier visualisation the diagrams are
constructed using gray scaled squares where different shades of gray are employed to

represent values of source voltage amplitude ̂

U at which the particular bifurcation and
steady state, respectively, has occurred. For instance, the bottom left square on Figure 8(c)
( ) indicates that the pitchfork bifurcation for the parameter values Φsat = 1.4, L = 4, occur

at the source voltage amplitude ̂

U = 1.55.
The results of simulation reveal that the flux reflection model is more sensitive to the

variation of the saturation value Φsat, than to the value of linear inductance L. For instance,
for the saturation value Φsat = 1.4 and linear inductance values L = 4, 5, 6, the reverse

ferroresonant jump occurs at the source voltage amplitude values ̂

U = 0.85 ( ) and ̂

U = 0.90
( ), as it is presented by middle row on Figure 8(b). For the linear inductance value L = 5
and the saturation values Φsat = 1.4; 1.5; 1.6, the reverse ferroresonant jump occurs for a wider

range of source voltage amplitude values, ̂

U = 0.75 ( ) and ̂

U = 0.90 ( ), as it is presented
by middle column on Figure 8(b).

Therefore, it is more important to know the saturation value Φsatprecisely than the
value of linear inductance L.
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6. Conclusions

The flux reflection model preserves the basic properties of the magnetization characteristic:
linearity and saturation. Despite the noticed shortcomings, the flux reflection model reveals
a complex steady state behavior characteristic for the ferroresonant circuit. It enables a new
comprehension of the behavior of the ferroresonant circuit and simplifies the modeling of the
nonlinear coil in the ferroresonant circuit.

Future work will address the simplification of the identification of parameters of a flux
reflection model in order to avoid the identification by using the waveforms of flux values
during ferroresonant steady states. Namely, in a flux reflection model a coil is defined by a
linear inductance value and by a saturation value, which could be determined by standard
measurements experimentally or by number of windings and by core parameters of coil
analytically.

Furthermore, in order to expand the purpose of the model from the presented new
comprehension of the circuit behavior to a wide application of the model, it will be necessary
to identify advantages and disadvantages of the flux reflection model precisely by a more
detailed comparison with usual models of ferroresonant circuit.

Appendix

On Analytical Conditions for Steady states

State-equations (3.1) can be expressed as a second-order linear differential equation:

d2ϕ

dt2
+ 2α

dϕ

dt
+ω2

0ϕ = ω ̂U cosωt, α =
1

2RC
, ω0 =

1√
LC

. (A.1)

If α < ω0, as it is the case for parameter values used in the paper C = 1, R = 2, L = 5.4, the
solution of the equation can be written as:

ϕ(t) = Ke−αt cos(ωdt + θ) + ̂Φ cos
(

ωt − ψ
)

,

̂Φ = ω ̂U
1

√

(

ω2
0 −ω2

)2 + 4α2ω2
, ψ = arctg

2αω
ω2

0 −ω2
, ωd =

√

ω2
0 − α2.

(A.2)

The constants K and θ are determined by values of initial conditions, ϕ(0) and dϕ/dt|0.
Equation, (A.1), as well as its solution, (A.2), is valid for the flux reflection model only
between the reflections, that is, for flux values |ϕ| < Φsat. In the moment t1 the flux ϕ reaches
the saturation value ±Φsat and the flux slope dϕ/dt is alternated, (2.5). After the moment of
reflection, the solution, (A.2), is valid again, but through the alternation of flux slope dϕ/dt,
the initial conditions are changed and, consequently, the constants of the solution.

Let us denote the solution before the first reflection in moment t1 as

ϕ1(t) = K1e−αt cos (ωdt + θ1) + ̂Φ cos
(

ωt − ψ
)

, t1 > t > 0. (A.3)
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Table 4: Properties of steady states.

Property (a) Property (b) Property (c) Steady states
k = 1 Yes Yes Monoharmonic steady state
k = 1 Yes No Odd higher harmonic steady state
k = 1 No No Even and odd higher harmonic steady state
k > 1, k ∈N No No Period-k steady state
k → ∞ No No Chaotic steady state

The constants K1 and θ1 are determined by given values of initial conditions, ϕ1(0) and
dϕ1/dt|0. Generally, the solution after n reflections in moments t1, t2, . . . , tn−1, tn and before
the reflection in moment tn+1 is

ϕn+1(t) = Kn+1e−α(t−tn) cos [ωd(t − tn) + θn+1] + ̂Φ cos
[

ω(t − tn) − ψ
]

,

tn+1 > t > tn > tn−1 > · · · > t2 > t1.
(A.4)

Constants Kn+1 and θn+1 are determined using the initial conditions dϕn+1/dt|tn and ϕn+1(tn),
which depend on values of solution ϕn(t) and its derivative dϕn/dt in the moment of
reflection tn:

ϕn+1(tn) = ϕn(tn),
dϕn+1

dt

∣

∣

∣

∣

tn

= −
dϕn
dt

∣

∣

∣

∣

tn

. (A.5)

Each moment of reflection tm (m ∈N, t0 = 0) is determined by the condition

∣

∣ϕm(tm)
∣

∣ = Φsat

−→
∣

∣

∣Kme−α(tm−tm−1) cos [ωd(tm − tm−1) + θm] + ̂Φ cos
[

ω(tm − tm−1) − ψ
]

∣

∣

∣ = Φsat

(A.6)

which cannot be expressed explicitly regarding the moment tm, that is, moments of reflection
can be determined only approximately.

Characteristic steady state is established if the following conditions are met according
to Table 4 (m ∈N, t0 = 0):

(a) periodicity:

ϕm(tm−1) = ϕm+2k−1(tm+2k−1),

dϕm
dt

∣

∣

∣

∣

tm−1

=
dϕm+2k−1

dt

∣

∣

∣

∣

tm+2k−1

, tm+2k−1 − tm−1 = k
2π
ω
,

(A.7)
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(b) odd-symmetry:

ϕm(tm−1) = −ϕm+1(tm),

dϕm
dt

∣

∣

∣

∣

tm−1

= −
dϕm+1

dt

∣

∣

∣

∣

tm

, tm − tm−1 =
1
2

2π
ω
,

(A.8)

(c) peak flux value lower as saturation value:

̂Φ < Φsat. (A.9)

However, at the start of transient state, that is, in moment t = 0, it is impossible to
determine explicitly the ranges of parameter values and values of initial conditions, ϕ1(0) and
dϕ1/dt|0, at which a particular steady state would arise because a solution ϕn+1(t), (A.4), can
be obtained recursively only, starting from first solution ϕ1(t), (A.3), and using approximately
determined values of reflection moments t1, t2, . . . , tn−1, tn, (A.6), in each step of recursion.
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