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We prove the interior approximate controllability of the following broad class of reaction diffusion
equation in the Hilbert spaces Z = L2(Ω) given by z′ = −Az + 1ωu(t), t ∈ [0, τ], where Ω is a
domain in R

n, ω is an open nonempty subset of Ω, 1ω denotes the characteristic function of the
set ω, the distributed control u ∈ L2(0, t1;L2(Ω)) and A : D(A) ⊂ Z → Z is an unbounded
linear operator with the following spectral decomposition: Az =

∑∞
j=1 λj

∑γj
k=1〈z, φj,k〉φj,k . The

eigenvalues 0 < λ1 < λ2 < · · · < · · ·λn → ∞ of A have finite multiplicity γj equal to
the dimension of the corresponding eigenspace, and {φj,k} is a complete orthonormal set of
eigenvectors of A. The operator −A generates a strongly continuous semigroup {T(t)} given by
T(t)z =

∑∞
j=1 e

−λj t ∑γj
k=1〈z, φj,k〉φj,k . Our result can be applied to the nD heat equation, the Ornstein-

Uhlenbeck equation, the Laguerre equation, and the Jacobi equation.
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1. Introduction

In this paper we prove the interior approximate controllability of the following broad class of
reaction diffusion equation in the Hilbert space Z = L2(Ω) given by

z′ = −Az + 1ωu(t), t ∈ [0, τ],

z(0) = z0,
(1.1)

where Ω is a domain in R
n, ω is an open nonempty subset of Ω, 1ω denotes the characteristic

function of the set ω, and the distributed control u ∈ L2(0, t1;L2(Ω)) and A : D(A) ⊂ Z → Z
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is an unbounded linear operator. Here we assume the following spectral decomposition for
A:

Az =
∞∑

j=1

λj

γj∑

k=1

〈
z, φj,k

〉
φj,k =

∞∑

j=1

λjEjz, (1.2)

with 〈·, ·〉 denoting an inner product in Z, and

Ejz =
γj∑

k=1

〈
z, φj,k

〉
φj,k. (1.3)

The eigenvalues 0 < λ1 < λ2 < · · · < λj < · · ·λn → ∞ of A have finite multiplicity γj equal
to the dimension of the corresponding eigenspace, and {φj,k} is a complete orthonormal set
of eigenvectors of A. So, {Ej} is a complete family of orthogonal projections in Z and z =
∑∞

j=1 Ejz, z ∈ Z. The operator −A generates a strongly continuous semigroup {T(t)} given
by

T(t)z =
∞∑

j=1

e−λj tEjz. (1.4)

Systems of the form (1.1) are thoroughly studied in [1, 2], but the interior controllability is
not considered there.

Examples of this class of equations are the following well-known partial differential
equations.

Example 1.1. The interior controllability of the heat equation,

zt = Δz + 1ωu(t, x), in (0, τ) ×Ω,

z = 0, on (0, τ) × ∂Ω,

z(0, x) = z0(x), in Ω,

(1.5)

where Ω is a bounded domain in R
n of class C2, ω is an open nonempty subset of Ω, 1ω

denotes the characteristic function of the set ω, z0 ∈ L2(Ω), and the distributed control u ∈
L2(0, τ ;L2(Ω)).

Example 1.2 (see [3, 4]). (1) The interior controllability of the Ornstein-Uhlenbeck equation is

zt =
d∑

i=1

[

xi
∂2z

∂x2
i

− xi
∂z

∂xi

]

+ 1ωu(t, x), t > 0, x ∈ R
d, (1.6)

where u ∈ L2(0, τ ;L2(Rd, μ)), μ(x) = (1/πd/2)
∏d

i=1e
−|xi|2dx is the Gaussian measure in R

d,
and ω is an open nonempty subset of R

d.
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(2) The interior controllability of the Laguerre equation is

zt =
d∑

i=1

[

xi
∂2z

∂x2
i

+ (αi + 1 − xi)
∂z

∂xi

]

+ 1ωu(t, x), t > 0, x ∈ R
d
+, (1.7)

where u ∈ L2(0, τ ;L2(Rd
+, μα)), μα(x) =

∏d
i=1(x

αi

i e
−xi/Γ(αi + 1))dx is the Gamma measure in

R
d
+ and ω is an open nonempty subset of R

d
+.

(3) The interior controllability of the Jacobi equation is

zt =
d∑

i=1

[
(
1 − x2

i

)∂2z

∂x2
i

+
(
βi − αi −

(
αi + βi + 2

)
xi

) ∂z

∂xi

]

+ 1ωu(t, x), (1.8)

where t > 0, x ∈ (−1, 1)d, u ∈ L2(0, τ ;L2([−1, 1]d, μα,β)), μα,β(x) =
∏d

i=1(1 − xi)
αi(1 + xi)

βidx is
the Jacobi measure in [−1, 1]d and ω is an open nonempty subset of [−1, 1]d.

To complete the exposure of this introduction, we mention some works done by
other authors showing the difference between our results and those of them: the interior
approximate controllability is very well-known fascinate and important subject in systems
theory; there are some works done by [5–9].

Particularly, Zuazua in [9] proves the interior approximate controllability of the
heat equation (1.5) in two different ways. In the first one, he uses the Hahn-Banach
theorem, integrating by parts the adjoint equation, the Carleman estimates and the Holmgren
Uniqueness theorem [10]. But, the Carleman estimates depend on the Laplacian operator Δ,
so it may not be applied to those equations that do not involve the Laplacian operator, like
the Ornstein-Uhlenbeck equation, the Laguerre equation, and the Jacobi equation.

The second method is constructive and uses a variational technique: let us fix the
control time τ > 0, the initial and final state, z0 = 0, z1 ∈ L2(Ω), respectively, and ε > 0.
The control steering the initial state z0 to a ball of radius ε > 0, and center z1 is given by the
point in which the following functional achieves its minimum value:

Jε
(
ϕτ

)
=

1
2

∫ τ

0

∫

ω

ϕ2dx dt + ε
∥
∥ϕτ

∥
∥
L2(Ω) −

∫

Ω
z1ϕτ , (1.9)

where ϕ is the solution of the corresponding adjoint equation with initial data ϕτ .
The technique given here is motivated by the following results.

Theorem 1.3 (see [11, Theorem 1.23, page 20]). Suppose Ω ⊂ R
n is open, nonempty and

connected set, and f is real analytic function in Ω with f = 0 on a nonempty open subset ω of
Ω. Then, f = 0 in Ω.

Lemma 1.4 (see [1, Lemma 3.14, page 62]). Let {αj}j≥1 and {βi,j : i = 1, 2, . . . , m}
j≥1 be two

sequences of real numbers such that α1 > α2 > α3 · · · . Then

∞∑

j=1

eαj tβi,j = 0, ∀t ∈ [0, t1], i = 1, 2, . . . , m, (1.10)
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if and only if

βi,j = 0, i = 1, 2, . . . , m, j = 1, 2, . . . ,∞. (1.11)

2. Main Theorem

In this section we will prove the main result of this paper on the controllability of the linear
system (1.1). But before that, we will give the definition of approximate controllability for
this system. To this end, the system (1.1) can be written as follows:

z′ = −Az + Bωu(t), z ∈ Z,

z(0) = z0,
(2.1)

where the operator Bω : Z → Z is defined by Bωf = 1ωf . For all z0 ∈ Z and u ∈ L2(0, τ ;Z)
the initial value problem (2.1) admits only one mild solution given by

z(t) = T(t)z0 +
∫ t

0
T(t − s)Bωu(s)ds, t ∈ [0, τ]. (2.2)

Definition 2.1 (exact controllability). The system (2.1) is said to be exactly controllable on
[0, τ] if for every z0, z1 ∈ Z there exists u ∈ L2(0, τ ;Z) such that the solution z of (2.2)
corresponding to u satisfies z(τ) = z1.

Definition 2.2 (approximate controllability). The system (2.1) is said to be approximately
controllable on [0, τ] if for every z0, z1 ∈ Z, ε > 0 there exists u ∈ L2(0, τ ;Z) such that the
solution z of (2.2) corresponding to u satisfies

‖z(τ) − z1‖ < ε. (2.3)

Remark 2.3. The following result was proved in [12]. If the semigroup {T(t)} is compact, then
the system z′ = −Az + Bωu(t) can never be exactly controllable on time τ > 0, which is
the case of the heat equations, the Ornstein-Uhlenbeck equation, the Laguerre equation, the
Jacobi equation, and many others partial differential equations.

The following theorem can be found in a general form for evolution equation in [2].

Theorem 2.4. The system (2.1) is approximately controllable on [0, τ] if, and only if,

B∗
ωT

∗(t)z = 0, ∀t ∈ [0, τ] =⇒ z = 0. (2.4)

Now, we are ready to formulate and prove the main theorem of this paper.

Theorem 2.5. If for an open nonempty set ω ⊂ Ω the restrictions φω
j,k

= φj,k|ω to ω are linearly
independent functions on ω, then for all τ > 0 the system (2.1) is approximately controllable on
[0, τ].
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Proof. We will apply Theorem 2.4 to prove the approximate controllability of system (2.1). To
this end, we observe that Bω = B∗

ω and T ∗(t) = T(t). Suppose that B∗
ωT

∗(t)z = 0, ∀t ∈ [0, τ].
Then,

B∗
ωT

∗(t)z =
∞∑

j=1

e−λj tB∗
ωEjz =

∞∑

j=1

e−λj t
γj∑

k=1

〈
z, φj,k

〉
1ωφj,k = 0

⇐⇒
∞∑

j=1

e−λj t
γj∑

k=1

〈
z, φj,k

〉
1ω(x)φj,k(x) = 0, ∀x ∈ Ω

⇐⇒
∞∑

j=1

e−λj t
γj∑

k=1

〈
z, φj,k

〉
φj,k(x) = 0, ∀x ∈ ω.

(2.5)

Hence, from Lemma 1.4, we obtain that

γj∑

k=1

〈
z, φj,k

〉
φj,k(x) = 0, ∀x ∈ ω, j = 1, 2, 3, . . . . (2.6)

Since φj,k are linearly independent on ω, we obtain that 〈z, φj,k〉 = 0, j = 1, 2, . . . . Therefore,
Ejz = 0, j = 1, 2, 3, . . ., which implies that z = 0. So, the system (2.1) is approximately
controllable on [0, τ].

Corollary 2.6. If φj,k are analytic functions on Ω, then for all open nonempty set ω ⊂ Ω and τ > 0
the system (2.1) is approximately controllable on [0, τ].

Proof. It is enough to prove that, for all open nonempty set ω ⊂ Ω the restrictions φω
j,k

= φj,k|ω
to ω are linearly independent functions on ω, which follows directly from Theorem 1.3.

3. Applications

As an application of our result we will prove the controllability of the nD heat equation, the
Ornstein-Uhlenbeck equation, the Laguerre equation and the Jacobi equation.

3.1. The Interior Controllability of the Heat Equation (1.5)

In this subsection we will prove the controllability of system (1.5), but before that, we will
prove the following theorem.

Theorem 3.1. The eigenfunctions of the operator −Δ with Dirichlet boundary conditions on Ω are
real analytic functions in Ω.

To this end, first, we will consider the following definition and results from [13].

Definition 3.2. A differential operator L is say to be hypoelliptic analytic if for each open
subset Ω of R

n and each distribution u ∈ D′(Ω), we have that: if L(u) is an analytic function
in Ω, then u is an analytic function in Ω.
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Corollary 3.3 (see [13, page 15]). Every second-order elliptic operator with constant coefficients is
hypoelliptic analytic.

Proof of Theorem 3.1. Let φ be an eigenfuction of −Δ with corresponding eigenvalue λ > 0.
Then, the second-order differential operator L = Δ+ λ is an elliptic operator according to [13,
Definiton 7.2, page 97]. Therefore, applying the foregoing corollary we get that L = Δ + λ
hypoelliptic analytic.

On the other hand, we know that Lφ = Δφ + λφ = 0, which is trivially an analytic
function, then φ is an analytic function in Ω.

Now, we will make the abstract formulation of the problem, and to this end, let us
consider Z = L2(Ω) and the linear unbounded operator A : D(A) ⊂ Z → Z defined by
Aφ = −Δφ, where

D(A) = H1
0(Ω) ∩H2(Ω). (3.1)

It is well-known that this operator A has spectral decomposition given by (1.2) and the
system (1.5) can be written as an abstract equation in the space Z = L2(Ω)

z′ = −Az + Bωu(t), z ∈ Z,

z(0) = z0,
(3.2)

where the control function u belongs to L2(0, τ ;Z), and the operator Bω : Z → Z is defined
by Bωf = 1ωf .

Theorem 3.4. For all open nonempty set ω ⊂ Ω and τ > 0 the system (3.2) is approximately
controllable on [0, τ].

3.2. The Interior Controllability of (1.6), (1.7), and (1.8)

Theorem 3.5. The systems (1.6), (1.7), and (1.8) are approximately controllable.

Proof. It is enough to prove that the operators

(i) Ornstein-Uhlenbeck operator: −A = (1/2)∇ − 〈x,Δx〉, defined on Ω = R
d,with

Δx = (∂/∂x1, . . . , ∂/∂xd) in the space Z = L2(Rd, μ);

(ii) Laguerre operator: A = −∑d
i=1[xi(∂2z/∂x2

i ) + (αi + 1 − xi)(∂z/∂xi)], defined on Ω =
(0,∞)d, with αi > −1, i = 1, . . . , d in the space Z = L2(Rd

+, μα);

(iii) Jacobi operator: A = −∑d
i=1[(1 − x2

i )(∂
2z/∂x2

i ) + (βi − αi − (αi + βi + 2)xi)(∂z/∂xi)],
Ω = (−1, 1)d, with αi, βi > −1, i = 1, . . . , d in the space Z = L2([−1, 1]d, μα,β)

can be represented in the form of (1.2). This was done in [3, 4], where they prove that
the eigenfunctions in these cases are polynomial functions in multiple variables, which are
trivially analytic functions.
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4. Final Remark

The result presented in this paper can be formulated in a more general setting. Indeed, we
can consider the following evolution equation in a general Hilbert space Z:

z′ = −Az + Bu, z, u ∈ Z, t ∈ [0, τ],

z(0) = z0,

(4.1)

where A : D(A) ⊂ Z → Z is an unbounded linear operator in Z with the spectral
decomposition given by (1.2), the control u ∈ L2(0, τ ;Z) and B : Z → Z is a linear and
bounded operator (linear and continuous).

In this case the characteristic function set is a particular operator B, and the following
theorem is a generalization of Theorem 2.5.

Theorem 4.1. If the vectors B∗φj,k are linearly independent in Z, then the system (4.1) is
approximately controllable on [0, τ].

Proof. From [2, Theorem 4.1.7, part (b)-(iii)], it is enough to prove that

B∗T ∗(t)z = 0, ∀t ∈ [0, τ] =⇒ z = 0. (4.2)

To this end, we observe that

B∗T ∗(t)z =
∞∑

j=1

e−λj tB∗Ejz =
∞∑

j=1

e−λj t
γj∑

k=1

〈
z, φj,k

〉
B∗φj,k = 0. (4.3)

Hence, from Lemma 1.4, we obtain that
∑γj

k=1〈z, φj,k〉B∗φj,k = 0, j = 1, 2, . . . . Since B∗φj,k are
linearly independent on Z, we obtain that 〈z, φj,k〉 = 0, j = 1, 2, . . . . Therefore, Ejz = 0, j =
1, 2, 3, . . ., which implies that z = 0. So, the system (4.1) is approximately controllable on
[0, τ].

Remark 4.2. As future researches, we will try to use this technique to study the controllability
of other partial differential equations such as the thermoelastic plate equation, the equation
modelling the damped flexible beam, and the strongly damped wave equation.
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