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1. Introduction

It is known that various problems in fluid mechanics (dynamics, elasticity) and other areas
of physics lead to fractional partial differential equations. Methods of solutions of problems
for fractional differential equations have been studied extensively by many researchers (see,
e.g., [1–11] and the references given therein).

The role played by stability inequalities (well posedness) in the study of boundary-
value problems for hyperbolic partial differential equations is well known (see, e.g., [12–25]).
In the present paper, the mixed boundary value problem for the multidimensional fractional
hyperbolic equation

∂2u(t, x)
∂t2

−
m∑

r=1

(ar(x)uxr )xr
+D1/2

t u(t, x) = f(t, x),

x = (x1, . . . , xm) ∈ Ω, 0 < t < 1,

u(0, x) = 0, ut(0, x) = 0, x ∈ Ω,

u(t, x) = 0, x ∈ S

(1.1)
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is considered. Here D1/2
t = D1/2

0+ is the standard Riemann-Lioville’s derivative of order 1/2
andΩ is the unit open cube in them-dimensional Euclidean spaceR

m : {Ω = x = (x1, . . . , xm) :
0 < xj < 1, 1 ≤ j ≤ m}with boundary S, Ω = Ω∪S, ar(x), (x ∈ Ω) and f(t, x) (t ∈ (0, 1), x ∈
Ω) are given smooth functions and ar(x) ≥ a > 0.

The first order of accuracy in t and the second order of accuracy in space variables
for the approximate solution of problem (1.1) are presented. The stability estimates for the
solution of this difference scheme and its first and second ordes difference derivatives are
established. A procedure of modified Gauss elimination method is used for solving this
difference scheme in the case of one-dimensional fractional hyperbolic partial differential
equations.

2. The Difference Scheme and Stability Estimates

The discretization of problem (1.1) is carried out in two steps. In the first step, let us define
the grid space

Ω̃h =
{
x = xr = (h1r1, . . . , hmrm), r = (r1, . . . , rm), 0 ≤ rj ≤ Nj, hjNj = 1, j = 1, . . . , m

}
,

Ωh = Ω̃h ∩Ω, Sh = Ω̃h ∩ S.

(2.1)

We introduce the Banach space L2h = L2(Ω̃h) of the grid functions ϕh(x) = {ϕ(h1r1, . . . , hmrm)}
defined on Ω̃h, equipped with the norm

∥∥∥ϕh
∥∥∥
L2(Ω̃h)

=

⎛

⎝
∑

x∈Ωh

∣∣∣ϕh(x)
∣∣∣
2
h1 · · ·hm

⎞

⎠
1/2

. (2.2)

To the differential operator Ax generated by problem (1.1), we assign the difference operator
Ax

h by the formula

Ax
hu

h
x = −

m∑

r=1

(
ar(x)uh

xr

)

xr ,jr
(2.3)

acting in the space of grid functions uh(x), satisfying the conditions uh(x) = 0 for all x ∈ Sh.

It is known that Ax
h is a self-adjoint positive definite operator in L2(Ω̃h). With the help of Ax

h

we arrive at the initial boundary value problem

d2vh(t, x)
dt2

+Ax
hv

h(t, x) +D1/2
t vh(t, x) = fh(t, x), 0 ≤ t ≤ 1, x ∈ Ωh,

vh(0, x) = 0,
dvh(0, x)

dt
= 0, x ∈ Ω̃

(2.4)

for an finite system of ordinary fractional differential equations.
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In the second step, applying the first order of approximation formula (1/√
π)
∑k

m=1(Γ(k − m + (1/2))/(k − m)!)((u(tk) − u(tk−1))/τ1/2) for D1/2
t u(t) (see [10]) and

using the first order of accuracy stable difference scheme for hyperbolic equations (see [25]),
one can present the first order of acuraccy difference scheme

uh
k+1(x) − 2uh

k(x) + uh
k−1(x)

τ2
+Ax

hu
h
k+1+

1√
π

k∑

m=1

Γ(k −m + 1/2)
(k −m)!

(
uh
m − uh

m−1
)

τ1/2
= fh

k (x), x ∈ Ω̃h,

fh
k (x) = f(tk, xn), tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,

uh
1(x) − uh

0(x)
τ

= 0, uh
0(x) = 0, x ∈ Ω̃h

(2.5)

for the approximate solution of problem (2.4). Here Γ(k −m + 1/2) =
∫∞
0 t

k−m−1/2e−tdt.

Theorem 2.1. Let τ and |h| be sufficiently small numbers. Then, the solutions of difference scheme
(2.5) satisfy the following stability estimates:

max
1≤k≤N

∥∥∥uh
k

∥∥∥
L2h

+ max
1≤k≤N

∥∥∥∥∥
uh
k
− uh

k−1
τ

∥∥∥∥∥
L2h

≤ C1 max
1≤k≤N−1

∥∥∥fh
k

∥∥∥
L2h

,

max
1≤k≤N−1

∥∥∥τ−2
(
uh
k+1 − 2uh

k + uh
k−1
)∥∥∥

L2h
+ max

1≤k≤N

m∑

r=1

∥∥∥∥
(
uh
k

)

xrxr ,jr

∥∥∥∥
L2h

≤ C2

[∥∥∥fh
1

∥∥∥
L2h

+ max
2≤k≤N−1

∥∥∥τ−1
(
fh
k − fh

k−1
)∥∥∥

L2h

]
.

(2.6)

Here C1 and C2 do not depend on τ, h, and fh
k
, 1 ≤ k < N − 1.

The proof of Theorem 2.1 is based on the self-adjointness and positive definitness of
operator Ax

h
in L2h and on the following theorem on the coercivity inequality for the solution

of the elliptic difference problem in L2h.

Theorem 2.2. For the solutions of the elliptic difference problem

Ax
hu

h(x) = ωh(x), x ∈ Ωh,

uh(x) = 0, x ∈ Sh,
(2.7)

the following coercivity inequality holds [26]:

m∑

r=1

∥∥∥uh
xrxr ,jr

∥∥∥
L2h

≤ C
∥∥∥ωh

∥∥∥
L2h

. (2.8)
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Remark 2.3. The stability estimates of Theorem 2.1 are satisfied in the case of operator

Au = −
n∑

k=1

ak(x)
∂2u

∂x2
k

+
n∑

k=1

bk(x)
∂u

∂xk
+ c(x)u (2.9)

with Dirichlet condition u = 0 in S and Dα
t = Dα

0+ is the standard Riemann-Lioville’s
derivative of order α, 0 ≤ α < 1. In this case,A is not self-adjoint operator inH.Nevertheless,
Au = A0u+Bu andA0 is a self-adjoint positive definite operator inH and BA−1

0 is bounded in
H. The proof of this statement is based on the abstract results of [25] and difference analogy
of integral inequality.

Remark 2.4. The stability estimates of Theorem 2.1 permit us to obtain the estimate of
convergence of difference scheme of the first order of accuracy for approximate solutions
of the initial-boundary value problem

∂2u(t, x)
∂t2

−
n∑

r=1

ar(x)uxrxr +
n∑

r=1

br(x)uxr +D
α
t u(t, x)=f(t, x;u(t, x), ut(t, x), ux1(t, x), . . . , uxn(t, x)),

x = (x1, . . . , xn) ∈ Ω, 0 < t < 1,

u(0, x) = 0,
∂u(0, x)

∂t
= 0, x ∈ Ω,

u(t, x) = 0, x ∈ S

(2.10)

for semilinear fractional hyperbolic partial differential equations.

Note that, one has not been able to obtain a sharp estimate for the constants figuring in
the stability estimates of Theorem 2.1. Therefore, our interest in the present paper is studying
the difference scheme (2.5) by numerical experiments. Applying this difference scheme, the
numerical methods are proposed in the following section for solving the one-dimensional
fractional hyperbolic partial differential equation. The method is illustrated by numerical
experiments.

3. Numerical Results

For the numerical result, the mixed problem

D2
t u(t, x) − uxx(t, x) +D1/2

t u(t, x) = f(t, x),

f(t, x) =

(
2 − 8t3/2

3
√
π

+ (πt)2
)

sinπx, 0 < t, x < 1,

u(0, x) = 0, ut(0, x) = 0, 0 ≤ x ≤ 1,

u(t, 0) = u(t, 1) = 0, 0 ≤ t ≤ 1

(3.1)
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for the one-dimensional fractional hyperbolic partial differential equation is considered.
Applying difference scheme (2.5), we obtain

uk+1
n − 2uk

n + uk−1
n

τ2
− uk+1

n+1 − 2uk+1
n + uk+1

n−1
h2

+
1√
Π

k∑

m=1

Γ(k −m + 1/2)
(k −m)!

(
um
n − um−1

n

τ1/2

)
= ϕk

n,

ϕk
n = f(tk, xn), 1 ≤ k ≤ N − 1, 1 ≤ n ≤ M − 1,

u0
n = 0, τ−1

(
u1
n − u0

n

)
= 0, 0 ≤ n ≤ M,

uk
0 = uk

M = 0, 0 ≤ k ≤ N.

(3.2)

We get the system of equations in the matrix form

AUn+1 + BUn + CUn−1 = Dϕn, 1 ≤ n ≤ M − 1,

U0 = 0̃, UM = 0̃,
(3.3)

where

0̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

· · ·
0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(1)

,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0 0

0 0 0 0 · · · 0 0

0 0 a 0 · · · 0 0

0 0 0 a · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · a 0

0 0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,
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B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1,1 0 0 0 · · · 0 0

b2,1 b2,2 0 0 · · · 0 0

b3,1 b3,2 b3,3 0 · · · 0 0

b4,1 b4,2 b4,3 b4,4 · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·
bN,1 bN,2 bN,3 bN,4 · · · bN,N 0

bN+1,1 bN+1,2 bN+1,3 bN+1,4 · · · bN+1,N bN+1,N+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,

C = A,

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0 0

0 0 0 0 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 0

0 0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,

Us =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U0
s

U1
s

U2
s

U3
s

· · ·
UN−1

s

UN
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(1)

, s = n − 1, n, n + 1,

a = − 1
h2

, b1,1 = 1, b2,1 = − 1
τ
, b2,2 =

1
τ
, b3,1 =

1
τ2

+
1

τ1/2
,

b3,2 = − 2
τ2

− 1
τ1/2

, b3,2 =
1
τ2

+
2

h1/2
,

bk+2,1 =
1√
π

Γ(k − 1 + 1/2)
Γ(k)τ1/2

, 2 ≤ k ≤ N − 1,

bk+2,k+1 = − 2
τ2

− 1
τ1/2

, 1 ≤ k ≤ N − 1,

bk+2,k =
1
τ2

+
1√
π

(
−Γ(3/2)

Γ(2)
+
Γ(1/2)
Γ(1)

)
1

τ1/2
, 2 ≤ k ≤ N − 1,

bk+2,k+2 =
1
τ2

+
2
h2

, 1 ≤ k ≤ N − 1,
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bk+2,i+1 =
1√
π

(
−Γ(k − i + 1/2)
Γ(k − (i − 1))

+
Γ(k − (i + 1) + 1/2)
Γ(k − (i − 1) − 1)

)
1

τ1/2
, 3 ≤ k ≤ N − 1, 1 ≤ i ≤ k − 2,

ϕk
n =

(
2 − 8(kτ)3/2

3
√
π

+ (πkτ)2
)

sinπ(nh)),

ϕn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ0
n

ϕ1
n

ϕ2
n

· · ·
ϕN
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×1

.

(3.4)

So, we have the second-order difference equation with respect to n matrix coefficients. This
type systemwas developed by Samarskii and Nikolaev [27]. To solve this difference equation
we have applied a procedure of modified Gauss elimination method for difference equation
with respect to k matrix coefficients. Hence, we seek a solution of the matrix equation in the
following form:

Uj = αj+1Uj+1 + βj+1, (3.5)

n = M − 1, . . . , 2, 1, where αj (j = 1, . . . ,M) are (N + 1) × (N + 1) square matrices and βj (j =
1, . . . ,M) are (N + 1) × 1 column matrices defined by

αn+1 = −(B + Cαn)−1A,

βn+1 = (B + Cαn)−1
(
Dϕn − Cβn

)
, n = 1, 2, . . . ,M − 1,

(3.6)

where

α1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×(N+1)

,

β1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

· · ·
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N+1)×1

.

(3.7)
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Table 1: The difference scheme.

M = 80 M = 80 M = 80
N = 20 N = 40 N = 80

The values of Ct1 1.0379 1.0667 1.0800
The values of Ct2 0.6265 0.6186 0.6140

Now, we will give the results of the numerical analysis. First, as we noted above one can
not obtain a sharp estimate for the constants C1 and C2 figuring in the stability estimates of
Theorem 2.1. We have

C1 = max
f,u

(Ct1),

C2 = max
f,u

(Ct2),
(3.8)

where

Ct1 = max
1≤k≤N

∥∥∥uh
k

∥∥∥
L2h

+ max
1≤k≤N

∥∥∥τ−1
(
uh
k − uh

k−1
)∥∥∥

L2h

(
max

1≤k≤N−1

∥∥∥fh
k

∥∥∥
L2h

)−1
,

Ct2 =

[
max

1≤k≤N−1

∥∥∥τ−2
(
uh
k+1 − 2uh

k + uh
k−1
)∥∥∥

L2h
+ max

1≤k≤N−1

n∑

r=1

∥∥∥∥
(
uh
k+1

)

xr ,xr ,jr

∥∥∥∥
L2h

]

×
(

max
2≤k≤N−1

∥∥∥τ−1
(
fh
k − fh

k−1
)∥∥∥

L2h
+
∥∥∥fh

1

∥∥∥
L2h

)−1
.

(3.9)

The constants Ct1 and Ct2 in the case of numerical solution of initial-boundary value problem
(3.1) are computed.

The numerical solutions are recorded for different values of N and M,uk
n represents

the numerical solutions of this difference scheme at (tk, xn). The constants Ct1 and Ct2 are
given in Table 1 forN = 20, 40, 80, and M = 80, respectively.

Recall that we have not been able to obtain a sharp estimate for the constantsC1 andC2

figuring in the stability estimates. The numerical results in the Tables 1 and 2 give Ct1
∼= 1.00

and Ct2
∼= 0.62, respectively. That means the constants C1 and C2 figuring in the stability

estimates in the case of numerical solution of initial-boundary value problem (3.1) of this
difference scheme is stable with no large constants.

Second, for the accurate comparison of the difference scheme considered, the errors
computed by

E0 = max
1≤k≤N−1

(
M−1∑

n=1

∣∣∣u(tk, xn) − uk
n

∣∣∣
2
h

)1/2

,

E1 = max
1≤k≤N−1

⎛

⎝
M−1∑

n=1

∣∣∣∣∣utt(tk, xn) −
uk+1
n − 2uk

n + uk−1
n

τ2

∣∣∣∣∣

2

h

⎞

⎠
1/2

(3.10)
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Figure 1: The exact solution.
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The difference scheme solution

Figure 2: Difference Scheme.

Table 2: The difference scheme.

Method M = 80 M = 80 M = 80
N = 20 N = 40 N = 80

Comparison of errors (E0) for approximate solutions 0.0452 0.0235 0.0125
Comparison of errors (E1) for approximate solutions 0.2702 0.1452 0.0779

of the numerical solution are recorded for higher values of N and M, where u(tk, xn)
represents the exact solution and uk

n represents the numerical solution at (tk, xn). The errors
E0 and E1 results are shown in Table 2 forN = 20, 40, 80 and M = 80, respectively.
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