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1. Introduction

During the past decades, considerable attention has been paid to the problems of stability
analysis and control synthesis of time-delay systems. Many methodologies have been
proposed and a large number of results have been established (see, e.g., [1–4] and the
references therein). All these results can be generally divided into two categories: delay-
independent stability conditions [5, 6] and delay-dependent stability conditions [7–12].
The delay-independent stability condition does not take the delay size into consideration,
and thus is often conservative especially for systems with small delays, while the delay-
dependent stability condition makes fully use of the delay information and is usually less
conservative than the delay-independent one.
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Up to now, the most important approach to deal with delay in the states of the
systems is the use of Lyapunov-Krasovskii functionals, which has been largely employed
to obtain convex conditions mainly for continuous-time systems subjected to retarded
states. However, discrete-time systems with state delay have received little attention. This
mainly because that for precisely known discrete-time systems with constant delay, it is
always possible to derive a delay-free system by state augmentation [10, 11]. Although,
such an approach is valid for the system with constant delays, it fails to deal with time-
varying delay case, which is more frequently encountered than the constant case in practice.
Recent results on discrete time-delay systems can be found in [13] where delay-dependent
stability criteria were considered using a sum inequality. In [14], stability conditions for
discrete time-delay systems were presented, while less conservative results were given in
[15] by using a more general Lyapunov-Krasovskii functional than that in [14]. In [16],
the authors summarized the recent results concerning robust stabilization of discrete-
time systems with state delay. Sufficient LMI conditions were presented checking the
robust stability for a class of linear discrete-time systems with time-varying delay and
polytopic uncertainties; robust state feedback gains with memory were also designed.
These results were mainly with the stability analysis and state feedback controller design.
Very few people have investigated the delay-dependent H∞ control problem of discrete
time-delay systems. In [17], the authors proposed an exponential output feedback H∞
controller. Delay-dependent robust H∞ control conditions for uncertain linear systems
with lumped delays were given in [18], which were proved to be less conservative than
some previous results. Also delay-dependent results were derived in [19] by combining
a descriptor model transformation approach with Moon’s bounding technique [9]. Very
recently, in order to reduce the conservatism of the result in [19], a finite sum inequality
approach was proposed in [20] and some less conservative H∞ control condition was
derived. Although the result in [20] is superior to that in [19], it is still a sufficient
condition and has conservatism to some extent, which leaves open room for further
improvement.

Naturally, one may say that whether we can employ the similar Lyapunov functional,
fewer variables, and reduced complexity of the algorithm to obtain less conservatism than
the existing results. In this paper, we will further study the robust H∞ control problem for
uncertain discrete-time system with time-varying delays. By introducing some slack matrix
variables, new delay-dependent conditions forH∞ control problem are proposed in terms of
LMI form, while no model transformation and bounding technique are employed. It is also
shown that the complexity of the algorithm is considerably reduced and the result in this
paper is less conservative than that in [18–20]. Numerical examples are finally provided to
demonstrate the effectiveness of the main results.

Notations

Throughout this paper, Rn represents the n-dimensional Euclidean space; Rm×n is the set of all
m × n real matrices. For real symmetric matrices X and Y , the notation X ≥ Y (resp., X > Y )
means that the matrix X −Y is positive semidefinite (resp., positive definite). The superscript
“T” denotes the transpose. I is an identity matrix with appropriate dimension. Z

+ denotes
the set of {0, 1, 2, . . .}. L2 refers to the space of square summable infinite vector sequences.
In symmetric block matrices, we use an asterisk “∗” to represent a term that is induced by
symmetry. Matrices, if not explicitly stated, are assumed to have compatible dimensions for
algebraic operations.
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2. Problem Formulation

Consider the following uncertain discrete-time systems with time-varying delay [20]:

(Σ) : x(k + 1) = (A0 + ΔA0(k))x(k) + (A1 + ΔA1(k))x(k − d(k))
+ (B1 + ΔB1(k))ω(k) + (B2 + ΔB2(k))u(k),

z(k) = (C0 + ΔC0(k))x(k) + (C1 + ΔC1(k))x(k − d(k))
+ (D11 + ΔD11(k))ω(k) + (D12 + ΔD12(k))u(k),

x(k) = φ(k), ∀k ∈
[
−h, 0

]
,

(2.1)

where x(k) ∈ R
n, u(k) ∈ R

m, and z(k) ∈ R
p are the state, control input, and controlled output,

respectively; ω(k) ∈ R
q is the exogenous disturbance input, which belongs to L2. φ(k) is the

initial condition; A0, A1, B1, B2, C0, C1, D11, and D12 are known real constant matrices. The
time-varying parameter uncertainties are norm-bounded and meet with

[
ΔA0(k) ΔA1(k) ΔB1(k) ΔB2(k)

ΔC0(k) ΔC1(k) ΔD11(k) ΔD12(k)

]
=

[D1

D2

]
F(k)

[
E1 E2 E3 E4

]
, (2.2)

where F(k) is an unknown real time-varying matrix and satisfies the following bound
condition:

FT (k)F(k) ≤ I. (2.3)

D1,D2, and E� (� = 1, 2, 3, 4) are known constant matrices of appropriate dimensions
describing how the uncertainty F(k) enters the nominal matrices of system (Σ). d(k) denotes
the time-varying delay satisfying

h ≤ d(k) ≤ h, ∀k ∈ Z
+, (2.4)

where h and h are positive integer numbers.

Remark 2.1. The parameter uncertain structure in (2.2) and (2.3) has been widely used in
the issues of robust control and filtering for uncertain systems; see, for example, [10, 21].
It comprises the “matching conditions” and many physical systems can be either exactly
modeled in this manner or overbounded by (2.3).

Now, consider the following memoryless state feedback controller:

u(k) = Kx(k). (2.5)
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Applying this controller to system (Σ) results in the following closed-loop system:

(Σcl) : x(k + 1) =
(
A0 +D1F(k)(E1 + E4K)

)
x(k) + (A1 + ΔA1(k))x(k − d(k))

+ (B1 + ΔB1(k))ω(k),

z(k) =
(
C0 +D2F(k)(E1 + E4K)

)
x(k) + (C1 + ΔC1(k))x(k − d(k))

+ (D11 + ΔD11(k))ω(k),

x(k) = φ(k), ∀k ∈
[
−h, 0

]
,

(2.6)

where A0 = A0 + B2K,C0 = C0 +D12K.
The robust H∞ control problem to be addressed in this paper can be formulated as

developing a state feedback controller in the form of (2.5) such that

(1) the closed-loop system (Σcl) is robustly asymptotically stable whenω(k) = 0, for all
k ≥ 0;

(2) the H∞ performance ‖z‖2 < γ‖ω‖2 is guaranteed for all nonzero ω(k) ∈ L2 and a
prescribed γ > 0 under the zero-initial condition, for all admissible uncertainties
and time-varying delays satisfying (2.2)–(2.4).

At the end of this section, let us introduce some important lemmas which will be used
in the sequel.

Lemma 2.2 (Schur complement [22]). Given constant matrices M, L, Q of appropriate
dimensions, whereM and Q are symmetric, then Q > 0 andM + LTQ−1L < 0 if and only if

[
M LT

L −Q

]
< 0, (2.7)

or equivalently

[−Q L

LT M

]
< 0. (2.8)

Lemma 2.3 (see [10]). Let D, E, and F be matrices with appropriate dimensions. Suppose FTF ≤ I,
then for any scalar μ > 0, there holds

DFE + ETFTDT ≤ μDDT + μ−1ETE. (2.9)
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3. Main Results

In this section, some delay-dependent LMI-based conditions will be developed to solve the
robust H∞ control problem formulated in the previous section. First, we will consider the
nominal system of system (Σcl)with F(k) = 0, for all k > 0, that is,

(Σncl) : x(k + 1) = A0x(k) +A1x(k − d(k)) + B1ω(k),

z(k) = C0x(k) + C1x(k − d(k)) +D11ω(k),

x(k) = φ(k), ∀k ∈
[
−h, 0

]
,

(3.1)

where A0 = A0 + B2K,C0 = C0 +D12K.

Theorem 3.1. System (Σncl) is asymptotically stable with a prescribed H∞ disturbance attenuation
level γ > 0, if there exist matrices P > 0,Q > 0, R > 0,W , and Y of appropriate dimensions such that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ11 −Y +WT −hY 0 A
T

0P
(
A0 − I

)T
hR C

T

0

∗ −W −WT −Q −hW 0 AT
1P AT

1hR CT
1

∗ ∗ −hR 0 0 0 0

∗ ∗ ∗ −γ2I BT1 P BT1 hR DT
11

∗ ∗ ∗ ∗ −P 0 0

∗ ∗ ∗ ∗ ∗ −hR 0

∗ ∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.2)

where Θ11 = −P + Y + YT + (h − h + 1)Q.

Proof. Let

y(�) = x(� + 1) − x(�). (3.3)

Then, it is easy to see that

x(k − d(k)) = x(k) −
k−1∑

�=k−d(k)
y(�). (3.4)

Now, choose a Lyapunov-Krasovskii functional candidate for the time-delay system (Σncl) as

V (k) = V1(k) + V2(k) + V3(k), (3.5)
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where

V1(k) = xT (k)Px(k),

V2(k) =
k−1∑

�=k−d(k)
xT (�)Qx(�) +

−h+1∑

j=−h+2

k−1∑
�=k+j−1

xT (�)Qx(�),

V3(k) =
0∑

j=−h+1

k−1∑
�=k−1+j

yT (�)Ry(�).

(3.6)

Taking the forward difference, we have

ΔV1(k) = V1(k + 1) − V1(k)

=
[
A0x(k) +A1x(k − d(k)) + B1ω(k)

]T
P
[
A0x(k) +A1x(k − d(k)) + B1ω(k)

]

− xT (k)Px(k)

= xT (k)
[
A
T

0PA0 − P
]
x(k) + 2xT (k)A

T

0PA1x(k − d(k))

+ 2xT (k)A
T

0PB1ω(k) + xT (k − d(k))AT
1PA1x(k − d(k))

+ 2xT (k − d(k))AT
1PB1ω(k) +ωT (k)BT1 PB1ω(k).

(3.7)

For any two matrices of appropriate dimensions Y andW , there holds

0 = 2xT (k)Y
k−1∑

�=k−d(k)
y(�) + 2xT (k − d(k))W

k−1∑
�=k−d(k)

y(�)

−
⎡
⎣2xT (k)Y

k−1∑
�=k−d(k)

y(�) + 2xT (k − d(k))W
k−1∑

�=k−d(k)
y(�)

⎤
⎦.

(3.8)

Substituting (3.4) and the previous equality into (3.7) gives

ΔV1(k) = xT (k)
[
A
T

0PA0 − P
]
x(k) + 2xT (k)A

T

0PA1

⎡
⎣x(k) −

k−1∑
�=k−d(k)

y(�)

⎤
⎦

+ 2xT (k)A
T

0PB1ω(k) + xT (k − d(k))AT
1PA1x(k − d(k))

+ 2xT (k − d(k))AT
1PB1ω(k) +ωT (k)BT1 PB1ω(k)
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= xT (k)
[
A
T

0PA0 − P +A
T

0PA1 +AT
1PA0

]
x(k) + 2xT (k)

[
Y −AT

0PA1

]

×
k−1∑

�=k−d(k)
y(�) + 2xT (k − d(k))W

k−1∑
�=k−d(k)

y(�)

−
⎡
⎣2xT (k)Y

k−1∑
�=k−d(k)

y(�) + 2xT (k − d(k))W
k−1∑

�=k−d(k)
y(�)

⎤
⎦

+ 2xT (k)A
T

0PB1ω(k) + xT (k − d(k))AT
1PA1x(k − d(k))

+ 2xT (k − d(k))AT
1PB1ω(k) +ωT (k)BT1 PB1ω(k)

= xT (k)
[
A
T

0PA0 − P +A
T

0PA1 +AT
1PA0

]
x(k) + 2xT (k)

[
Y −AT

0PA1

]

× [x(k) − x(k − d(k))] + 2xT (k − d(k))W[x(k) − x(k − d(k))]

−
⎡
⎣2xT (k)Y

k−1∑
�=k−d(k)

y(�) + 2xT (k − d(k))W
k−1∑

�=k−d(k)
y(�)

⎤
⎦

+ 2xT (k)A
T

0PB1ω(k) + xT (k − d(k))AT
1PA1x(k − d(k))

+ 2xT (k − d(k))AT
1PB1ω(k) +ωT (k)BT1 PB1ω(k)

=
1

d(k)

k−1∑
�=k−d(k)

{
xT (k)

[
A
T

0PA0 − P + Y + YT
]
x(k)

+ 2xT (k)
[
A
T

0PA1 − Y +WT
]
x(k − d(k))

+ 2xT (k)A
T

0PB1ω(k) + 2xT (k)[−d(k)Y ]y(�)

+ xT (k − d(k))
[
AT

1PA1 −W −WT
]
x(k − d(k))

+ 2xT (k − d(k))AT
1PB1ω(k)

+2xT (k − d(k))[−d(k)W]y(�) +ωT (k)BT1 PB1ω(k)
}
.

(3.9)

Similar to [17], we have

ΔV2(k) = V2(k + 1) − V2(k)

≤
(
h − h + 1

)
xT (k)Qx(k) − xT (k − d(k))Qx(k − d(k))

=
1

d(k)

k−1∑
�=k−d(k)

{(
h − h + 1

)
xT (k)Qx(k) − xT (k − d(k))Qx(k − d(k))

}
.

(3.10)
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After some manipulations, we obtain

ΔV3(k) = V3(k + 1) − V3(k) = yT (k)hRy(k) −
k−1∑

�=k−h
yT (�)Ry(�). (3.11)

Observe that

−
k−1∑

�=k−h
yT (�)Ry(�) ≤ −

k−1∑
�=k−d(k)

yT (�)Ry(�),

y(k) = x(k + 1) − x(k) =
(
A0 − I

)
x(k) +A1x(k − d(k)) + B1ω(k).

(3.12)

This together with (3.11) gives

ΔV3(k) ≤ yT (k)hRy(k) −
k−1∑

�=k−d(k)
yT (�)Ry(�)

=
[
(A0 − I)x(k) +A1x(k − d(k)) + B1ω(k)

]T
hR

×
[(
A0 − I

)
x(k) +A1x(k − d(k)) + B1ω(k)

]
−

k−1∑
�=k−d(k)

yT (�)Ry(�)

=
1

d(k)

k−1∑
�=k−d(k)

{
xT (k)

(
A0 − I

)T
hR

(
A0 − I

)
x(k) − yT (�)d(k)Ry(�)

+ 2xT (k)
(
A0 − I

)T
hRA1x(k − d(k)) + 2xT (k)

(
A0 − I

)T
hRB1ω(k)

+ xT (k − d(k))AT
1hRA1x(k − d(k)) + 2xT (k − d(k))AT

1hRB1ω(k)

+ωT (k)BT1 hRB1ω(k)
}
.

(3.13)

Then, from (3.7)–(3.13), we have

ΔV (k) = V (k + 1) − V (k) =
1

d(k)

k−1∑
�=k−d(k)

ηT (k, �)Ψ1(d(k))η(k, �), (3.14)
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where

η(k, �) =
[
xT (k) xT (k − d(k)) yT (�) ωT (k)

]T
,

Ψ1(d(k)) =

⎡
⎢⎢⎢⎢⎢⎣

Ψ1(1, 1) Ψ1(1, 2) −d(k)Y Ψ1(1, 4)

∗ Ψ1(2, 2) −d(k)W Ψ1(2, 4)

∗ ∗ −d(k)R 0

∗ ∗ ∗ Ψ1(4, 4)

⎤
⎥⎥⎥⎥⎥⎦
,

(3.15)

with

Ψ1(1, 1) = −P + Y + YT +
(
h − h + 1

)
Q +A

T

0PA0 +
(
A0 − I

)T
hR

(
A0 − I

)
,

Ψ1(1, 2) = −Y +WT +A
T

0PA1 +
(
A0 − I

)T
hRA1,

Ψ1(1, 4) = A
T

0PB1 +
(
A0 − I

)T
hRB1,

Ψ1(2, 2) = −W −WT −Q +AT
1PA1 +AT

1hRA1,

Ψ1(2, 4) = AT
1PB1 +AT

1hRB1,

Ψ1(4, 4) = BT1 PB1 + BT1 hRB1.

(3.16)

In the next, we will prove the conclusion from two aspects. First, we establish the asymptotic
stability of system (Σncl)with ω(k) = 0 if (3.2) is satisfied. For this situation, (3.14) becomes

ΔV (k) ≤ 1
d(k)

k−1∑
�=k−d(k)

ψT (k, �)Ψ2(d(k))ψ(k, �), (3.17)

where

ψ(k, �) =
[
xT (k) xT (k − d(k)) yT (�)

]T
,

Ψ2(d(k)) =

⎡
⎢⎢⎣
Ψ1(1, 1) Ψ1(1, 2) −d(k)Y

∗ Ψ1(2, 2) −d(k)W
∗ ∗ −d(k)R

⎤
⎥⎥⎦.

(3.18)

By Lemma 2.2, it can be verified that ΔV (k) < 0 if (3.2) is true. Therefore, system (Σncl) with
ω(k) = 0 is asymptotically stable according to the Lyapunov-Krasovskii stability theorem.
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Second, we show that subject to the zero initial condition, the discrete time-delay
system (Σncl) has a prescribed H∞ disturbance attenuation level γ > 0, that is, ‖z‖2 < γ‖ω‖2
for all nonzero ω ∈ L2. To this end, we introduce the following performance index:

JN =
N∑
k=0

[
zT (k)z(k) − γ2ωT (k)ω(k)

]
, (3.19)

where the scalarN ∈ N. Noting the zero initial condition and (3.14), one can verify that

JN =
N∑
k=0

[
zT (k)z(k) − γ2ωT (k)ω(k) + ΔV (k)

]
− V (N + 1)

≤
∞∑
k=0

[
zT (k)z(k) − γ2ωT (k)ω(k) + ΔV (k)

]

=
∞∑
k=0

k−1∑
�=k−d(k)

1
d(k)

ηT (k, �)Ψ3(d(k))η(k, �),

(3.20)

where

Ψ3(d(k)) =

⎡
⎢⎢⎢⎢⎢⎣

Ψ3(1, 1) Ψ3(1, 2) −d(k)Y Ψ3(1, 4)

∗ Ψ3(2, 2) −d(k)W Ψ3(2, 4)

∗ ∗ −d(k)R 0

∗ ∗ ∗ Ψ3(4, 4)

⎤
⎥⎥⎥⎥⎥⎦
, (3.21)

with

Ψ3(1, 1) = Ψ1(1, 1) + C
T

0C0, Ψ3(1, 2) = Ψ1(1, 2) + C
T

0C1,

Ψ3(1, 4) = Ψ1(1, 4) + C
T

0D11, Ψ3(2, 2) = Ψ1(2, 2) + CT
1C1,

Ψ3(2, 4) = Ψ1(2, 4) + CT
1D11, Ψ3(4, 4) = Ψ1(4, 4) +DT

11D11 − γ2I.

(3.22)

Now, by Lemma 2.2, it follows from (3.2) that Ψ3(d(k)) < 0, which together with (3.20)
ensures that JN < 0. This further implies that ‖z‖2 < γ‖ω‖2 holds under the zero initial
condition. This complements the proof.

Remark 3.2. In Theorem 3.1, two slack variables Y and W are introduced to reduce some
conservatism in the existing delay-dependent conditions for the H∞ control problem, while
no bounding techniques for cross terms are involved. By doing so, we have provided a more
flexible condition in (3.2). The advantage of these introduced variables can be seen from the
numerical example later.
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Remark 3.3. In [19], based on a descriptor system transformation method, a delay-dependent
condition on the H∞ control issue for system (Σncl) was proposed. However, there is an
additional constraint on the matrixA1, that is,A1 should be nonsingular. While, Theorem 3.1
in this paper gets rid of this constraint.

Very recently, for discrete time-delay system (Σncl), a less conservative delay-
dependent H∞ condition was proposed in [20]. The rationale behind the method lies in
providing a finite sum inequality as follows.

Lemma 3.4 (finite sum inequality [20, Lemma 1]). For any matrices M1, M2, Z11, Z12, Z22,
R ∈ R

n×n, where R = RT ≥ 0, and Z13, Z23,M3 ∈ R
n×q, Z33 ∈ R

q×q, the following inequality holds:

−
k−1∑

�=k−d(k)
yT (�)Ry(�) ≤ ξT (k)

⎡
⎢⎢⎢⎣

v11 v12 M3 + hZ13

∗ v22 −M3 + hZ23

∗ ∗ hZ33

⎤
⎥⎥⎥⎦ξ(k), (3.23)

where

ξ(k) =
[
xT (k) xT (k − d(k)) ωT (k)

]T
,

⎡
⎢⎢⎢⎢⎢⎣

R M1 M2 M3

∗ Z11 Z12 Z13

∗ ∗ Z22 Z23

∗ ∗ ∗ Z33

⎤
⎥⎥⎥⎥⎥⎦

≥ 0,
(3.24)

with

v11 =MT
1 +M1 + hZ11,

v12 = −MT
1 +M2 + hZ12,

v22 = −MT
2 −M2 + hZ22.

(3.25)

By Theorem 3.1, we can obtain the following delay-dependent H∞ disturbance
attenuation condition, which has been reported in [20] recently.

Corollary 3.5 (see [20, Proposition 1]). For a given γ > 0, system (Σncl) is asymptotically stable
with a prescribed H∞ disturbance attenuation level γ for any time-varying delay satisfying (2.4) if
there exist matrices P > 0, Q > 0, R > 0,Mi, Zij (i, j = 1, 2, 3) with appropriate dimensions such
that (3.24) and the following inequality hold:

Ω1 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ11 Φ12 Φ13

(
A0 − I

)T
h
(
A0 − I

)T
C
T

0

∗ Φ22 Φ23 AT
1 hAT

1 CT
1

∗ ∗ Φ33 BT1 hBT1 DT
11

∗ ∗ ∗ −P−1 0 0

∗ ∗ ∗ ∗ −hR−1 0

∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.26)
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where

Φ11 = P
(
A0 − I

)
+
(
A0 − I

)T
P +MT

1 +M1 +
(
h − h + 1

)
Q + hZ11,

Φ12 = PA1 −MT
1 +M2 + hZ12,

Φ13 = PB1 +M3 + hZ13,

Φ22 = −MT
2 −M2 −Q + hZ22,

Φ23 = −M3 + hZ23,

Φ33 = −γ2I + hZ33.

(3.27)

In the following, wewill show that the result in [20] can be deduced from Theorem 3.1.

Proof. It is easy to see that (3.26) is equivalent to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ11 Φ12 Φ13

(
A0 − I

)T
P

(
A0 − I

)T
hR C

T

0

∗ Φ22 Φ23 AT
1P AT

1hR CT
1

∗ ∗ Φ33 BT1 P BT1 hR DT
11

∗ ∗ ∗ −P 0 0

∗ ∗ ∗ ∗ −hR 0

∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (3.28)

By (3.24) and using the Schur complement formula, we have

⎡
⎢⎢⎣
Z11 Z12 Z13

∗ Z22 Z23

∗ ∗ Z33

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣
MT

1

MT
2

MT
3

⎤
⎥⎥⎦R−1[M1 M2 M3

] ≥ 0. (3.29)

This together with (3.28) implies

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ11 Φ12 Φ13

(
A0 − I

)T
P

(
A0 − I

)T
hR C

T

0 hMT
1

∗ Φ22 Φ23 AT
1P AT

1hR CT
1 hMT

2

∗ ∗ −γ2I BT1 P BT1 hR DT
11 hMT

3

∗ ∗ ∗ −P 0 0 0

∗ ∗ ∗ ∗ −hR 0 0

∗ ∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ 0 −hR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.30)
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where

Φ11 = P
(
A0 − I

)
+
(
A0 − I

)T
P +MT

1 +M1 +
(
h − h + 1

)
Q,

Φ12 = PA1 −MT
1 +M2,

Φ13 = PB1 +M3,

Φ22 = −MT
2 −M2 −Q,

Φ23 = −M3.

(3.31)

Denote

L1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 −I 0 0 0

0 I 0 0 0 0 0

0 0 I 0 0 0 0

0 0 0 I 0 0 0

0 0 0 0 I 0 0

0 0 0 0 0 I 0

0 0 0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.32)

Pre- and postmultiplying (3.30) by L1 and LT1 , respectively, yields

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� −MT
1 +M2 M3 A

T

0P
(
A0 − I

)T
hR C

T

0 hMT
1

∗ −MT
2 −M2 −Q −M3 AT

1P AT
1hR CT

1 hMT
2

∗ ∗ −γ2I BT1 P BT1 hR DT
11 hMT

3

∗ ∗ ∗ −P 0 0 0

∗ ∗ ∗ ∗ −hR 0 0

∗ ∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ 0 −hR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.33)

where � = −P +MT
1 +M1 + (h − h + 1)Q.
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LettingM1 = YT ,M2 =WT,M3 = 0, we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ11 −Y +WT 0 A
T

0P
(
A0 − I

)T
hR C

T

0 hY

∗ −W −WT −Q 0 AT
1P AT

1hR CT
1 hW

∗ ∗ −γ2I BT1 P BT1 hR DT
11 0

∗ ∗ ∗ −P 0 0 0

∗ ∗ ∗ ∗ −hR 0 0

∗ ∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ 0 −hR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.34)

where Θ11 is defined in Theorem 3.1.
Denote

L2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0 0 0

0 I 0 0 0 0 0

0 0 0 0 0 0 I

0 0 I 0 0 0 0

0 0 0 I 0 0 0

0 0 0 0 I 0 0

0 0 0 0 0 I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.35)

Pre- and postmultiplying (3.34) by L2 and its transpose, respectively, yields (3.2). This
completes the proof.

Remark 3.6. From Corollary 3.5, it is noted that Theorem 3.1 in this paper is less conservative
than Corollary 1 which was reported in [20]. It should be pointed out that neither model
transformation (e.g., [23]) nor bounding technique (e.g., [19]) is employed here. Although
it is proved that the finite sum inequality approach in [20] is better than other reported
ones when dealing with delay-dependent stability analysis problem for discrete time-delay
systems, it still gives relatively conservative results.

Remark 3.7. Compared with the delay-dependent H∞ disturbance attenuation condition in
[20], it is worth noting that one of the advantages in our paper is that the inequality in (3.2)
involves significantly fewer variables than those in [20]. Specifically, in the case when x(k) ∈
R
n, the number of the variables to be solved in (3.2) is (n(7n+3))/2, while in [20] the number

of variables is (13n2+2q2+6nq+3n)/2.When q = n, that is,ω(k) ∈ R
n, the number of variables

in [20] becomes (21n(n + 3))/2, which is around 3 times more than those in Theorem 3.1.
Therefore, from mathematical and practical points of view, our condition is more desirable
than that in [20].

Now, we are in a position to solve the controller gain K from (3.2).
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Define Π1 = diag{I, I, I, I, I, R−1, I}. Multiplying (3.2) by ΠT
1 and Π1 on the left-hand

side and the right-hand side, respectively, yields

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ11 −Y +WT −hY 0 A
T

0P h
(
A0 − I

)T
C
T

0

∗ −W −WT −Q −hW 0 AT
1P hAT

1 CT
1

∗ ∗ −hR 0 0 0 0

∗ ∗ ∗ −γ2I BT1 P hBT1 DT
11

∗ ∗ ∗ ∗ −P 0 0

∗ ∗ ∗ ∗ ∗ −hR−1 0

∗ ∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (3.36)

Let P−1 = X. Defining Π2 = diag{X,X,X, I, X, I, I}, then after performing congruence
transformations on (3.36) by Π2, we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

XΘ11X X
(−Y +WT

)
X −hXYX 0 XA

T

0 hX
(
A0 − I

)T
XC

T

0

∗ X
(−W −WT −Q)

X −hXWX 0 XAT
1 hXAT

1 XCT
1

∗ ∗ −hXRX 0 0 0 0

∗ ∗ ∗ −γ2I BT1 hBT1 DT
11

∗ ∗ ∗ ∗ −X 0 0

∗ ∗ ∗ ∗ ∗ −hR−1 0

∗ ∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (3.37)

Setting Ỹ = XYX, Q̃ = XQX, W̃ = XWX, K̃ = KX, R̃ = R−1, we obtain

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ̃11 −Ỹ + W̃T −hỸ 0 Θ̃12 Θ̃13 Θ̃14

∗ −W̃ − W̃T − Q̃ −hW̃ 0 XAT
1 hXAT

1 XCT
1

∗ ∗ −hXR̃−1X 0 0 0 0

∗ ∗ ∗ −γ2I BT1 hBT1 DT
11

∗ ∗ ∗ ∗ −X 0 0

∗ ∗ ∗ ∗ ∗ −hR̃ 0

∗ ∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.38)

where

Θ̃11 = −X + Ỹ + Ỹ T +
(
h − h + 1

)
Q̃, Θ̃12 = XAT

0 + K̃TBT2 ,

Θ̃13 = hXAT
0 + hK̃TBT2 − hX, Θ̃14 = XCT

0 + K̃TDT
12.

(3.39)
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It is clear that (3.38) is a nonlinear matrix inequality in the matrix variables X, Q̃, R̃, Ỹ ,
W̃ , and K̃, due to the existence of the nonlinear term −hXR̃−1X. In order to solve the desired
controller K, we will propose three methods in the sequel.

Let R = P, that is, take a particular Lyapunov-Krasovskii functional in (3.5). Then, the
following result holds naturally.

Theorem 3.8. System (Σncl) is asymptotically stable with a prescribed H∞ disturbance attenuation
level γ > 0, if there exist matrices X > 0, Q̃ > 0, Ỹ , W̃ , and K̃ of appropriate dimensions such that the
following LMI holds:

Ξ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ̃11 −Ỹ + W̃T −hỸ 0 Θ̃12 Θ̃13 Θ̃14

∗ −W̃ − W̃T − Q̃ −hW̃ 0 XAT
1 hXAT

1 XCT
1

∗ ∗ −hX 0 0 0 0

∗ ∗ ∗ −γ2I BT1 hBT1 DT
11

∗ ∗ ∗ ∗ −X 0 0

∗ ∗ ∗ ∗ ∗ −hX 0

∗ ∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (3.40)

Moreover, a robustly stabilizing state feedback controller is given by (2.5) with K = K̃X−1.

Remark 3.9. Theorem 3.8 provides a simple method in solving the controller gain K by
introducing a special Lyapunov-Krasovskii functional. Although it has some good merits,
it may bring some conservatism due to the restriction of R = P .

Note that

(
R̃ −X

)T
R̃−1

(
R̃ −X

)
≥ 0, (3.41)

which implies

−hXR̃−1X ≤ hR̃ − 2hX. (3.42)

From (3.38) and (3.42), the following theorem follows immediately.
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Theorem 3.10. System (Σncl) is asymptotically stable with a prescribedH∞ disturbance attenuation
level γ > 0, if there exist matrices X > 0, Q̃ > 0, R̃ > 0, Ỹ , W̃ , and K̃ of appropriate dimensions such
that the following LMI holds:

Ξ2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ̃11 −Ỹ + W̃T −hỸ 0 Θ̃12 Θ̃13 Θ̃14

∗ −W̃ − W̃T − Q̃ −hW̃ 0 XAT
1 hXAT

1 XCT
1

∗ ∗ hR̃ − 2hX 0 0 0 0

∗ ∗ ∗ −γ2I BT1 hBT1 DT
11

∗ ∗ ∗ ∗ −X 0 0

∗ ∗ ∗ ∗ ∗ −hR̃ 0

∗ ∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (3.43)

Moreover, a robustly stabilizing state feedback controller is given by (2.5) with K = K̃X−1.

Remark 3.11. It is clear that there also exists conservatism because of the replacement
−hXR̃−1X with hR̃ − 2hX.

In the sequel, we will resort to the cone complementary linearization method [24] to
further reduce the conservatism. Introduce a new matrix variable S > 0, which satisfies

XR̃−1X ≥ S. (3.44)

It is easily seen that inequality (3.44) is more general than that in (3.42). Note that (3.44) is
equivalent to

[
S−1 X−1

∗ R̃−1

]
≥ 0. (3.45)

Letting S = S−1,X = X−1, R = R̃−1,we obtain the following theorem.
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Theorem 3.12. System (Σncl) is asymptotically stable with a prescribedH∞ disturbance attenuation
level γ > 0, if there exist matrices X > 0, Q̃ > 0, R̃ > 0, R > 0, S > 0, S > 0, X > 0, Ỹ , W̃ , and K̃ of
appropriate dimensions such that

Ξ3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ̃11 −Ỹ + W̃T −hỸ 0 Θ̃12 Θ̃13 Θ̃14

∗ −W̃ − W̃T − Q̃ −hW̃ 0 XAT
1 hXAT

1 XCT
1

∗ ∗ −hS 0 0 0 0

∗ ∗ ∗ −γ2I BT1 hBT1 DT
11

∗ ∗ ∗ ∗ −X 0 0

∗ ∗ ∗ ∗ ∗ −hR̃ 0

∗ ∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.46)

[S X
∗ R

]
≥ 0, (3.47)

SS = I, XX = I, RR̃ = I. (3.48)

Moreover, a robustly stabilizing state feedback controller is given by (2.5) with K = K̃X−1.

Remark 3.13. As one can see that the inequality conditions in Theorem 3.12 are not strict
LMI conditions due to the equation constraints in (3.48). However, by resorting to the
cone complementary linearization method in [24] and the optimization solver in [25], the
nonconvex feasibility problem formulated by (3.46), (3.47), and (3.48) can be transformed
into the following nonlinear minimization problem subject to LMIs:

minimize Tr
(
SS +XX + RR̃

)

subject to (3.46) and (3.47),
[S I

I S

]
≥ 0,

[X I

I X

]
≥ 0,

[R I

I R̃

]
≥ 0.

(3.49)

According to the cone complementarity problem (CCP) in [24], if the solution of the
above minimization problem is 6n, we can say from Theorem 3.12 that system (Σncl) is
asymptotically stable with a prescribed H∞ disturbance attenuation level γ > 0 via the
controller (2.5) with K = K̃X−1. Although it is very difficult to always find the global
optimal solution, the proposed nonlinear minimizatiion problem is easier to solve than the
original nonconvex feasibility problem. Based on the linearization method in [24], we can
solve the above nonlinear minimization problem using an iterative algorithm presented in
the following.
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Algorithm 3.14. We have the following steps.

Step 1. Choose a sufficiently initial γini > 0 such that (3.46), (3.47), and (3.49) are feasible. Set
γs0 = γini.

Step 2. Find a feasible set (X0,X0, S0,S0,R0, R̃0, Ỹ 0, W̃0, K̃0, Q̃0, ε0) satisfying (3.46), (3.47),
and (3.49). Set k = 0.

Step 3. Solve the following LMI problem:

minimize Tr
(
SkS +XkX + RkR̃ + SSk +XXk + RR̃k

)

subject to (3.46), (3.47), and (3.49).
(3.50)

Set Sk+1 = S, Xk+1 = X, Rk+1 = R, Sk+1 = S,Xk+1 = X, R̃k+1 = R̃.

Step 4. If matrix (3.46) is satisfied and

∣∣∣Tr
(
SkS +XkX + RkR̃ + SSk +XXk +RR̃k

)
− 6n

∣∣∣ < δ (3.51)

for some sufficient small scalar δ > 0, then decrease γini to some extent and set γs0 = γini and
go to Step 2. If one of the conditions in (3.47) and (3.51) is not satisfied within a specified
number of iterations, then exit. Otherwise, set k = k + 1 and go to Step 3.

Now, we are in a position to present the delay-dependent robust conditions concerning
H∞ control of system (Σ) with uncertainties based on Theorems 3.8, 3.10, and 3.12,
respectively. By Lemma 2.3, we can easily have the following results.

Theorem 3.15. System (Σ) is asymptotically stable with a prescribed H∞ disturbance attenuation
level γ > 0, if there exist a scalar ε > 0, matrices X > 0, Q̃ > 0, Ỹ , W̃ , and K̃ of appropriate
dimensions such that the following LMI holds:

⎡
⎢⎢⎣
Ξ1 εD ET

∗ −εI 0

∗ ∗ −εI

⎤
⎥⎥⎦ < 0, (3.52)

where Ξ1 is defined in (3.40), and

D =
[
0 0 0 0 DT

1 hDT
1 DT

2

]T
, (3.53)

E =
[
E1X + E4K̃ E2X 0 E3 0 0 0

]
. (3.54)

Moreover, a robustly stabilizing state feedback controller is given by (2.5) with K = K̃X−1.
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Theorem 3.16. System (Σ) is asymptotically stable with a prescribed H∞ disturbance attenuation
level γ > 0, if there exist a scalar ε > 0, matrices X > 0, Q̃ > 0, R̃ > 0, Ỹ , W̃ , and K̃ of appropriate
dimensions such that the following LMI holds:

⎡
⎢⎢⎣
Ξ2 εD ET

∗ −εI 0

∗ ∗ −εI

⎤
⎥⎥⎦ < 0, (3.55)

where Ξ2, D, E are defined in (3.43), (3.53), and (3.54), respectively. A robustly stabilizing state
feedback controller is given by (2.5) with K = K̃X−1.

Theorem 3.17. System (Σ) is asymptotically stable with a prescribed H∞ disturbance attenuation
level γ > 0, if there exist a scalar ε > 0, matrices X > 0, Q̃ > 0, R̃ > 0, R > 0, S > 0, S > 0,X > 0, Ỹ ,
W̃ , and K̃ of appropriate dimensions such that (3.47), (3.49) and the following LMI holds:

⎡
⎢⎢⎣
Ξ3 εD ET

∗ −εI 0

∗ ∗ −εI

⎤
⎥⎥⎦ < 0, (3.56)

where Ξ3, D, E are defined in (3.46), (3.53), and (3.54), respectively.K = K̃X−1 is the corresponding
controller which is derived.

4. Examples

In this section, two examples are used to demonstrate the effectiveness of the proposed
methods.

Example 4.1. Consider the following discrete-time systems with time-varying delay:

x(k + 1) = (A0 +D1F(k)E1)x(k) + (A1 +D1F(k)E2)x(k − d(k)) + B1ω(k) + B2u(k),

z(k) = C0x(k) +D12u(k),

x(k) = 0, ∀k ≤ 0,

(4.1)

where

A0 =

[
1 0

0 1.01

]
, A1 =

[−0.02 −0.005
0 −0.01

]
, B1 =

[
0

1

]
,

B2 =

[
0

0.01

]
, C0 =

[
1 0

]
, D12 = 0.1, D1 = 0.2I,

E1 = E2 = 0.01I, FT (k)F(k) ≤ I,

(4.2)

and d(k) is a delay satisfying (2.4).
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Table 1: The achieved minimumH∞ performances γ in this paper and corresponding controller gainK for
h = h = 64.

Method γ K

Theorem 3.15 94.0 [−1.7345 − 2.1540]
Theorem 3.16 51.1 [−4.0969 − 3.4550]
Theorem 3.17 11.2 [10.6422 − 74.5353]

Table 2: The iterations and corresponding controller gain K for h = h = 64 under different cases of γ .

Method γ K Iterations
[20] 15.5 [−46.4416 − 68.1845] 235
Theorem 3.17 15.5 [−4.4617 − 14.5328] 47
[20] 16 [−44.9680 − 62.3831] 223
Theorem 3.17 16 [−4.8684 − 12.6606] 40
[20] 17 [−39.0994 − 53.8247] 186
Theorem 3.17 17 [−5.0961 − 11.3692] 39
[20] 18 [−36.1621 − 48.5035] 171
Theorem 3.17 18 [−5.2827 − 10.4921] 40
[20] 20 [−31.9456 − 41.2442] 154
Theorem 3.17 20 [−5.4217 − 8.6190] 35

In the following, different cases of d(k) are involved.

Case 1. Delay d(k) is time invariant.
First, suppose h = h = 64. For this situation, we will compare the results in Theorems

3.15, 3.16, and 3.17. For this reason, we calculate the minimum value of γ for which system
(4.1) is robustly stabilizable via state feedback (2.5). The obtained results are listed in Table 1,
from which we can see that the conditions in Theorem 3.17 are less conservative than those
in Theorems 3.15 and 3.16. Therefore, we will only compare the results in Theorem 3.17 with
those in the previous literatures in the sequel.

Second, when h = h = 64, Zhang and Han [20] also calculated the achieved minimum
H∞ performances γ , the corresponding controller gainK, and the iterations. Here, in order to
show much less conservative results (or lower computational burden) of Theorem 3.17 than
[20], we give Table 2. Noting from this table, we conclude that in order to achieve the same
disturbance attenuation level, Theorem 3.17 needs significantly less iterations and smaller
gain. From this table, we also have verified Remark 3.9.

Third, in [19, 20], the authors also calculated the achieved minimumH∞ performance
for h = 64, respectively. However, according to Theorem 3.17, much less H∞ performance
is obtained, which is listed in Table 3. From this table, one can see that Theorem 3.17 in this
paper provides much lessH∞ performances.

Now, we are in a position to calculate the maximum delay bound h, which can
guarantee that system (4.1) is robustly stabilizable via state feedback (2.5). The details are
given in Table 4.

Case 2. Delay d(k) is time varying.
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Table 3: The achieved minimumH∞ performances γ and corresponding controller gain K for h = h = 64.

Method γ K

[19] 180.07 [−1.7345 − 2.1540]
[20] 15.5 [−46.4416 − 68.1845]
Theorem 3.17 11.2 [10.6422 − 74.5353]

Table 4: The maximum delay bound h for system (4.1) under Case 1.

Method h K

[19] 41 [−0.6311 − 2.3615]
[26] 67 Unprovided
[20] 70 [−93.2010 − 71.2670]
Theorem 3.17 180 [−8.9659 − 67.0971]

Table 5: The maximum delay bound h for system (4.1) under Case 2.

Method h K (corresponding to the minimum γ)
[19] 43 [−6.7766 − 20.5924]
[20] 48 Unprovided
Theorem 3.17 52 [−136.9648 − 49.5596]

Under this case, Fridman and Shaked [19] concluded that system (4.1) can be
stabilized for all h ≤ 43. In [20], it is obtained that system (4.1) is robustly stabilizable for
h ≤ 48. However, by Theorem 3.17, we have that system (4.1) is robustly stabilizable for
h ≤ 52. The details are shown in Table 5.

In [20], Zhang and Han also gave the minimumH∞ performances γ and correspond-
ing controller gain K for a set of h when h = 48. Here, we also present a table to demonstrate
the lower computational complexity and smaller controller gains than those in [20], which
are listed in Table 6.

Example 4.2. Consider the discrete-time systems (4.1) (this example was first presented in
[27]) with matrices

A0 =

[
2 1

0 1

]
, A1 =

[
0.2 0.1

0 0.1

]
, B1 =

[
0.1

0.1

]
,

B2 =

[
1

1

]
, C0 =

[
1 1

]
, D12 = 1, D1 = 0,

E1 = E2 = 0.

(4.3)

From Table 7, we can see that the condition in our paper can obtain a smaller H∞
performance γ than [18, 27] for this example.
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Table 6: The corresponding controller gain K for different h and γ when h = 48.

Method h γ K

[20] 1 65 [−24.8606 − 74.4157]
Theorem 3.17 1 65 [−2.2015 − 11.1964]
[20] 8 50 [−24.9197 − 76.6840]
Theorem 3.17 8 50 [−1.9750 − 14.275]
[20] 18 40 [−22.2636 − 68.8382]
Theorem 3.17 18 40 [−1.9376 − 15.3371]
[20] 28 30 [−18.0179 − 76.6840]
Theorem 3.17 28 30 [−1.3337 − 17.0357]
[20] 38 20 [−14.5769 − 50.1003]
Theorem 3.17 38 20 [1.4013 − 23.7523]
[20] 43 18 [−8.6551 − 36.0802]
Theorem 3.17 43 18 [1.1377 − 16.8044]

Table 7: The achieved minimumH∞ performances γ and corresponding controller gain K.

Method γ K

[27] 0.1166 [−1.1689 − 1.0000]
[18] 0.3500 [−1.2430 − 0.9977]
Theorem 3.17 0.1126 [−1.8077 − 1.0621]

5. Conclusions

The problem of H∞ control for uncertain discrete-time systems with time-varying delay
has been studied. By introducing slack matrix variables, delay-dependent LMI based
conditions have been developed to design a stable state feedback controller, which ensures
the asymptotic stability of the resulting closed-loop system and guarantees a prescribed
disturbance attenuation level irrespective of all the admissible uncertainties. Numerical
examples have been provided to demonstrate the effectiveness and applicability of the
proposed approach.
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