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1. Introduction

Recently, heat and mass transfer from different geometries embedded in fluid saturated
porous medium has been studied extensively. This is due to the fact that these flows
have many engineering and geophysical applications which include geothermal resources,
building insulation, oil extraction, underground disposal of nuclear waste, heat salt leaching
in soils, and many more. Various researchers [1–3] have studied heat and mass transfer
by free convection in porous medium under boundary layer approximation. It is worth
mentioning that all these studies were focused on steady state conditions and based on Darcy
model. In contrast, transient convective flow problems have not received as much attention.
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This is because that the transient heat transfer is usually difficult to solve either analytically
or numerically. In fact there is no actual flow situation, which does not involve unsteadiness,
and examples of transient convective flows are numerous, for example, cooling of electronic
devices in which the heat generation is not constant but time varying. Darcy model is valid
when the Reynolds number based on the pore size is less than unity. For fluids of high velocity
and/or porous material of large pore radius, the Darcy model is inadequate since it neglects
the porous medium inertia effect, which becomes significant. Inertial effects are taken into
consideration in Forchheimer flow model, which is a modification of the original Darcy law
by adding the quadratic inertial term [4–6].

There has been a renewed interest in MHD flow and heat transfer in porous and
clear domains due to the important effect of magnetic field on the performance of many
systems using electrically conducting fluid such as MHD power generators and the cooling
of nuclear reactors. In a review article [7], Ram presented an account of several steady MHD
heat and mass transfer problems. Chamkha [8] considered the steady MHD free convection
from vertical plate in a thermally stratified porous medium with Hall effect.

The aim of this work is to investigate transient MHD double-diffusive of an
electrically-conducting fluid by free convection over a flat plate embedded in Darcy and
non-Darcy porous medium in the presence of surface suction or blowing and magnetic field
effects.

2. Mathematical Analysis

Consider the unsteady non-Darcy MHD free double-diffusive convection flow of an
electrically conducting fluid over an isothermal vertical porous plate embedded in a porous
medium with suction or injection. Initially the wall is at constant temperature T∞ and
concentration C∞, respectively. At t = 0, the wall temperature and concentration are
suddenly raised to Tw and C∞, higher than the ambient values T∞ and C∞, respectively
and they maintained at these values for t > 0. A uniform magnetic field is applied normal
to the plate. It is assumed that, the fluid properties are constant except the influence of
density variation with temperature which is considered only in the body force term, both
fluid and solid matrix are in local thermal equilibrium; the permeability porous medium
is constant, viscous dissipation; Joule heating and thermal dispersion effects are negligible.
Under these assumptions along with Boussinesq approximation, the governing equations are
given by
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The physical problem suggests the following initial and boundary conditions:
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(2.2)

where (x, y) are the dimensional distance along and normal to the plate, respectively, (u, v)
and are the averaged velocity components along the x and y, directions respectively, t is the
time, σ is the heat capacity ratio of the porous media, σ = ϕ + (1 − ϕ)(ρc)s/(ρc)s, T is the
temperature, C is the concentration, βT and βc are the thermal expansion coefficient and the
concentration expansion coefficient respectively, ν is the effective kinematic viscosity, αe is the
effective thermal diffusivity, F is the dimensional inertial coefficient, K is the permeability of
the medium, respectively, Vw is the suction (>0) or injection (<0) velocity, ϕ is the porosity of
the porous medium, and Dm is the mass diffusion coefficient.

Introducing the following dimensionless variables and parameters:
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where ψ is the stream function, τ is the dimensionless time, Γ is the Forchheimer number,
Ha is the Hartmann number, M is the magnetic parameter, Le is the Lewis number, Rax is
the modified Rayleigh number, fw is the mass flux parameter. fw is varied from −1 to 1. It
is obvious that fw = 0 corresponds to impermeable wall, fw > 0 corresponds to suction and
fw < 0 corresponds to injection.

Using the above similarity transformation the governing equations are reduced to
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and the initial and boundary conditions are transformed to

f
(
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at η = 0, f = fw, θ = 1, φ = 1,

as η −→ ∞, f ′ = 0, θ = 0, φ = 0.

(2.5)

The physical quantities of fundamental interest of heat and mass transfer study are
the heat and mass coefficients in terms of Nusselt and Sherwood numbers, respectively. The
dimensionless heat and mass transfer coefficients can be expressed as

Nu√
Rax

= −θ′(0), Sh√
Rax

= −φ′(0). (2.6)

3. Results and Discussion

The resulting partial differential equations together with their boundary conditions have
been solved numerically using an implicit finite difference technique. For the sake
of brevity, the details of the solution procedure are not presented here. The results
reported in this paper were validated by comparing them with those in the previously
published paper. Our results show an excellent a greement with the steady state results of
[9].

A parametric study is carried out to investigate the effects of all involved parameters
on the transient velocity, temperature and concentration profiles as well as the transient local
Nusselt and the local Sherwood numbers.

The effects of magnetic parameter on the transient velocity profiles, temperature
distribution, and concentration distribution in the non-Darcy flow region are shown in
Figures 1 and 2. It is clear that hydrodynamics, thermal and concentration boundary layers
thicken gradually with time. The presence of the magnetic field produces a resistive force that
decelerates the fluid flow in the porous medium and increases the thermal and concentration
boundary layer thicknesses.

Figure 3 illustrates the influence of the mass flux parameter on the transient velocity
profiles. It can be seen that the velocity increases as the mass flux parameter passes from
suction to injection region.

The effect of the buoyancy ratio on the local Nusselt number with and without
magnetic field effect is displayed in Figure 4. This figure depicts the enhanced heat transfer
results with the buoyancy ratio. It is clearly seen that the presence of magnetic field reduces
the heat transfer coefficient. Furthermore, the effect of lateral mass flux is predominating for
higher values of buoyancy ratio.

The influences of lateral mass flux on the local Nusselt number and the local Sherwood
number with and without magnetic field effect and at different values of Lewis number are
displayed in Figures 5 and 6, respectively. The increase in the Lewis number reduces heat
transfer rate, where as it increases the mass transfer rate. The magnetic field effect reduces
both the heat and mass transfer coefficients. It is clear that the suction increases both the heat
and mass transfer rates.
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Figure 1: The effect of magnetic parameter on the transient dimensionless velocity component profiles
(N = 1, Le = 2, Γ = 1, and fw = 0).
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Figure 2: The effect of magnetic parameter on the transient dimensionless temperature distribution (N = 1,
Le = 2, Γ = 1, and fw = 0).
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Figure 3: The effect of magnetic parameter on the transient dimensionless temperature distribution, for
suction, injection, and impermeable wall cases (N = 1, Le = 2, and Γ = 1).

0

0.3

0.6

0.9

1.2

1.5

N
u √ R
a x

−0.5 1 2 3 4

N

M = 0
M = 1

fw = 1, 0, −1

Figure 4: The effect of buoyancy ratio on Nusselt number with and without magnetic field effect, for
suction, injection, and impermeable wall cases (N = 1, Le = 2, τ = 1, and Γ = 1).
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Figure 5: The effect of mass flux parameter on Nusselt number with and without magnetic field effect at
different values of Lewis number (N = 1, τ = 1, and Γ = 1).
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Figure 6: The effect of mass flux parameter on Sherwood number with and without magnetic field effect
at different values of Lewis number (N = 1, τ = 1, and Γ = 1).
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Figure 7: The effect of Lewis number on the Nusselt number (N = 1, τ = 1, and Γ = 1) with and without
magnetic field effect, for suction, injection, and impermeable wall cases.
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Figure 8: The effect of Lewis number on the Sherwood number (N = 1, τ = 1, and Γ = 1) with and without
magnetic field effect, for suction, and impermeable wall cases.
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Figure 9: The effect of Lewis number on the Sherwood number (N = 1, τ = 1, and Γ = 1) with, and without
magnetic field effect, for injection, case.
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Figure 10: The effect of mass flux parameter on the Nusselt number time evolution with and without
magnetic field effect, for suction, injection, and impermeable wall cases (N = 1, Le = 2, and Γ = 1).
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Figure 11: The effect of Lewis number on the Sherwood number time evolution in the Darcy and non-Darcy
flow regions, for suction, injection, and impermeable wall cases (N = 1, Le = 2, and M = 1).

Figures 7 and 8 show the effect of Lewis number on the heat and mass transfer
coefficients with and without magnetic field effect and for suction, injection and impermeable
wall cases, respectively. It can be seen that the Nusselt number decreases for all fw while the
Sherwood number increases for fw ≥ 0. For the impermeable wall, the Sherwood number
increases continually with and without the effects of the magnetic field effects. In the suction
case, the magnetic field effect is observed to diminish at large number of Le.

The effect of Lewis number on the local Sherwood number with and without the
magnetic field effect in the case of fluid injection into the porous medium is plotted in
Figure 9. It can be seen that the Sherwood number increases with Le up to a certain maximum
value and then decreases with further increase in Le. The maximum value depends on the
buoyancy ratio and the magnetic parameter.

Figure 10 shows the effect of mass flux parameter on the Nusselt number transient
behavior with and without magnetic field presence. The heat transfer coefficient has large
values at early stages of the double-diffusive process, and then it decreases dramatically
with time untill the steady state is reached. Since the presence of the magnetic field effect
(M/= 0) plays the role of stiffening the flow field, is observed that Nusselt number attain a
steady state at an earlier time as compared to those in the absence of the magnetic field effect
(M = 0).

The time evolution of the mass transfer coefficient in the Darcy and non-Darcy flow
regions at different Lewis number is illustrated in Figure 11. The mass transfer coefficient has
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large values at early stages of the double-diffusive process, and then it decreases dramatically
to reach its steady state values, then it decreases dramatically to reach its steady state value.
The non-Darcy effects are predominant at early stages of times.

4. Conclusions

The effects of magnetic field and lateral mass flux on transient MHD double-diffusive of an
electrically conducting fluid by free convection over a flat plate embedded in Darcy and non-
Darcy porous medium are numerically investigated. It was found that the presence magnetic
field lowers both the Nusselt and Sherwood numbers in Darcy as well as Forchheimer flow
regimes. Increasing the buoyancy ratio N or the fluid suction increases both Nusselt number
and Sherwood numbers. The inertial effects reduce the heat and mass transfer coefficients.
The Sherwood number Sh is increased with Lewis number up to a limit, after which it
decreases, with further increase in Le. This limit depends on the buoyancy ratio and the
inertial and the magnetic parameter. Both the heat and the mass transfer rates tend to decrease
as time elapses.

Nomenclature

A: Real constant
Bo: magnetic induction
C: concentration
Cp: specific heat of the fluid at constant pressure
D: concentration molecular diffusion
F: inertial coefficient
f : dimensionless, reduced stream function
fw: suction parameter
g: gravitational acceleration
Ha: Hartmann number
K: permeability of the porous medium
ke: effective thermal conductivity of the porous medium
Le: Lewis number
M: magnetic parameter (Ha2)
N: buoyancy ratio parameter
Nu: Nusselt number
Rax: modified Rayleigh number
Sh: Sherwood number
T : temperature
t: time
T∞: free stream temperature
Tw: wall temperature
u: volumetrically averaged axial velocity
v: volumetrically averaged lateral velocity
Vw: suction velocity
x, y: coordinates along and normal to the plate, respectively.
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Greek Letters

αe: effective thermal diffusivity
βC: thermal expansion coefficient
βT : concentration expansion coefficient
η: similarity parameter
Γ: dimensionless inertial parameter
θ: dimensionless temperature variable
φ: dimensionless concentration variable
ν: effective kinematic viscosity of the fluid
σ: electrical conductivity of the fluid
ρ: fluid density
τ : dimensionless time
ψ: dimensional stream function.

Subscripts

w: wall
∞: outer edge of the boundary layer.
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