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1. Introduction

Delay (or memory) systems represent a class of infinite-dimensional systems largely used
to describe propagation and transport phenomena or population dynamics [1–3]. Delay
differential systems are assuming an increasingly important role in many disciplines like
economic, mathematics, science, and engineering. For instance, in economic systems, delays
appear in a natural way since decisions and effects are separated by some time interval.
The presence of a delay in a system may be the result of some essential simplification of
the corresponding process model. The problem of delay effects on the stability of systems
including delays in the state, and/or input is a problem of recurring interest since the
delay presence may induce complex behaviors (oscillation, instability, bad performances)
for the schemes [1, 2]. Some improved methods pertaining to the problems of determining
robust stability criteria and robust control design of uncertain time-delay systems have
been reported; see, for example, [4, 5] and the references cited therein. When dealing with
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time-varying delays and the reduction of the level of design conservatism, one has to
select appropriate Lyapunov-Krasovskii functional (LKF) with moderate number of terms
[6].

Neutral delay systems constitute a more general class than those of the retarded type.
Stability of these systems proves to be a more complex issue because the system involves
the derivative of the delayed state. Especially in the past few decades, increased attention
has been devoted to the problem of robust delay-independent stability or delay-dependent
stability and stabilization via different approaches (e.g., model transformation techniques
[2, 7–9], the improved bounding techniques [10, 11], and the properly chosen Lyapunov-
Krasovskii functionals [12, 13]) for a number of different neutral systems with delayed state
and/or input, parameter uncertainties, and nonlinear perturbations (see, e.g., [14–25] and
the references therein).

Among the existing results on neutral delay systems, the linear matrix inequality
(LMI) approach is an efficient method to solve many problems such as stability analysis,
stabilization [9, 15, 26, 27], H∞ control problems [28–30], filter designs [31, 32], and
guaranteed-cost (observer-based) control [33–39]. Besides, for neutral systems with mixed
neutral and discrete delays, most of the aforementioned methods can only provide neutral-
delay-independent and discrete-delay-dependent results. Furthermore, the subject of the
robust stability and feedback stabilization of continuous- and discrete-time systems (within
the framework LMI) under additive perturbations which are nonlinear functions in time and
state of the systems are investigated in [40, 41], respectively.

In the recent literature on neutral systems, He et al. in [42] proposed a new approach to
analyze the stability of the systems with mixed delays by incorporating some free-weighting
matrices, and the less conservative criteria, which were both discrete-delay-dependent and
neutral-delay-dependent, were obtained without considering the model transformations.
However, some of the freematrices did not serve to reduce the conservatism of the results that
were obtained. Moreover, in [9, 20], the authors studied the problem of the robust stability
of neutral systems with nonlinear parameter perturbations and mixed time-varying neutral
and discrete delays and presented neutral-delay-independent stability criteria, that cannot be
directly applied to the systems with different time-varying neutral, discrete, and distributed
delays. Furthermore, from the published results, it appears that general results pertaining
to neutral systems with mixed time-varying neutral, discrete, and distributed delays and
nonlinear parameter perturbations are few and restricted; see [9, 10, 18, 20, 42] where
most of the efforts were virtually neutral-delay-range-independent or were not centered on
distributed delays.

In this paper, we develop new stability criteria for the stability analysis of the neutral
systemswith nonlinear parameter perturbations based on a descriptor model transformation.
The dynamical system under consideration consists of time-varying neutral, discrete, and
distributed delays without any restriction on upper bounds of derivatives of time-varying
delays. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor
model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a
suitable change of variables, new sufficient conditions are established for the stability of
the considered system, which are neutral-delay-dependent, discrete-delay-range-dependent,
and distributed-delay-dependent. The conditions are presented in terms of LMIs and can be
easily solved by existing convex optimization techniques. Two numerical examples are given
to demonstrate the less conservatism of the proposed results over some existence results in
the literature.
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Notations. The superscript ′T ′ stands for matrix transposition; Rn denotes the n-
dimensional Euclidean space; Rn×m is the set of all real m by n matrices. ‖ · ‖ refers to the
Euclidean vector norm or the induced matrix 2-norm. col {· · · } and diag {· · · } represent,
respectively, a column vector and a block diagonal matrix, and the operator sym (A)
represents A + AT . λmin(A) and λmax(A) denote, respectively, the smallest and largest
eigenvalue of the square matrix A. The notation P > 0 means that P is real symmetric and
positive definite; the symbol ∗ denotes the elements below the main diagonal of a symmetric
block matrix.

2. Problem Description

Consider a class of linear neutral systems with different time-varying neutral, discrete, and
distributed delays and nonlinear parameter perturbations represented by

ẋ(t) − C ẋ(t − τ(t)) = Ax(t) + B x(t − h(t)) +G1 f1(t, x(t)) +G2 f2(t, x(t − h(t)))

+G3

∫ t

t−r(t)
f3(θ, x(θ))dθ +G4 f4

(
t, ẋ(t − τ(t))

)
,

x(t) = φ(t), t ∈ [−κ, 0],

(2.1)

where κ := max{h2, τ1, r1}, and x(t) ∈ Rn is the state vector. The time-varying vector valued
initial function φ(t) is a continuously differentiable functional, and the time-varying delays
h(t), τ(t), and r(t) are functions satisfying, respectively,

0 < h1 ≤ h(t) ≤ h2,
∣∣ḣ(t)∣∣ ≤ h3 < ∞, (2.2a)

0 < τ(t) ≤ τ1,
∣∣τ̇(t)∣∣ ≤ τ2 < ∞, (2.2b)

0 < r(t) ≤ r1,
∣∣ṙ(t)∣∣ ≤ r2 < ∞. (2.2c)

The time-varying vector-valued functions fi : R+ × Rn → Rni (i = 1, . . . , 4) are continuous
and satisfy fi(t, 0) = 0, and the Lipschitz conditions, that is, ‖fi(t, x0)−fi(t, y0)‖ ≤ ‖Ui(x0−y0)‖
for all t and for all x0, y0 ∈ Rn such that Ui are some known matrices.

Remark 2.1. In this case, h(t) is called an interval-like or range-like time-varying delay [14].
It is also noted that this kind of time-delay describes the real situation in many practical
engineering systems. For example, in the field of networked control systems, the network
transmission induced delays (either from the sensor to the controller or from the controller to
the plant) can be assumed to satisfy (2.2a)without loss of generality [43, 44].

Throughout the paper, the following assumptions are needed to enable the application
of Lyapunov’s method for the stability of neutral systems [1]:

(A1) let the difference operator D : C([−κ, 0],Rn) → Rn given by Dxt = x(t) − Cx(t −
τ(t)) be delay-independently stable with respect to all delays. A sufficient condition
for (A1) is that

(A2) all the eigenvalues of the matrix C are inside the unit circle.
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Before ending this section, we recall the following lemmas, which will be used in the
proof of our main results.

Lemma 2.2 (see [9]). For any arbitrary column vectors a(s), b(s) ∈ Rp, any matrix W ∈ Rp×p,
and positive-definite matrixH ∈ Rp×p, the following inequality holds:

−2
∫ t

t−r(t)
b(s)Ta(s)ds ≤

∫ t

t−r(t)

[
a(s)

b(s)

]T [
H HW

∗ (HW + I)TH−1(HW + I)

][
a(s)

b(s)

]
ds. (2.3)

Lemma 2.3 (see [45]). Given matrices Y = YT ,D, E, and F of appropriate dimensions with FTF ≤
I, then the following matrix inequality holds:

Y + sym(DFE) < 0, (2.4)

for all F if and only if there exists a scalar ε > 0 such that

Y + εDDT + ε−1ETE < 0. (2.5)

3. Main Results

In this section, new delay-range-dependent sufficient conditions for the asymptotic stability
of the neutral system (2.1) are presented. By utilizing the Leibniz-Newton formula, the
following two zero equations hold:

L1x(t) − L1x(t − h(t)) − L1

∫ t

t−h(t)
ẋ(s)ds = 0, (3.1a)

L2x(t) − L2x(t − τ(t)) − L2

∫ t

t−τ(t)
ẋ(s)ds = 0, (3.1b)

then, we can represent the system (2.1) as

ẋ(t) − C ẋ(t − τ(t)) = Ã x(t) + B̃ x(t − h(t)) +G1 f1(t, x(t)) +G2 f2(t, x(t − h(t)))

− L2x(t − τ(t)) − L1

∫ t

t−h(t)
ẋ(s)ds

− L2

∫ t

t−τ(t)
ẋ(s)ds +G3

∫ t

t−r(t)
f3(θ, x(θ))dθ +G4 f4(t, ẋ(t − τ(t))),

(3.2)

with Ã := A + L1 + L2 and B̃ := B − L1 where the matrices L1, L2 ∈ Rn×n will be chosen in the
following theorem.
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Theorem 3.1. Under (A1), for given scalars γ, h1, h2, τ1, r1 > 0, h3, τ2, r2, the neutral system (2.1)
is asymptotically stable, if there exist some scalars δ, α1, α2, matrices P2, {Ni}20i=1, Y1, Y2, and positive-
definite matrices P1, {Qi}4i=1, {Ri}4i=1, H̃1, H̃2, such that the following LMI is feasible:

Π =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π11 Π12 Π13 Π14 Π15 Π16 Π17 Π18 Π19 Π1,10 Π1,11

∗ Π22 Π23 0 −BTNT
17 0 Π27 −BTNT

19 Π29 Π2,10 0

∗ ∗ Π33 0 0 0 Π37 0 Π39 0 0

∗ ∗ ∗ Π44 0 0 −NT
15 0 −NT

16 Π4,10 0

∗ ∗ ∗ ∗ Π55 Π56 −CTNT
18 −N17G3 −CTNT

20 0 0

∗ ∗ ∗ ∗ ∗ Π66 Π67 Π68 Π69 0 0

∗ ∗ ∗ ∗ ∗ ∗ Π77 −N18G3 −N18G4 Π7,10 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88 −GT
3N

T
20 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −sym(N20G4
)

Π9,10 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π10,10 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π11,11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(3.3)

with

Π11 = sym

⎛
⎝
⎡
⎣ PT

2 A +
(
1 + α1

)
Y1 +

(
1 + α2

)
Y2 P1 − PT

2

δ
(
PT
2 A +

(
1 + α1

)
Y1 +

(
1 + α2

)
Y2
) −δPT

2

⎤
⎦
⎞
⎠ + Ω,

Π12 =

⎡
⎣P

T
2 B − (1 + α1

)
Y1 +NT

2 −N1 −N5 +N9

δPT
2 B − δ

(
1 + α1

)
Y1

⎤
⎦ , Π13 =

⎡
⎣N5 N9

0 0

⎤
⎦ ,

Π14 =

⎡
⎣−
(
1 + α2

)
Y2 +NT

14 −N13

−δ(1 + α2
)
Y2

⎤
⎦ , Π15 =

⎡
⎣P

T
2 C −ATNT

17

δPT
2 C +NT

17

⎤
⎦ ,

Π16 =

⎡
⎣ PT

2 G1 PT
2 G2

δPT
2 G1 δPT

2 G2

⎤
⎦ , Π17 =

⎡
⎣N

T
3 +NT

15 −ATNT
18

NT
18

⎤
⎦ ,

Π18 =

[
PT
2 G3 −ATNT

19

δPT
2 G3 +NT

19

]
, Π19 =

[
PT
2 G4 +NT

4 +NT
16 −ATNT

20

δPT
2 G4 +NT

20

]
,

Π1,10 =

[
h12N1 h12N5 h12N9 τ1N13

0 0 0 0

]
,
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Π1,11 =

⎡
⎣ h2

(
α1 + 1

)
H̃1 τ1

(
α1 + 1

)
H̃2 h2

[
0

I

][
Y1

δY1

]T
τ1

[
0

I

][
Y2

δY2

]T ⎤
⎦ ,

Π22 = UT
2U2 −

(
1 − h3

)
R3 − sym

(
N2 +N6 −N10

)
, Π23 =

[
N6 N10

]
,

Π27 = −NT
3 −NT

7 +NT
11 − BTNT

18, Π29 = −NT
4 −NT

8 +NT
12 − BTNT

20,

Π2,10 =
[
h12N2 h12N6 h12N10 0

]
, Π33 = diag

{ − R1,−R2
}
, Π37 =

⎡
⎣ NT

7

−NT
11

⎤
⎦ ,

Π39 =

[
NT

8

−NT
12

]
, Π44 = −(1 − τ2

)
Q1 − sym

(
N14

)
, Π4,10 =

[
0 0 0 τ1N14

]
,

Π55 = −(1 − τ2
)
Q2 − sym

(
N17C

)
+UT

4U4, Π56 =
[−N17G1 −N17G2

]
,

Π66 = diag{−I,−I}, Π67 =

[−GT
1N

T
18

−GT
2N

T
18

]
, Π68 =

[
N19G1 N19G2

]T
,

Π69 =

[−GT
1N

T
20

−GT
2N

T
20

]
, Π77 = −I + r21Q4, Π88 = −(1 − r2

)
Q4 − sym

(
N19G3

)
,

Π4,10 =
[
0 0 0 τ1N14

]
, Π7,10 =

[
h12N3 h12N7 h12N11 τ1N15

]
,

Π9,10 =
[
h12N4 h12N8 h12N12 τ1N16

]
,

Π10,10 = diag
{ − h12R4,−h12R5,−h12R4,−τ1Q3

}
,

Π1,11 = diag
{ − h2H̃1,−τ1H̃2,−h2H̃1,−τ1H̃2

}
,

(3.4)

where Ω = diag{Q1 +
∑3

i=1Ri +UT
1U1 +UT

3U3 + sym(N1 +N13), Q2 + τ1 Q3 + h12R4 + h2R5}.

Proof. Firstly, we represent (3.2) in an equivalent descriptor model form as

ẋ(t) = η(t),

0 = −η(t) + Ã x(t) + Cη(t − τ(t)) + B̃ x(t − h(t)) − L2 x(t − τ(t))

+G1 f1(t, x(t)) +G2 f2(t, x(t − h(t))) − L1

∫ t

t−h(t)
η(s)ds − L2

∫ t

t−τ(t)
η(s)ds

+G3

∫ t

t−r(t)
f3(θ, x(θ))dθ +G4 f4(t, η(t − τ(t))).

(3.5)
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Define the Lyapunov-Krasovskii functional

V (t) =
6∑
i=1

Vi(t), (3.6)

where

V1(t) = x(t)TP1 x(t) := ξ(t)T TPξ(t),

V2(t) =
∫ t

t−τ(t)

[
x(s)TQ1x(s) + η(s)TQ2η(s)

]
ds

+
∫ t

t−h(t)
x(s)TR3x(s)ds +

2∑
i=1

∫ t

t−hi

x(s)TRix(s)ds,

V3(t) =
∫−h1

−h2

∫ t

t+θ
η(s)TR4η(s)dsdθ +

∫0

−h2

∫ t

t+θ
η(s)TR5η(s)dsdθ,

V4(t) =
∫0

−τ1

∫ t

t+θ
η(s)TQ3η(s)dsdθ,

V5(t) =
∫0

−h2

∫ t

t+θ
η(s)T

[
0
L1

]T
H1

[
0
L1

]
η(s)dsdθ

+
∫0

−τ1

∫ t

t+θ
η(s)T

[
0
L2

]T
H2

[
0
L2

]
η(s)dsdθ,

V6(t) =
∫ t

t−r(t)

[∫ t

s

f3(θ, x(θ))
T dθ

]
Q4

[∫ t

s

f3(θ, x(θ))
Tdθ

]
ds

+
∫ r1

0

∫ t

t−s
(θ − t + s) f3(θ, x(θ))

T Q4 f3(θ, x(θ))dθ ds,

(3.7)

with ξ(t) := col{x(t), η(t)}, T = diag{I, 0}, and P =
[ P1 0
P2 P3

]
, where P1 = PT

1 > 0.
On the other hand, noting that V (φ(t), t) ≥ λmin(P1) ‖φ(0)‖2. According to [34], using

the Cauchy-Schwarz inequality and after some manipulations, we obtain

V (φ(t), t) ≤ V (φ(0), 0) ≤ ρ

[
‖φ(0)‖2 +

∫0

−κ

∥∥φ̇(θ)∥∥2 dθ

]
, (3.8)

where ρ := max(ρ1, ρ2) with

ρ1 := λmax
(
P1
)
+ 2τ1λmax

(
Q1
)
+ 2h1λmax

(
R1
)

+ 2h2λmax
(
R2
)
+ 2h2λmax

(
R3
)
+ 3r21λmax

(
UT

3Q4U3
)
,
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ρ2 := 2τ21λmax
(
Q1
)
+ λmax

(
Q2
)
+ 2h2

2λmax
(
R3
)
+ 2h2

1λmax
(
R1
)
+ 2h2

2λmax
(
R2
)

+ h2λmax
(
R5
)
+
(
h1 + h2

)
λmax

(
R4
)
+ τ1λmax

(
Q3
)

+ h2λmax

([
0
L1

]T
H1

[
0
L1

])
+ τ1λmax

([
0
L2

]T
H2

[
0
L2

])
+
11
3
r31λmax

(
UT

3Q4U3
)
.

(3.9)

Differentiating V1(t) along the system trajectory becomes

V̇1(t) = 2x(t)TP1 ξ̇(t)

= 2ξ(t)TPT

[
ẋ(t)
0

]

= 2ξ(t)TPT

{
Aξ(t) +

[
0
C

]
η(t − τ(t)) +

[
0
B̃

]
x(t − h(t)) −

[
0
L2

]
x(t − τ(t))

+
[
0
G1

]
f1(t, x(t)) +

[
0
G2

]
f2(t, x(t − h(t)))

+G3

∫ t

t−r(t)
f3(θ, x(θ))dθ +G4 f4(t, η(t − τ(t)))

}
+ β1(t) + β2(t),

(3.10)

where

A :=

[
0 I

Ã −I

]
, β1(t) = −2

∫ t

t−h(t)
ξ(t)TPT

[
0
L1

]
η(s)ds,

β2(t) = −2
∫ t

t−τ(t)
ξ(t)TPT

[
0
L2

]
η(s)ds.

(3.11)

Using Lemma 2.2 for a(s) = col{0, Li}ξ(s) and b = P col{ξ(t), η(t)}, we obtain

β1(t) ≤ h2 ξ(t)
TPT(WT

1 H1 + I
)T
H−1

1

(
WT

1 H1 + I
)
Pξ(t)

+ 2 ξ(t)TPTWT
1 H1

[
0
L1

]
(x(t) − x(t − h(t)))

+
∫ t

t−h2

η(s)T
[
0
L1

]T
H1

[
0
L1

]
η(s)ds,

β2(t) ≤ τ1ξ(t)
TPT(WT

2 H2 + I
)T
H−1

2

(
WT

2 H2 + I
)
Pξ(t)

+ 2 ξ(t)TPTWT
2 H2

[
0
L2

]
(x(t) − x(t − τ(t)))

+
∫ t

t−τ1
η(s)T

[
0
L2

]T
H2

[
0
L2

]
η(s)ds.

(3.12)
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Differentiating the second Lyapunov term in (3.6) gives

V̇2(t) = x(t)T
(
Q1 +

3∑
i=1

Ri

)
x(t) + η(t)T Q2 η(t) −

(
1 − ḣ(t)

)
xT (t − h(t))R3 x(t − h(t))

− (1 − τ̇(t)
)
xT (t − τ(t))Q1 x(t − τ(t))

− (1 − τ̇(t)
)
ηT (t − τ(t))Q2 η(t − τ(t)) −

2∑
i=1

x
(
t − hi

)T
Ri x

(
t − hi

)

≤ x(t)T
(
Q1 +

3∑
i=1

Ri

)
x(t) + η(t)T Q2 η(t) −

(
1 − h3

)
xT (t − h(t))R3x(t − h(t))

− (1 − τ2
)
xT (t − τ(t))Q1 x(t − τ(t))

− (1 − τ2
)
ηT (t − τ(t))Q2 η(t − τ(t)) −

2∑
i=1

x
(
t − hi

)T
Ri x

(
t − hi

)
,

(3.13)

and the time derivative of the third term of V (t) in (3.6) is

V̇3(t) = η(t)T
(
h12R4 + h2R5

)
η(t) −

∫ t−h1

t−h2

η(s)TR4 η(s)ds −
∫ t

t−h2

η(s)TR5η(s)ds

≤ η(t)T
(
h12R4 + h2R5

)
η(t) −

∫ t−h(t)

t−h2

η(s)TR4η(s)ds −
∫ t−h1

t−h(t)
η(s)T

(
R4 + R5

)
η(s)ds,

(3.14)

and, similarly,

V̇4(t) = τ1η(t)
TQ3η(t) −

∫ t

t−τ1
η(s)TQ3η(s)ds ≤ τ1η(t)

TQ3η(t) −
∫ t

t−τ(t)
η(s)TQ3η(s)ds,

(3.15)

and also the time derivative of the fifth and sixth terms of V (t) in (3.6) are, respectively,

V̇5(t) = η(t)T
⎛
⎝h2

[
0

L1

]T
H1

[
0
L1

]
+ τ1

[
0
L2

]T
H2

[
0
L2

]⎞⎠η(t)

−
∫ t

t−h2

η(s)T
[
0
L1

]T
H1

[
0
L1

]
η(s)ds −

∫ t

t−τ1
η(s)T

[
0
L2

]T
H2

[
0
L2

]
η(s)ds,

(3.16)
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V̇6(t) = −(1 − ṙ(t)
)[∫ t

t−r(t)
f3(θ, x(θ))

Tdθ

]
Q4

[∫ t

t−r(t)
f3(θ, x(θ))dθ

]

+ 2
∫ t

t−r(t)
f3(t, x(t))

TQ4

[∫ t

s

f3(θ, x(θ))dθ
]
ds

+
∫ r1

0
sf3(t, x(t))

TQ4f3(t, x(t))ds −
∫ r1

0

∫ t

t−s
f3(θ, x(θ))

TQ4f3(θ, x(θ))dθ ds

≤
∫ t

t−r(t)
(θ − t + r(t))

[
f3(t, x(t))

TQ4f3(t, x(t)) + f3(θ, x(θ))
TQ4f3(θ, x(θ))

]
dθ

+
∫ r1

0
s f3(t, x(t))

TQ4 f3(t, x(t))ds

− (1 − r2
)[∫ t

t−r(t)
f3(θ, x(θ))

Tdθ

]
Q4

[∫ t

t−r(t)
f3(θ, x(θ))dθ

]

−
∫ t

t−r1

(
θ − t + r1

)
f3(θ, x(θ))

T Q4 f3(θ, x(θ))dθ

= r21 f3(t, x(t))
TQ4 f3(t, x(t)) −

(
1 − r2

)[∫ t

t−r(t)
f3(θ, x(θ))

Tdθ

]
Q4

[∫ t

t−r(t)
f3(θ, x(θ))dθ

]
.

(3.17)

For nonlinear functions fi(·), we have

0 ≤ −f1(t, x(t))Tf1(t, x(t)) + x(t)TUT
1U1x(t),

0 ≤ −f2(t, x(t − h(t)))Tf2(t, x(t − h(t))) + x(t − h(t))TUT
2U2x(t − h(t)),

0 ≤ −f3(t, x(t))Tf3(t, x(t)) + x(t)TUT
3U3x(t),

0 = −f4(t, η(t − τ(t)))Tf4(t, η(t − τ(t))) + η(t − τ(t))TUT
4U4η(t − τ(t)).

(3.18)

Moreover, from the Leibniz-Newton formula and the system (2.1), the following equations
hold for any matrices {Ni}10i=1 with appropriate dimensions:

2ϑT (t)χ1

(
x(t) − x(t − h(t)) −

∫ t

t−h(t)
η(s)ds

)
= 0,

2ϑT (t)χ2

(
x
(
t − h1

) − x(t − h(t)) −
∫ t−h1

t−h(t)
η(s)ds

)
= 0,

2ϑT (t)χ3

(
x(t − h(t)) − x

(
t − h2

) −
∫ t−h(t)

t−h2

η(s)ds
)

= 0,

2ϑT (t)χ4

(
x(t) − x(t − τ(t)) −

∫ t

t−τ(t)
η(s)ds

)
= 0,
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2ϑT (t)χ5

(
η(t) − Cη(t − τ(t)) −Ax(t) − Bx(t − h(t)) −G1f1(t, x(t)) −G2f2

(
t, x
(
t − h(t)

))

−G3

∫ t

t−r(t)
f3(θ, x(θ))dθ −G4f4

(
t, η
(
t − τ(t)

)))
= 0,

(3.19)

where

χ1 :=
[
NT

1 , 0,N
T
2 , 0, . . . , 0︸ ︷︷ ︸

6 elements

,NT
3 , 0,N

T
4

]T
,

χ2 :=
[
NT

5 , 0,N
T
6 , 0, . . . , 0︸ ︷︷ ︸

6 elements

,NT
7 , 0,N

T
8

]T

χ3 :=
[
NT

9 , 0,N
T
10, 0, . . . , 0︸ ︷︷ ︸

6 elements

,NT
11, 0,N

T
12

]T
,

χ4 :=
[
NT

13, 0, . . . , 0︸ ︷︷ ︸
4 elements

,NT
14, 0, . . . , 0︸ ︷︷ ︸

3 elements

,NT
15, 0,N

T
16

]T
,

χ5 :=
[
0, . . . , 0︸ ︷︷ ︸
6 elements

,NT
17, 0, 0,N

T
18,N

T
19,N

T
20

]T
,

ϑ(t) := col
{
x(t), η(t), x(t − h(t)), x

(
t − h1

)
, x
(
t − h2

)
, x(t − τ(t)),

η(t − τ(t)), f1(t, x(t)), f2(t, x(t − h(t))), f3(t, x(t)),∫ t

t−r(t)
f3(θ, x(θ))dθ, f4(t, η(t − τ(t)))

}
.

(3.20)

Using the obtained derivative terms (3.10)–(3.17) and adding the right- and the left-hand
sides of (3.18) and (3.19) into V̇ (t), the following result is obtained:

V̇ (t) =
6∑
i=1

V̇i(t)

≤ ϑ(t)T Σϑ(t) −
∫ t−h1

t−h(t)

(
ϑT (t)χ1 + ηT (s)R4

)
R−1

4

(
ϑT (t)χ1 + ηT (s)R4

)T
ds

−
∫ t−h1

t−h(t)

(
ϑT (t)χ2 + ηT (s)R5

)
R−1

5

(
ϑT (t)χ2 + ηT (s)R5

)T
ds

−
∫ t−h1

t−h(t)

(
ϑT (t)χ3 + ηT (s)R4

)
R−1

4

(
ϑT (t)χ3 + ηT (s)R5

)T
ds

−
∫ t

t−τ(t)

(
ϑT (t)χ4 + ηT (s)Q3

)
Q−1

3

(
ϑT (t)χ4 + ηT (s)Q3

)T
ds,

(3.21)
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where Σ := Π̂ +h12χ1R
−1
4 χT

1 +h12χ2 R
−1
5 χT

2 +h12χ3 R
−1
4 χT

3 +τ1χ4Q
−1
3 χT

4 , and the matrix Π̂ is given
by

Π̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π̂11 Π̂12 Π13 Π̂14 Π̂15 Π̂16 Π17 Π̂18 Π̂19

∗ Π22 Π23 0 −BTNT
17 0 Π27 −BTNT

19 Π29

∗ ∗ Π33 0 0 0 Π37 0 Π39

∗ ∗ ∗ Π44 0 0 −NT
15 0 −NT

16

∗ ∗ ∗ ∗ Π55 Π56 −CTNT
18 −N17G3 −CTNT

20

∗ ∗ ∗ ∗ ∗ Π66 Π67 Π68 Π69

∗ ∗ ∗ ∗ ∗ ∗ Π77 −N18G3 −N18G4

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88 −GT
3N

T
20

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −sym(N20G4
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.22)

with

Π̂11 = sym
(
PT

(
A +

(
WT

1 H1

[
0

L1

]
+WT

2 H2

[
0

L2

])
[ I 0 ]

))

+ PT[h2
(
WT

1 H1 + I
)T
H−1

1

(
WT

1 H1 + I
)

+ τ1
(
WT

2 H2 + I
)T
H−1

2

(
WT

2 H2 + I
)]
P

+

[
0

I

]⎛
⎝h2

[
0

L1

]T
H1

[
0

L1

]
+ τ1

[
0

L2

]T
H2

[
0

L2

]⎞
⎠
[
0

I

]T
+ Ω ,

Π̂12 = PT

[
0

B̃

]
− PTWT

1 H1

[
0

L1

]
+

[
NT

2 −N1 −N5 +N9

0

]
,

Π̂14 = −PT

[
0

L2

]
− PTWT

2 H2

[
0

L2

]
+

[
NT

14 −N13

0

]
, Π̂15 = PT

[
0

C

]
+

[−ATNT
17

NT
17

]
,

Π̂16 = PT

[
0 0

G1 G2

]
, Π̂18 = PT

[
0

G3

]
+

[−ATNT
19

NT
19

]
,

Π̂19 = PT

[
0

G4

]
+

⎡
⎣N

T
4 +NT

16 −ATNT
20

NT
20

⎤
⎦ .

(3.23)
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Now, if Σ < 0 holds, then V̇ (t) < 0 whichmeans that the neutral system (2.1) is asymptotically
stable. By applying the Schur complement, the matrix inequity Σ < 0 results in

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π̃11 Π̂12 Π13 Π̂14 Π̂15 Π̂16 Π17 Π̂18 Π̂19 Π1,10 Π̂1,11

∗ Π22 Π23 0 −BTNT
17 0 Π27 −BTNT

19 Π29 Π2,10 0

∗ ∗ Π33 0 0 0 Π37 0 Π39 0 0

∗ ∗ ∗ Π44 0 0 −NT
15 0 −NT

16 Π4,10 0

∗ ∗ ∗ ∗ Π55 Π56 −CTNT
18 −N17G3 −CTNT

20 0 0

∗ ∗ ∗ ∗ ∗ Π66 Π67 Π68 Π̂69 0 0

∗ ∗ ∗ ∗ ∗ ∗ Π77 −N18G3 −N18G4 Π7,10 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88 −GT
3N

T
20 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −sym(N20G4
)

Π9,10 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π10,10 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π̂11,11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(3.24)

with

Π̃11 = sym
(
PT

(
A +

(
WT

1 H1

[
0
L1

]
+ WT

2 H2

[
0
L2

] ) [
I 0

]))
+ Ω,

Π̂1,11 =

[
h2P

T
(
WT

1 H1 + I
)T
H1 τ1P

T
(
WT

2 H2 + I
)T
H2 h2

[
0
I

] [
0
L1

]T
τ1

[
0
I

] [
0
L2

]T ]
,

Π̂11,11 = diag
{ − h2H1,−τ1H2,−h2H1,−τ1H2

}
,

(3.25)

where Hi = H−1
i (i = 1, 2).

Following [34, 35], we choose P3 = δP2, δ ∈ R, where δ is a tuning scalar parameter
(which may be restrictive). Let

ζ = diag

⎧⎪⎨
⎪⎩ I, . . . , I︸ ︷︷ ︸

16 elements

, PT , . . . , PT︸ ︷︷ ︸
4 elements

⎫⎪⎬
⎪⎭ . (3.26)

Premultiplying ζ and postmultiplying ζT to the matrix inequality (3.24) and considering Yi :=
PT
2 Li, H̃i := PTHiP , and Hi Wi = αi I (i = 1, 2) to eliminate the nonlinearities in the matrix

inequality, we obtain the LMI (3.3). Moreover, from (2.1) and the fact that x(t) is square
integrable on [0, ∞), it follows that Dηt ∈ Ln

2[0, ∞). Under (A1), the later implies that η(t −
τ(t)) ∈ Ln

2[0, ∞). Therefore, by [1, Theorem 1.6], we conclude that the neutral system (2.1) is
asymptotically stable.

Remark 3.2. The results given in Theorem 3.1 are derived for system (2.1) with time-
varying delays h(t), τ(t), and r(t) satisfying (2.2a), (2.2b), and (2.2c), where the derivatives
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of the time-varying delays are available. However, in many situations, the information
on the derivative of time-varying delays is unknown a prior. In such circumstances,
the corresponding delay-rate-independent stability analysis results for time-delays only
satisfying

0 < h1 ≤ h(t) ≤ h2 < ∞,

0 < τ(t) ≤ τ1 < ∞,

0 < r(t) ≤ r1 < ∞,

(3.27)

can be easily obtained by setting Q1 = Q2 = Q4 = R3 = 0 in Theorem 3.1.

Remark 3.3. The reduced conservatism of Theorem 3.1 benefits from the construction of
the new Lyapunov-Krasovskii functional in (3.6), utilizing Leibniz-Newton formula, using
a free-weighting matrix technique, and no bounding technique is needed to estimate the
inner product of the involved crossing terms (see, e.g., [12, 20]). It can be easily seen that
results of this paper are quite different from most existing results in the recent literature
in the following perspectives. (a) Theoretically stability analysis of neutral systems with
different time-varying neutral, discrete, and distributed delays is much more complicated,
especially, for the case where the delays are time-varying and different. (b) In this paper,
the derived sufficient conditions are convex, neutral-delay-dependent, discrete-delay-range-
dependent, and distributed-delay-dependent, which make the treatment in the present paper
more general with less conservative in compare tomost existing results in the literature which
are independent of the neutral or distributed delays; see for instance [21, 22, 38].

4. Uncertainty Characterization

In this section, we will discuss the uncertainty characterization for the linear neutral system
(2.1) with different time-varying neutral, discrete, and distributed delays and nonlinear
parameter perturbations.

4.1. Polytopic Uncertainty

The first class of uncertainty frequently encountered in practice is the polytopic uncertainty
[2]. In this case, the matrices of the system (2.1) are not exactly known, except that they are
within a compact set Ω denoting

Ω =
[
C A B G1 G2 G3

]
. (4.1)

We assume that

Ω =
N∑
j=1

sj Ωj (4.2)
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for some scalars sj satisfying

0 ≤ sj ≤ 1,
N∑
j=1

sj = 1, (4.3)

where the N vertices of the polytope are described by

Ωj =
[
C(j) A(j) B(j) G

(j)
1 G

(j)
2 G

(j)
3

]
. (4.4)

In order to take into account the polytopic uncertainty in the system (2.1), we derive
the following result from applying the same transformation that was used in deriving
Theorem 3.1.

Theorem 4.1. Under (A1), for given scalars γ, h1, h2, τ1, r1 > 0, h3, τ2, r2, if the uncertainty set
Ω is polytopic with vertices Ωj , j = 1, 2, . . . ,N, then the system described by (2.1), (2.2a),
(2.2b), (2.2c), and (4.2)–(4.4) is asymptotically stable if there exist some scalars δ, α1, α2, matrices
P2, {Ni}20i=1, Y1, Y2, and positive-definite matrices P1, {Qi}4i=1, {Ri}4i=1, H̃1, H̃2 such that LMI (3.3) is
satisfied for all

[
C A B G1 G2 G3

]
=
[
C(j) A(j) B(j) G

(j)
1 G

(j)
2 G

(j)
3

]
, j = 1, 2, . . . ,N. (4.5)

Proof. It follows directly from the proof of Theorem 3.1 and using properties of (4.2)–(4.4).

4.2. Norm-Bounded Uncertainty

There are also other uncertainties that cannot be reasonably modeled by a polytopic
uncertainty set with a number of vertices. In such a case, it is assumed that the deviation
of the system parameters of an uncertain system from their nominal values is norm bounded
[2]. In our case, consider the time-varying structured uncertain neutral system

ẋ(t) − (C + ΔC(t)) ẋ(t − τ(t)) = (A + ΔA(t))x(t) + (B + ΔB(t))x(t − h(t))

+
(
G1 + ΔG1(t)

)
f1(t, x(t))

+
(
G2 + ΔG2(t)

)
f2(t, x(t − h(t)))

+
(
G3 + ΔG3(t)

)∫ t

t−r(t)
f3(θ, x(θ))dθ

+
(
G4 + ΔG4(t)

)
f4
(
t, ẋ(t − τ(t))

)
,

x(t) = φ(t), t ∈ [−κ, 0],

(4.6)
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where the time-varying structured uncertainties are said to be admissible if the following
form holds:

[
ΔC(t) ΔA(t) ΔB(t) ΔG1(t) ΔG2(t) ΔG3(t) ΔG4(t)

]

= M1 Δ(t)
⌊
Lc La Lb Lg1 Lg2 Lg3 Lg4

⌋
,

(4.7)

where Lc, La, Lb, Lg1 , Lg2 , Lg3 , Lg4 are constant matrices with appropriate dimensions, Δ(t) is
an unknown, real, and possibly time-varying matrix with Lebesgue measurable elements,
and its Euclidean norm satisfies

‖Δ(t)‖ ≤ 1, ∀t. (4.8)

In this section, wemodify (A1)-(A2) in order to enable the application of Lyapunov’s method
for the stability of the time-varying structured uncertain neutral system (4.6) as follows:

(A′1) let the difference operator D : C([−κ, 0],Rn) → Rn given by Dxt = x(t) −
(C + ΔC(t))x(t − τ(t)) be delay-independently stable with respect to all delays. A
sufficient condition for (A′1) is that

(A′2) all the eigenvalues of the matrix C + ΔC(t) are inside the unit circle, that is, ‖C +
ΔC(t)‖ < 1.

Theorem 4.2. Under (A′1), for given scalars γ, h1, h2, τ1, r1 > 0, h3, τ2, r2, the neutral system
(4.6) with admissible uncertainties (4.7) and (4.8) is robustly asymptotically stable if there exist
some scalars {λi}4i=1 > 0, δ, α1, α2, matrices P2, {Ni}20i=1, Y1, Y2, and positive-definite matrices
P1, {Qi}4i=1, {Ri}4i=1, H̃1, H̃2, such that the following LMI is feasible:

⎡
⎢⎣
Π Ψ1 Ψ2

∗ −Ψ3 0
∗ ∗ −Ψ3

⎤
⎥⎦ < 0, (4.9)

where Ψ1 = [Γd1 Γd2 Γd3 Γd4 ], Ψ2 = [λ1ΓTe1 λ2ΓTe2 λ3ΓTe3 λ4ΓTe4 ], and Ψ3 = diag{λ1I, λ2I, λ3I,
λ4I} with

Γd1 =
[
MT

1P2 δMT
1P2 0 · · · 0︸ ︷︷ ︸

18 elements

]T
,

Γe1 =
[
La 0 Lb 0 · · · 0︸ ︷︷ ︸

3 elements

Lc Lg1 Lg2 0 Lg3 Lg4 0 · · · 0︸ ︷︷ ︸
8 elements

]
,

Γd2 =
[ 0 · · · 0︸ ︷︷ ︸

6 elements

MT
1N

T
17 0 · · · 0︸ ︷︷ ︸

13 elements

]T
,

Γe2 =
[ −La 0 −Lb 0 · · · 0︸ ︷︷ ︸

3 elements

−Lc 0 · · · 0︸ ︷︷ ︸
13 elements

]
,
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Γd3 =
[ 0 · · · 0︸ ︷︷ ︸

7 elements

−MT
1N

T
17 0 · · · 0︸ ︷︷ ︸

12 elements

]T
,

Γe3 =
[ 0 · · · 0︸ ︷︷ ︸

7 elements

Lg1 Lg2 0 Lg3 Lg4 0 · · · 0︸ ︷︷ ︸
8 elements

]
,

Γd4 =
[ 0 · · · 0︸ ︷︷ ︸

9 elements

MT
1N

T
19 0 · · · 0︸ ︷︷ ︸

10 elements

]T
,

Γe4 =
[ 0 0 −Lb 0 · · · 0︸ ︷︷ ︸

4 elements

−Lg1 −Lg2 0 −Lg3 −Lg4 0 · · · 0︸ ︷︷ ︸
8 elements

]
.

(4.10)

Proof. If the matrices C,A, B,G1, G2, G3, G4 in (3.3) are replaced with C + M1Δ(t)Lc, A +
M1Δ(t)La, B + M1Δ(t)Lb, G1 + M1Δ(t)Lg1 , G2 + M1Δ(t)Lg2 , G3 + M1Δ(t)Lg3 , and G4 +
M1Δ(t)Lg4 , respectively, then (3.3) with the admissible uncertainties (4.7) is equivalent to
the following condition:

Π +
4∑
i=1

sym
(
ΓTdi

Δ(t)Γei
)
< 0. (4.11)

By Lemma 2.3, a necessary and sufficient condition for (4.11) is that there exist some {λi}4i=1 >
0 such that

Π +
4∑
i=1

[
λ−1i ΓTdi

Γdi + λiΓTeiΓei
]
< 0. (4.12)

Applying Schur complements, we find that (4.12) is equivalent to (4.9).

Remark 4.3. It is noted that our approach is different from that in the reference [20] in
several perspectives. (a) The system structure in [20] considers a system with different
time-varying neutral and discrete delays and in compare to our case do not center on time-
varying distributed delays, that is, the results in [20] cannot be directly applied to the systems
with different time-varying neutral, discrete, and distributed delays. (b) Their system only
considers the case that the range of the time-varying delay h(t) is from 0 to an upper bound
in compare to our case that the time-varying discrete delay (h(t)) lies in a range, in which
the lower bound is not 0. (c) The derived neutral-delay-range-independent conditions and
using the inequality bounding technique [11, Lemma 1] employed for some cross terms
encountered in their analysis conditions may produce conservative results in comparison
with the present paper.
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Table 1: Comparative results for h2.

η1 = 0, η2 = 0.1 η1 = 0.1, η2 = 0.1
h3 = 0 h3 = 0.5 h3 = 0 h3 = 0.5

Results of [10] 0.6811 0.5467 0.6129 0.4950
Results of [18] 1.3279 0.6743 1.2503 0.5716
Results of [21] 2.742 1.142 1.875 1.009
Results of [22] 3.744 1.471 2.443 1.299
Results of this paper 3.8205 1.6350 2.7105 1.3580

Table 2: Comparative results for h2.

η3 = 0.0 η3 = 0.1 η3 = 0.2 η3 = 0.3
Results of [9] 0.7437 0.5131 0.3112 0.1398
Results of [20] 0.7749 0.5658 0.3859 0.2357
Results of this paper 0.8429 0.6903 0.4504 0.3015

5. Numerical Results

In this section, two examples are provided to illustrate the effectiveness of the results obtained
in the previous sections.

Example 5.1. Consider the neutral system (2.1)with the following matrices adopted from [9]:

A =

[
−1.2 0.1
−0.1 −1

]
, B =

[
−0.6 0.7
−1 −0.8

]
, G1 = G2 = I, G3 = 0, (5.1)

and the nonlinear parameter perturbations ‖f1(t, x(t))‖ ≤ η1‖x(t)‖ and ‖f2(t, x(t − h(t)))‖ ≤
η2‖x(t − h(t))‖, where η1, η2 ≥ 0.

Case 1. Assume that C = 0, h1 = 0, and G4 = 0. Applying the criteria in [10, 18, 21, 22]
and Theorem 3.1 in this paper, the maximum value of h2 for stability of system under
consideration is listed in Table 1. Furthermore, in the case of h3 = 0.5 and η1 = η2 = 0.1
by the criteria in [20], the nominal system is asymptotically stable for any h(t) satisfying
h2 = 1.0097. It is easy to see that the stability criterion in this paper gives a much less
conservative result than that in [10, 20–22], and also the maximum value of h2 decreases
as ηi increases. Moreover, unlike the results obtained in [10, 18, 21, 22] our approach can also
consider the case h3 ≥ 1 and handle fast time-varying delays completely.

Case 2. Assume that C = diag{0.1, 0.1}, G4 = I, h1 = 0, h3 = τ2 = 0.5, and ‖f4(t, ẋ(t − τ(t)))‖ ≤
η3‖ẋ(t−τ(t))‖. We also calculate themaximumdelay bounds h2 that guarantee the asymptotic
stability of the system under consideration by Theorem 3.1 in this paper and developed
methods in [9, 20] for different values of the parameter η3, as listed in Table 2. It can be seen
from the table that h2 decreases as η3 increases, and the stability condition in Theorem 3.1 of
this paper is less conservative than that in [9, 20].
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Table 3: Upper bounds of delays h2 with respect to r2.

r2 0.1 0.3 0.5 0.7 0.9
h2 1.6025 1.5875 1.5215 1.4050 1.1510

Table 4: Upper bounds of delays r2 with respect to h2.

h2 0.1 0.3 0.5 0.7 0.9
r2 1.2560 1.2358 1.2125 1.1950 1.1045

Example 5.2 (see [46]). Consider the system (4.6) with the following matrices:

A =

[
−2 0
0 −3

]
, G1 =

[
0.5 −0.1
−0.2 −0.3

]
, G2 =

[
0.2 −0.4
0.1 0.2

]
, G3 =

[
0.4 0.3
0.1 0.2

]
,

La =

[
0 0
0.2 0.2

]
, Lg1 =

[
0 0
0.1 0.1

]
, Lg2 =

[
0 0
0.3 0.3

]
, Lg3 =

[
0 0
0.2 0.2

]
,

B = C = G4 = Lc = Lb = Lg4 = 0, M1 = I, U1 = U2 = U3 = I.

(5.2)

Recently, Kwon and Park in [46] derived the stability bound of h(t) = r(t) with h3 = r2 = 1
as 0 < h(t) ≤ 1.97 with the parameters above for the system (4.6). However, by applying
Theorem 4.2 to the system under consideration, one can see that our criterion is feasible for
0 < h(t) ≤ 2.0105. And for the condition h3 = 1, for fixed h2 or r2, the upper bounds of
delays h2 and r2 are shown in Tables 3 and 4, respectively. From Tables 3 and 4, it can be seen
that Theorem 4.2 provides a condition for guaranteeing stability with respect to given delay
bounds h(t) and r(t).

6. Conclusion

The problem of stability analysis has been presented in this paper for a class of
neutral systems with different time-varying neutral, discrete, and distributed delays and
nonlinear parameter perturbations using an appropriate Lyapunov-Krasovskii functional.
By combining the descriptor model transformation, the Leibniz-Newton formula, some
free-weighting matrices, and a suitable change of variables, new feasibility conditions,
which are neutral-delay-dependent, discrete-delay-range-dependent, and distributed-delay-
dependent, have been developed to ensure that the considered system is asymptotically
stable. The conditions were presented in terms of linear matrix inequalities (LMIs) and
solved by existing convex optimization techniques. Two numerical examples were given to
demonstrate the less conservatism of the proposed results over some existence results in the
literature.
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