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1. Introduction

To realistically model physical and biological systems with interactions, we generally need to
take into account the influence of the past states. Such a system can be modeled by a set of
delay differential equations (DDEs). Unlike a differential equation, the characteristic equation
of a DDE has an infinite number of eigenvalues due to the time delay. This implies that an
infinite number of modes may occur in the system governed by a DDE. It is possible that
a double Hopf bifurcation is induced by the time delay if the characteristic equation at an
equilibrium has eigenvalues with strict negative real parts except a pair of purely imaginary
eigenvalues. The study of double Hopf bifurcation has recently attracted particular attention
as the bifurcation exhibits rich dynamical behavior and creates complicated motions which
reflect the intrinsic properties of the system. In our previous research [1–3], it was found that
even a second-order controlled system with delayed feedback may undergo a double Hopf
bifurcation when the time delay and feedback gain are varied. Such phenomenon was also
observed by Reddy et al. [4], Balanov et al. [5], and Ma et al. [6]. These researches showed
that the time delay in various systems has a qualitative effect on dynamics. Physically, energy



2 Mathematical Problems in Engineering

between two modes is exchanged when a double Hopf bifurcation occurs in the system under
consideration. Therefore, a study of the effect of time delay on the dynamics of mathematical
models gives insight into possible mechanism behind the observed behavior.

There are three cases: nonresonances, weak (high-order), and strong (low-order)
resonances of the critical frequencies for a double Hopf bifurcation [7]. Let ±iω− and ±iω+

be the two pairs of purely imaginary eigenvalues of the characteristic equation for a DDE
and all other eigenvalues have negative real parts such that ω+ ≥ ω− > 0, k1 : k2 = ω− : ω+ at
the critical value of parameters. The double Hopf bifurcation is called nonresonance if k1 : k2

is irrational. If k1 : k2 is rational, the bifurcation is a strong (low-order) resonance when
k1 = 1 and k2 = 1, 2, 3, or 4, and a weak (high-order) resonance otherwise. Many methods
and techniques from the geometric theory of dynamical systems on ordinary differential
equations may be extended to study the former two cases. However, the problem for the last
case becomes complicated since a strong resonance may be a codimension-3 phenomenon
which requires three parameters for its unfolding. In fact, one of two single modes induced
by the 1 : 2 resonance may undergo saddle-node bifurcation, which leads to so-called
mixed modes. Thus, the 1 : 2 resonance is treated as a degenerate double bifurcation or
codimension-3 case when the saddle-node bifurcation point and double Hopf bifurcation
one coincide in three-parameters space. It is well known that dynamics derived from strong
resonance cannot be predicted from the theory of nonresonant double Hopf interactions.
The investigation of delay-induced double Hopf bifurcation with strong resonances is both
challenging and important. The first successful research for studying 1 : 2 strong resonant
double Hopf bifurcation of a DDE was performed by Campbell and LeBlanc [8] in terms of
the center manifold reduction (CMR). Using CMR for the study of resonant double Hopf
bifurcation is tedious. Moreover, the unfolding parameters obtained usually do not carry any
physical meaning. However, for the case of DDEs, the unfolding parameters are related to the
quantities of a physical system such as time delay and feedback gains in controlled systems.
For these issues, we propose an efficient but simple method in [9] to avoid the tedious
computation encountered in CMR. The result will also bring out the physical significance
of unfolding parameters in higher codimensional bifurcations.

In [9], we studied weak (high-order) resonant double Hopf bifurcations which arise
from time delay and other physical parameters in a type of two first-order delay differential
equations given by

Ż(t) = CZ(t) +DZ( t − τ) + εF(Z(t), Z(t − τ)), (1.1)

whereZ(t) = (x(t), y(t))T ∈ R2,C andD are 2×2 real constant matrices such thatC =
(
c11 c12

c21 c22

)

and D =
(
d11 d12

d21 d22

)
, F represents a nonlinear function in its variable with F(0, 0) = 0, ε is a

small parameter representing strength of nonlinearities, and τ the time delay. In addition, we
restricted our research to the following two cases in [9]:

(a) det(D) = 0, c22d11 − c21d12 − c12d21 + c11d22 + c11c22 − c12c21 /= 0;

(b) det(D)/= 0, c11 = c22, c12 = −c21, d11 = d22, d12 = d21 = 0, c11 > 0, c12 > 0, d11 /= 0.

We found a double Hopf bifurcation with 1 : 2 strong (or low-order) resonance occurring in
(1.1). The strong resonant bifurcation was left open since it requires three parameters for the
unfolding. In this paper, we extend our investigation to study this open problem.
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2. An Efficient Method for Studying Strong Resonant
Double Hopf Bifurcations

We follow the idea of [9] in this section. It can be seen from (1.1) that Z = 0 is always an
equilibrium point or trivial solution of the system. The characteristic equation at Z = 0 is
given by

det
(
λI − C −De−λτ

)
= 0, (2.1)

where I is the identity matrix. The characteristic equation (2.1) can be rewritten as

λ2 − λ
(
c1 + d1e

−λτ
)
+ cde−λτ + c2 + det(D)e−2λτ = 0, (2.2)

where

c1 = c11 + c22,

d1 = d11 + d22,

c2 = c11c22 − c12c21,

cd = c22d11 − c21d12 − c12d21 + c11d22.

(2.3)

The roots of the characteristic equation (2.2) are usually called the eigenvalues of the
equilibrium point of system (1.1). The stability of the trivial equilibrium point will change
when the system under consideration has zero or a pair of purely imaginary eigenvalues.
The former occurs when λ = 0 in (2.2) or cd + c2 + det(D) = 0, which leads to a static
bifurcation of the equilibrium point. The latter deals with the Hopf bifurcation such that
the dynamical behavior of the system changes from a static stable state to a periodic motion
or vice versa. The dynamics becomes complicated when the system has two pairs of purely
imaginary eigenvalues at a critical value of the time delay. We will concentrate on such cases.
For this, we let cd + c2 +det(D)/= 0. Thus, λ = 0 is not a root of the characteristic equation (2.2)
in the present paper. Such assumption can be realized in engineering as long as one chooses
a suitable feedback controller.

For case (a) with det(D) = 0 but cd + c2 /= 0, substituting λ = a + iω into (2.2), and
equating the real and imaginary parts to zero yield

a2 −ω2 − ac1 + c2 − e−aτω sin(τω)d1 + e−aτ cos(τω)(cd − ad1) = 0,

2aω −ωc1 − e−a τω cos(τω) d1 + e−a τ sin(τω)(ad1 − cd) = 0.
(2.4)

One can obtain the explicit expressions for the critical stability boundaries by setting a = 0 in
(2.4), given by

−ω2 + c2 + cd cos(τω) −ωd1 sin(τω) = 0,

−ωc1 − cd sin(τω) −ωd1 cos(τω) = 0.
(2.5)
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Eliminating τ from (2.5), we have

ω± =

√
d2

1 − c
2
1 + 2c2 ±

√(
d2

1 − c
2
1 + 2 c2

)2 − 4
(
c2

2 − c
2
d

)
√

2
,

(2.6)

where ω− < ω+ and when the following conditions hold:

c2
2 − c

2
d > 0,

(
d2

1 − c
2
1 + 2c2

)2
> 4

(
c2

2 − c
2
d

)
.

(2.7)

Then, two families of surfaces, denoted by τ− and τ+ which correspond to ω− and ω+,
respectively, can be derived from (2.4) and are given by

cos(ω−τ−) =
ω2
− cd − c2 cd −ω2

− c1d1

c2
d
+ω2

− d
2
1

,

cos(ω+τ+) =
ω2

+ cd − c2 cd −ω2
+ c1d1

c2
d +ω

2
+ d

2
1

.

(2.8)

It follows from (2.6) and (2.8) that ω± and τ± are functions of c1, d1, c2, and cd given in (2.3).
If there exist values of c1, d1, c2, and cd such that

τ− = τ+, (2.9)

ω− : ω+ = k1 : k2, (2.10)

where k1 = 1, k2 = 1, 2, 3, or 4, then such point is called the k1 : k2 strong or low-order
resonant double Hopf bifurcation point in parameter space. Equations (2.9) and (2.10) not
only determine the linearized system around the trivial equilibrium which has two pairs
of purely imaginary eigenvalues ±iω− and ±iω+, but also give a relation between ω− and
ω+. Equations (2.9) and (2.10) form the necessary conditions for the occurrence of a strong
resonant double Hopf bifurcation point. Equation (2.10) yields

d2
1 = c2

1 − 2c2 +
k2

1 + k
2
2

k1k2

√
c2

2 − c
2
d
, (2.11)

when condition (2.7) is satisfied. Substituting (2.11) into (2.6), one can obtain the frequencies
in the simple expressions given by

ω− =

√
k1

k2

√
c2

2 − c
2
d, ω+ =

√
k2

k1

√
c2

2 − c
2
d.

(2.12)
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The other parameters can be determined by (2.9) or the following equation:

arccos

⎛
⎜⎝
−(c2cdk2) +

√
c2

2 − c
2
d (cd − c1d1)k1

c2
dk2 +

√
c2

2 − c
2
d d

2
1k1

⎞
⎟⎠

=
k1

k2
arccos

⎛
⎜⎝−(c2cdk1) +

√
c2

2 − cd2 (cd − c1 d1) k2

c2
d
k1 +

√
c2

2 − c
2
d
d2

1k2

⎞
⎟⎠,

(2.13)

where d1 is given in (2.11). The corresponding value of the time delay at the strong resonant
double Hopf bifurcation point, noted as τc, is given by

τc = τ− = τ+

=

√√√√ k1

k2

√
c2

2 − c
2
d

arccos

⎛
⎜⎝
−(c2cd k1) +

√
c2

2 − c
2
d (cd − c1d1)k2

c2
d
k1 +

√
c2

2 − c
2
d
d2

1k2

⎞
⎟⎠.

(2.14)

For case (b) with det(D)/= 0 and c11 = c22, c12 = −c21, d11 = d22, d12 = d21 = 0, c11 > 0, c12 > 0,
d11 < 0, the characteristic equation (2.1) becomes

λ = c11 ± ic12 + d11e
−λτ . (2.15)

By substituting λ = a + iω into (2.15), we get

ω = ω± = c12 ±
√
d2

11 e
−2aτ − (a − c11)2,

a = c11 −
ω − c21

tan(ωτ)
.

(2.16)

It follows from (2.16) that ω is real only when d2
11 ≥ (a − c11)

2 e2aτ . To obtain the critical
boundary, set a = 0. This gives

ω− = c12 −
√
d2

11 − c
2
11,

ω+ = c12 +
√
d2

11 − c
2
11,

(2.17)

τ−
[
j
]
=

1
ω−

(
2jπ − cos−1

(
− c11

d11

))
,

τ+
[
j
]
=

1
ω+

(
2jπ + cos−1

(
− c11

d11

))
,

(2.18)
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where j = 1, 2, . . . . The necessary conditions for the k1 : k2 occurrence of a strong resonant
double Hopf bifurcation can be obtained by setting τ−[j] = τ+[j] and ω−/ω+ = k1/k2 for
k1 = 1 and k2 = 1, 2, 3 or 4. This yields

(d11) = −
c11

cos
(
2jπ(k2 − k1)/(k1 + k2)

) , τc =
4jk1π

(k1 + k2)ω−
. (2.19)

As mentioned above, a strong resonance may be a codimension-3 phenomenon which
requires three parameters for its unfolding. For our purpose, the time delay is always chosen
as a bifurcation parameter. The other two variable parameters come from the element of C
andD, respectively, while the remaining parameters are kept fixed. Consequently, at a double
Hopf point, these three variable parameters satisfy (2.11), (2.12) and (2.14) for case (a), and
(2.17) and (2.19) for case (b). Correspondingly, denote C, D and τ by Cc, Dc and τc at a
double Hopf point, respectively. To investigate the dynamical behavior in a neighborhood of
the double Hopf point, we consider εCε, εDε, and ετε for a small ε, given by

εCε = C − Cc, εDε = D −Dc, ετε = τ − τc. (2.20)

Substituting (2.20) into (1.1) yields

Ż = CcZ +DcZτc + F̃(Z,Zτc , Zτc+ετε , ε), (2.21)

where Z = Z(t), Zτ = Z(t − τ), and

F̃(·) = Dc(Zτc+ετε − Zτc) + ε(Cε +DεZτc+ετε + F(Z,Zτc+ετε)). (2.22)

When ε = 0, F̃ = 0, and a resonant double Hopf bifurcation point occurs in the system under
consideration. Thus, the zero-order approximate solution of (2.21) may be expressed as

Z0(t) =
2∑
i=1

[(
aki

cki

)
cos

(
kiφ

)
+

(
bki

dki

)
sin

(
kiφ

)]
, (2.23)

which results in

Z0(t − τc) =
2∑
i=1

[(
aki

cki

)
cos

(
kiφ − kiωτc

)
+

(
bki

dki

)
sin

(
kiφ − kiωτc

)]
, (2.24)
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where φ = ωt and ω = ω−/k1 = ω+/k2 is determined by (2.12) for case (a) and (2.17) for case
(b). Substituting (2.23) and (2.24) into (2.21) when ε = 0 and using the harmonic balance, one
obtains that

Mki

(
bki

dki

)
=Nki

(
aki

cki

)
, (2.25)

−Mki

(
aki

cki

)
=Nki

(
bki

dki

)
, (2.26)

where Mki = kiωI +Dc sin(kiωτ), Nki = Cc +Dc cos(kiωτ) and I is the 2 × 2 identity matrix.

Equations (2.25) and (2.26) are in fact identical. Let
( ãki
b̃ki

)
= (Nki/det(Nki))

( aki
bki

)
and note

that det(Nki) = det(Mki). It follows from (2.25) that the periodic solution of (2.21) for ε = 0 is
given by

Z0(t) =
2∑
i=1

(
Ñki cos

(
kiφ

)
+ M̃ki sin

(
kiφ

))(ãki

b̃ki

)
, (2.27)

where Ñki =N
−1
ki

det(Nki), M̃ki =M
−1
ki

det(Mki) for i = 1, 2.
In order to obtain an approximate solution of (2.21) when ε /= 0, we now consider a

perturbation to (2.27), given by

Z(t) =
2∑
i=1

(
Ñki cos(ki(ω + σ(ε))t) + M̃ki sin(ki(ω + σ(ε))t)

)(aki(ε)

bki(ε)

)
, (2.28)

where aki(0) = ãki , bki(0) = b̃ki , and σ is a detuning parameter. The following theorem

provides a method to determine
( aki (ε)
bki (ε)

)
in (2.28).

Theorem 2.1. IfW(t) is a periodic solution of the equation

Ẇ(t) = −CT
cW(t) −DT

cW(t + τc), (2.29)

withW(t) =W(t + 2π/ω), then

∫0

−τc

(
DT
cW(t + τc)

)T(
Z(t) − Z

(
t +

2π
ω

))
dt − [W(0)]T

[
Z

(
2π
ω

)
− Z(0)

]

+
∫2π/ω

0
[W(t)]T F̃(Z,Zτc , Zτc+ετε , ε)dt = 0.

(2.30)
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Proof. Multiplying both sides of (2.21) by [W(t)]T and integrating with respect to t from zero
to 2π/ω, one has

∫2π/ω

0
[W(t)]T Ż(t)dt

=
∫2π/ω

0
[W(t)]T

(
CcZ(t) +DcZ(t − τc) + F̃(Z,Zτc , Zτc+ετε , ε)

)
dt,

(2.31)

where 2π/ω is the period of W(t). Equation (2.31) yields

∫2π/ω

0

(
Ẇ(t) + CT

cW(t) +DT
cW(t + τc)

)T
Z(t)dt − [W(0)]T

[
Z

(
2π
ω

)
− Z(0)

]

+
∫0

−τc

(
DT
cW(t + τc)

)T(
Z(t) − Z

(
t +

2π
ω

))
dt

+
∫2π/ω

0
[W(t)]T F̃(Z,Zτc , Zτc+ετε , ε)dt = 0.

(2.32)

Equation (2.30) follows from (2.29) and (2.32) and the theorem is proved.

To apply the above theorem to determine
( aki (ε)
bki (ε)

)
, one must know the expression of

W(t) in (2.32). It follows from (2.27) that the periodic solution of (2.29) can been written as

W(t) =
2∑
i=1

((
−Ñki

)T
cos

(
kiφ

)
+
(
M̃ki

)T
sin

(
kiφ

))(pki

qki

)
, (2.33)

where pki and qki are independent constants. Substituting (2.28), and (2.33) into (2.30) and
noting the independence of pki and qki yield four algebraic equations in aki(ε), bki(ε) and σ,
which are called the amplitude modulation equations of (2.21). If there exist square terms

in (2.21), then r1(ε) =
√
a2
k1
(ε) + b2

k1
(ε) plays the role of master amplitude since ak2(ε), and

bk2(ε) would not exist without r1(ε) [10] for the 1 : 2 internal resonance where k1 = 1 and k2 =
2. Eliminating σ from the amplitude modulation equations, one can obtain three algebraic
equations in r1(ε), a2(ε), and b2(ε).

3. Application

As an application, we investigate the delay-induced 1 : 2 strong resonant double Hopf
bifurcation in the van der Pol oscillator with delayed position feedback and show the
efficiency and simplicity of the above method. The oscillator is governed by

ü −
(
α − εγu2

)
u̇ + u + ε

(
β1 + β2u

)
u2 = A(uτ − u), (3.1)
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where 0 < ε < 1, α, γ , β1 and β2 are constants, β1 ≥ 0, β2 ≥ 0, γ > 0, A < 0, τ time delay,
uτ = u(t − τ). System (3.1) can be rewritten in the form of (1.1), where Z(t) = (x(t), y(t))T =
(u(t), u̇(t))T ∈ R2 and

c11 = 0, c12 = 1, c21 = −(1 +A), c22 = α,

d11 = 0, d12 = 0, d21 = A, d22 = 0.
(3.2)

Substituting (3.2) into (2.3) yields

c1 = α, d1 = 0, c2 = 1 +A, cd = −A. (3.3)

Thus, (3.1) belongs to case (a) of Section 1 since det(D) = 0 and cd + c2 = 1/= 0. To investigate
the 1 : 2 strong resonant double Hopf bifurcation, we choose α in C, A in D and the delay
τ as the three variable parameters and keep the other parameters fixed. It follows from the
analysis in the above section that α, A, and τ satisfy (2.11), (2.12), and (2.14) at the 1 : 2
resonant double Hopf bifurcation point for k1 = 1 and k2 = 2, where αc = 0, Ac = −3/8,
τc = 2π . Correspondingly,ω− = 1/2 andω+ = 1. Any values ofA, τ and α in the neighborhood
of (Ac, τc, αc) can be expressed as A = Ac + εAε,τ = τc + ετε and α = αc + εαε. Equation

(3.1) can be expressed in the form of (2.21), where Cc =
( 0 1

−(Ac+ω2
0) αc

)
, Dc =

( 0 0
Ac 0

)
, F̃ =

( 0
Ac(xτc+ετε−xτc )+ε (Aε(xτc+ετε−x)+αεy−x2(β1+β2x+γy))

)
. By simple computation, one has Ñk1 =

( 0 −1
1/4 0

)
,

M̃k1 =
( 1/2 0

0 1/2

)
, Ñk2 =

( 0 −1
1 0

)
, M̃k2 =

( 1 0
0 1

)
. It follows from (2.33) that the solution of (2.29) is

given by

W(t) =

⎛
⎜⎜⎜⎝

1
2
p1 sin

(
t

2

)
− 1

4
q1 cos

(
t

2

)
+ p2 sin(t) − q2 cos(t)

p1 cos
(
t

2

)
+

1
2
q1 sin

(
t

2

)
+ p2 cos(t) + q2 sin(t)

⎞
⎟⎟⎟⎠. (3.4)

Noting that there is a square term in (3.1) when β1 /= 0 and from discussion at the end of the
last section, one may express an approximate solution of (3.1) at O(ε) as

Z(t) =

⎛
⎜⎝

r1 cos
(
ϕt
)
+ a2 cos

(
2ϕt

)
− b2 sin

(
2ϕt

)

−1
2
r1 sin

(
ϕt
)
− b2 cos

(
2ϕt

)
− a2 sin

(
2ϕt

)

⎞
⎟⎠, (3.5)



10 Mathematical Problems in Engineering

where ϕ = 1/2 + εσ. Substituting (3.4) and (3.5) into (2.30) and noting that p1, p2, q1 and q2

are independent variables yield the following four algebraic equations in r1, a2, b2, and εσ
with three independent bifurcation parameters εAε, ετε, and εαε, given by

r1

(
8εAε + 4a2β1ε + 3

(
r2

1 + 2
(
a2

2 + b
2
2

))
εβ2 − 4εσ

)
= 0,

r1

(
2εγr2

1 − 8εαε + 16b2εβ1 + 4
(
a2

2 + b
2
2

)
εγ + 12πεσ + 3ετε

)
= 0,

6εβ2

(
a2

(
a2

2 + b
2
2

))
+ 4r2

1

(
εβ1 + 3a2εβ2

)
− 2b3

2εγ − 32a2εσ

+ b2

(
8εαε − 2

(
a2

2 + 2r2
1

)
εγ + 3(4πεσ + ετε)

)
= 0,

− 2εγa3
2 − 6b2εβ2a

2
2 − 6b2

(
b2

2 + 2r2
1

)
εβ2 + 32b2εσ

+
(

8εαε − 2
(
b2

2 + 2r2
1

)
εγ + 3(4πεσ + ετε)

)
a2 = 0.

(3.6)

Eliminating εσ from (3.6), one has

r1

(
24πεAε − 8εαε + 3ετε + 12πεa2β1 + 16εb2β1

+
(

2a2
2 + 2b2

2 + r
2
1

)(
2γε + 9πεβ2

))
= 0,

− 24πεAεb2 − 3εb2πε + 2εγ
(
b3

2 + 4b2r
2
1

)
− 8εb2αε

+ εβ2

(
42a3

2 − 18b3
2π − 9πb2r

2
1

)
+ 2a2

2
(
16εβ1 + b2

(
γε − 9πεβ2

))

+ 2a2

(
32εAε − 6πεb2β1 + 21b2

2εβ2 + 6εβ2r
2
1

)
= 0,

6εβ2b2

(
7b2

2 + 2r2
1

)
+ 6a2

2
(
2πεβ1 + 7b2εβ2

)

+ 2a3
2

(
9πεβ2 − εγ

)
+ 8(3πa2 + 8b2)εAε

+ a2

(
−4γεr2

1 + 8εαε + 32εb2β1 + 9πεr2
1β2 + 2b2

2
(
9πεβ2 − εγ

)
+ 3ετε

)
= 0.

(3.7)

For β2 = 0, it follows from (3.7) that (0, 0, 0), denoted as (r10, a20, b20), is always a root. Besides,
up to three other roots (in the positive quadrant), denoted as (r11, r20), (r10, r21), and (r12, r22),
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can be obtained analytically with r2 = (a2
2 + b

2
2)

1/2 from (3.7) They are given by

r11 =

√
8αε − 3τε − 24Aεπ

2γ
,

r21 =

√
8αε + 3τε

2γ
,

r12 =

√√√8l − 128β3
1 + 3β1γ(8αε − 9τε)

18β1γ2
,

r22 =

√√√−16l + 256β3
1 + 3β1γ(8αε − 9τε)
18β1γ2

,

(3.8)

where l =
√

256β6
1 − 144A2

εβ
2
1γ

2 + 6β4
1γ(8αε − 9τε).

It can be seen from (3.7) and (3.8) that r1(·), r2(·), and σ determine the feature of motions
of the system (3.1) when the strong resonant Hopf point at (Ac, αc, τc) is perturbed by αε, Aε,
and τε for given values of β1 and γ . Such motion can be amplitude death when (r10, a20, b20) is
stable, single-mode periodic when (r11, r20) or (r10, r21) is a stable solution, or double-periodic
when there is a nonzero stable solution in (r12, r22). Therefore, it is necessary to classify the
solutions of the algebraic equation (3.7) in the neighborhood of the strong double Hopf point
(Ac, αc, τc). To this end, we represent the critical surfaces in the (A, α, τ)-space which partition
the space into several regions where the number and the stability of the solutions are distinct.
In Figure 1, S1, S2, and S3 are three different surfaces in the (A, α, τ)-space, defined by

S1 = ((A, α, τ) | r11 = 0, σ /= 0),

S2 = ((A, α, τ) | r21 = 0, σ /= 0),

S3 = ((A, α, τ) | r12 = 0, r22 = 0, σ /= 0).

(3.9)

For given values of β1 and γ , the stability of the solutions on these regions may be
obtained by observing the eigenvalues of the Jacobian matrix of (3.8) at the corresponding
solution. In Figure 1, a three-dimensional view of the asymptotic boundaries is shown for
β1 = γ = 0.1. The space is separated into six regions noted as (I)–(VI). There are a stable
trivial solution (r10, r20) = (0, 0) and an unstable periodic solution (r10, r21) in region (I)
which is an amplitude death region. With (A, α, τ) changing to region (II), the trivial solution
loses its stability. Two unstable solutions at (0,0) and (r11, 0) exist in region (III). When
(A, α, τ) enters into region (IV), there are three unstable solutions given by (0,0), (r11, 0)
and (0, r21). There are a stable nontrivial solution (r12, r22) and three unstable solutions (0, 0),
(0, r21) and (r11, 0) in region (V), With (A, α, τ) varying to region (VI), the nontrivial solution
(r12, r22) disappears and the solution (r11, 0) becomes stable, which results in a stable single-
mode or periodic solution. It follows form (3.5) and (3.8) that the stable single-mode or
periodic solution of (3.1) is expressed as u(t) =

√
(8αε − 3τε − 24Aεπ)/2γ cos((1/2 + εσ)t)

with a frequency 1/2 + εσ for a small ε. Similarly, the mixed-mode solution of (3.1) is
given by u(t) = r12 cos((1/2 + εσ)t) + r22 cos(2(1/2 + εσ)t + θ) when the parameters under
consideration are located in region (V), where r12 and r22 satisfy (3.8) and θ is a constant.
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Figure 1: Critical surfaces of (3.1) for 1 : 2 strong resonance in the neighborhood of (Ac, αc, τc), where
β1 = 0.1, γ = 0.1, and β2 = 0.
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Figure 2: Cross-section of Figure 1 at α = 0, where the dashing line represents A = −0.36 along which the
analytical bifurcation diagram is shown in Figure 3. P1 and P2 are the intersection points of line A = −0.36
with surfaces S2 and S3, respectively.

It is seen that the mixed-mode solution consists of two frequencies, that is, 1/2 + εσ and
2(1/2 + εσ). This implies that the mixed-mode solution is a frequency-doubling or period-
doubling solution. Thus, the parameters cross through S3 from region (VI) to region (V), the
solution of (3.1) undergoes a period-doubling bifurcation. Different from the nonresonant
case [11], the critical boundaries have strong curvatures when the solution of the single-mode
amplitude equation undergoes a saddle-node bifurcation, which corresponds to a period-
doubling solution occurring in (3.1). Thus, the parameter α has strong influence on the critical
boundaries. This confirms that the bifurcation at (Ac, αc, τc) is codimension three.

To have a clearer picture of the analytical prediction of Figure 1, we consider the
cross-section at α = 0 which is shown in Figure 2, in which the number and the stability
of the analytical solutions in regions (I)–(VI) are also displayed by r1 versus r2. It is seen in
Figure 2 that there are a stable trivial, periodic and doubling periodic solutions in regions (I),
(VI) and (V), respectively. No stable solution exists in regions (II), (III) and (IV). To study
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Figure 3: Analytical bifurcation diagram along the dashing line A = −0.36 in Figure 2.
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ẋ

−0.03 −0.01 0.01 0.03

x

(a)

−0.3
−0.2
−0.1

0
0.1
0.2
0.3

ẋ
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Figure 4: Numerical simulation for (3.1) along the vertical line A = −0.36 in Figure 2 with (a) τ = 6.28, (b)
τ = 6.285, and (c) τ = 6.295, showing the stable trivial, periodic and period-doubling solutions. Parameters
considered belong to regions (I), (VI), and (V).

the delay-induced bifurcations analytically, we fix the value of A at A = −0.36 and vary τ
along this vertical dashing line (see Figure 2). The corresponding bifurcation diagram of the

analytical solutions derived from (3.5) and (3.8) for σ /= 0 in terms of Max(|x|) =
√
r2

1 + r2
2 and

τ is shown in Figure 3.
Figure 3 shows that no vibration occurs in the system when the delay is smaller than

the value at P1, that is, τ = τc = 2π . The system undergoes a Hopf bifurcation at P1 and a stable
branch of periodic solution r11 in (3.8) bifurcates from the trivial solution at P1. With the delay
increasing, the periodic solution becomes unstable and a period-doubling bifurcation occurs

at P2 with a maximum amplitude
√
r2

12 + r
2
22.

Now, numerical simulation is employed to qualitatively examine the validity of the
present method. The Runge-Kutta scheme is adopted to produce the numerical results of
(3.1) for (α,A, τ) in regions displayed in Figure 1. To compare with our analytical predictions
mentioned above, we keep β2, β1, and γ the same as those in Figures 1–3. First, we verify the
analytical results shown in Figure 3 by keeping A = −0.36, and varying τ . The values of τ
are chosen to be 6.28, 6.285, and 6.295, respectively, as shown in Figures 4(a), 4(b) and 4(c).
Figure 4 shows that there are a stable trivial, periodic and period-doubling solutions when τ
is located in regions (I), (VI) and (V), respectively. The numerical simulation also shows no
stable solutions in the other regions. Therefore, the analytical prediction is in good agreement
with the numerical result, which implies that solution (3.5) from the present method is
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death region is in grey.

valid qualitatively. In addition, the period-doubling bifurcation is a direct consequence of
the proximity to the 1 : 2 resonance. The analytical results are also in agreement with those in
[8].

4. Discussion and Conclusion

We have proposed an analytical method to consider various delay-induced solutions derived
from double Hopf bifurcation with strong resonance for a type of two first-order delay
differential equations. It should be noted that the present method can also be applied to the
weak and nonresonant cases. For example, one cannot solve any nontrivial solutions with
σ /= 0 from (3.6) and (3.7) when β1 = 0 and β2 /= 0 for 1 : 2 resonance. This implies that there
is no solution in the form of (3.5). However, the solution can be expressed in the following
form:

Z(t) =

⎛
⎝

r1 cos
(
ϕ1t + θ1

)
+ r2 cos

(
ϕ2t + θ2

)

−1
2
r1 sin

(
ϕ1t + θ1

)
− r2 sin

(
ϕ2t + θ2

)
⎞
⎠, (4.1)

where ϕ1 = (1/2 + εσ1) and ϕ2 = (1 + εσ2) and the stabilities of the solutions are shown
in Figure 5, which are similar to that in [11]. Thus, the Hopf-Hopf interactions with 1 : 2
resonance become weak.

The results provided in the present paper can be also understood further by comparing
those given by Campbell and Leblanc [8], where they use a center manifold reduction
and normal form analysis to deduce a four-dimensional invariant (center) manifold, the
flow on which is a good approximation for the long-term behavior of solutions to the
original differential equation. Correspondingly, the truncated amplitude equation on the
center manifold is presented in O(2) providing that square terms are not degenerate. Such
truncated amplitude equation is also given in the present work, as expressed in (3.7) when the
cubic terms are neglected, or β2 = γ = 0. Thus, the bifurcation diagrams of the corresponding



Mathematical Problems in Engineering 15

truncated normal form inO(2) are shwon in Figure 2. When the square terms in the truncated
normal form are degenerate, one has to consider the truncated normal form in O(3). The
corresponding amplitude equation can be also obtained correctly in (3.7) without the square
terms or β1 = 0 in (3.1). For this case, the dynamical behavior near the double Hopf point is
distinct topologically, as shown in Figure 5. Consequently, one can distinguish two cases for
strong and weak resonances.

Finally, a brief conclusion is represented to end this paper. An efficient method is
proposed to study delay-induced strong resonant double Hopf bifurcation for nonlinear
systems with time delay. The method is first described and leads to the main theorem. As
an application, the proposed method is employed to investigate the double Hopf bifurcation
with 1 : 2 strong resonance in the van der Pol system with time delay. Dynamics arising
from the bifurcation are classified qualitatively and expressed approximately in a closed form
for either square or cubic nonlinearity. The results show that 1 : 2 resonance can lead to
codimension-three and codimension-two bifurcations. The validity of analytical predictions
is illustrated by their consistency with numerical simulations. As a result, a simple but
efficient method is developed for the classification of unfolding of higher codimensional
bifurcations in DDEs. The present research brings out the physical meaning and significance
of unfolding parameters in higher codimensional bifurcations.
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