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As a liquid-liquid system is far from equilibrium state, the phase thickness is variable when mass
transfer process with chemical reaction occurs in interphase zone, and a dispersible transitional
layer called the interphase dispersed zone (IDZ) is formed. The IZD model composed of
thermodynamically instable O/W or W/O microemulsion has reasonably explained enormous
experimental phenomena in nonlinear mass transfer. To forecast the possible parameter ranges of
IDZ process and abrupt change of liquid-liquid mass transfer rate, the dynamic characteristics of
a molecular diffusion model are considered in this paper. We applied the bifurcation theory of
planar dynamical system, Laplace transform, and maple software to investigate the model, and
obtain different phase portraits of the system in different regions. The results obtained will play an
important directive role in the study of IDZ model.
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1. Introduction

Liquid-liquid mass transfer and reaction mass transfer processes are widely used in many
industries such as nuclear energy, hydrometallurgy, pharmaceutical, and chemical. In
research on production process control and techniques, we found that interphase processes
are main control procedures for these liquid-liquid systems. In mass transfer process,
the interphase zone always evolves with time, accompanying with chemical reaction,
hyedromchanics instability, automatic dispersion, formation of interphase layer, absorption
and coalescence of dispersed particles, and formation of interphase layer structure, etc.
[1–3].

Traditional dynamic research methods for interphase mass transfer kinetics in liquid-
liquid systems use concentration difference to express the driving force for mass transfer,
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and assumed that each phase is unchangeable even in the interface and interphase layers
have different thicknesses. However, such assumption is unable to explain the bifurcation
of mass transfer rate in liquid-liquid systems under the effect of mechanic field, electric
field, magnetic field, gravitational field, and sound field, etc. [1–7]. Abrupt change of mass
transfer rate has great effect on theoretical research and production practice and becomes
an important content of theoretical research and engineering security control. To overcome
the limit in traditional understanding, Tarasov et al. have developed the physical model of
IDZ through analyzing actual process phenomena[1–3]. Taking the mass transfer process in
liquid-liquid stripping system as an example, Zhang holds that, due to the effect of coordinate
chemical binding between extractant and extract as well as intermolecular function between
coordination compound and solvent molecules, when the extracted ion carries the extractant
and solvent particles dispersing near the inorganic interphase layer in the process of
transferring from organic to inorganic phase, the extractant and the solvent after separating
from the ion can form an O/W microemulsion near the inorganic interphase zone under the
competition of water molecules in the inorganic phase of other stripping agents. Similarly,
the extract in the inorganic phase in liquid-liquid extraction system can also form a W/O
microemulion near the organic interphase layer. Under the effect of the thermal movement of
molecule and concentration driving force, the two types of microemulsion come into being
dynamically and will change dynamically during mass transfer process. Moreover, the O/W
microemulsion in the inorganic interphase and the W/O microemulsion near the organic
interphase layer can come into being simultaneously in the interphase layer of the mass
transfer process. It is inferable that a bicontinuous-phase microemulsion can also be produced
between the O/W microemulsion and the W/O microemulsion in the interphase layer [8].
This process is generally known as mass transfer microemulsion process in liquid-liquid
system interface. This model for nonhomogenous mass transfer or reaction mass transfer
process in the interface is called the model of IDZ[3].

In the reactor shown in Figure 1, we have obtained the molecular diffusion equation
for interphase mass transfer ∂c/∂t = D(∂2c/∂x2) and the equation describing interphase
mass transfer process ∂c/∂t = D(∂2c/∂x2) + r through equilibrium calculations by carrying
out experiments for extraction and stripping of inorganic acid and transitional metal
compounds. When a small-range of external electrostatic field was applied in the system,
the bifurcation phenomenon was found in interphase mass transfer rate (refer to Figure 2).

When using any amine extractant to extract hydrochloric acid, there also appears
a sudden change of the interphase mass transfer velocity when the initial concentration
of hydrochloric acid is adjusted a little [3]. The phenomenon of the sudden change of
the interphase mass transfer velocity caused by the microranged concentration adjustment
cannot be explained with Fick’s Law of diffusion. To coordinate the contradiction, Zhang and
Trasov gave an explanation that along with the transfer of the key components in the phase
interface areas, the water phase and organic phase form an IDZ structure, that is, water-in-oil
emulsion, which gives rise to changes in interphase structure [2, 8].

Koltsova et al. have simplified the mass transfer interhpase layer into noncontinuous
fluid film mode with interspace, and studied the IDZ process by using fractal dynamic
model ∂αcα/∂tα = Dα(∂2cα/∂x

2) + kcmα (0 < α < 1) through simulation of the impetus
of nonequilibrium thermodynamics [6, 7]. Since the effect of chemical reaction rate kcmα in
these systems is much less than that of diffusion, we have used ∂αcα/∂t

α = Dα(∂2cα/∂x
2)

for quantitative research on the change of interphase layer thickness and dispersive
characteristics of medium induced by applying mechanical function in the interphase layer
zone (refer to Figures 3 and 4) [6].
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Figure 1: The improved constant interface cell 1-computer; 2-Digital switch-device; 3-concentration
detector; 4-sensor; 5-constant speed motor; 6-speed device; 7-reciprocating device; 8-ribbon; 9-heat
preserved water-jacket; 10-electric fields 11-stirrers.

Numerous researches show that the change of internal factors and the effect of
external fields in mass transfer process can cause non-linear interphase molecular diffusion
and abrupt change of interphase structure in liquid-liquid mass transfer. This also makes
those parameter ranges in liquid-liquid mass transfer rate that may change abruptly a basic
theoretical issue that has aroused common attention of researchers.

This paper studies the dynamic characteristics and phase diagram of molecular model
∂c/∂t = D(∂2c/∂x2) in liquid layer. The possibility of abrupt change of the reaction mass
transfer process ∂c/∂t = D(∂2c/∂x2) + r is forecast through the basic mass transfer process
∂c/∂t = D(∂2c/∂x2) for liquid-liquid molecular diffusion.

The bifurcation theory of the plane polynomial vector fields plays an important role
in the study of nonlinear dynamic system. By using the bifurcation theory, Li et al. [9]
are considered a parametrically and externally excited mechanical system. Li et al. [10]
investigated the rotor-AMB system with time-varying stiffness of single degree of freedom
and found that there exist, respectively, at least 17, 19, 21, and 22 limit cycles in the system
under four different control conditions. The dynamic characteristics of a molecular diffusion
model are considered in this paper, we applied the bifurcation theory of planar dynamical
system, laplace transform, and maple software to investigate the model, we obtain different
phase portraits of the system in different regions. The results obtained will play an important
directive role in the study of IDZ model.
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Figure 2: The changing of Cu2+ concentration in inorganic-phase along with the mass transfer process.
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Figure 3: Curves of the interphase layer film thickness evolving with time contrasting with external
electrostatic field.

2. Laplace Transform and the Averaged Equation

Based on the mathematical model of double film molecular diffusion, the one-dimensional
second-order differential equation with thickness as h for controlling molecular diffusion in
phase interface can be considered as ∂c/∂t = D(∂2c/∂x2), where t refers to time, c(t, x) refers
to the concentration of the transferring composition at the time t and position x, and D refers
to molecular diffusion coefficient. Unit of quantities in the diffusion coefficient is [m2/s]. To
find the molecular diffusion coefficient the formula in diluted solutions [11] can be used:
D = 7.4 × 10−12((βM)1/2 T/μν·3/5), where M refers to molecular weight of solvent, T refers
to temperature and its units is K, μ refers to coefficient of dynamic viscosity and its units is
mPa.s, and β refers to coalescence parameter of solvent molecules.
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Figure 4: Changing curves of the interphase fractal dimension against time through comparing function
of the external electrostatic field.

By using the Laplace transform to the following model as to t:

∂c

∂t
= D

∂2c

∂x2
, (2.1)

we get

c
(
p, x

)
=
∫T

0
c(t, x)e−ptdt. (2.2)

From (2.2) we can obtain

cxx =
∫T

0
cxxe

−ptdt. (2.3)

Simplify (2.2) we get

−pc
(
p, x

)
=
∫T

0
c(t, x)de−pt

= c(T, x)e−pt − c(0, x) −
∫T

0
e−ptctdt,

(2.4)

Substitute ct = Dcxx to the above

−pc
(
p, x

)
= c(T, x)e−pt − c(0, x) −

∫T

0
Dcxxe

−ptdt

= c(T, x)e−pt − c(0, x) −Dcxx.
(2.5)
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So

cxx =
c(T, x)e−pt − c(0, x) + pc

(
p, x

)

D
. (2.6)

Let

f(c) =
c(T, x)e−pt − c(0, x) + pc

(
p, x

)

D
=
DTx(c)
D

. (2.7)

Using the Taylor series expansion tof(x(c)) at the point c = 0

f(x(c)) = f(x(0)) + f ′(x(0))c +
f ′′(x(0))

2
c2 + · · · . (2.8)

At the same time, we introduce Taylor series expansion to the right side of (2.7) at the
point c = 0:

DTx(c)
D

=
1
D
(DT (x(0))) +D′

T (x(0))c +
1
2
D′′
T

(
x(0)c2

)
+ · · · . (2.9)

From (2.8) and (2.9), based on the two sides coefficient of ci is equal, we can get

c0 : f(x(0)) =
1
D
DT (x(0)),

c1 : f ′(x(0)) =
1
D
D′
T (x(0)),

c2 : f ′′(x(0)) =
1
D
D′′
T (x(0)),

...

ci : f (i)(x(0)) =
1
D
D

(i)
T (x(0)).

...

(2.10)

So,

cxx = f(x(c))

=
1
D
DT (x(0)) +

1
D
D′
T (x(0))c +

1
D
D′′
T (x(0))c

2 + · · · + 1
D
Di
T (x(0))c

i + · · · .
(2.11)

Substitute c for y and x for τfor the convenience of our study, we get yττ = f(y).
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For any given initial values Di
T (x(0)), i ∈ N, we can find the corresponding f(y). Let

Di
T (x(0)) = 0, i ∈N and i /= 1, 3, 5, D′

T (x(0)) = D, D
”’
T (x(0)) = −aD and D5

T (x(0)) = D/16, we
can obtain f(y) = y − ay3 + (1/16)y5.

Let dy/dτ = x + bx3, so dx/dτ = yττ/(1 + 3bx2) = f(y)/(1 + 3bx2).
If we introduce the nonlinear transform dτ/dξ = −(1 + 3bx2), then

dx

dξ
=
dx

dτ

dτ

dξ
= f

(
y
)
,

dy

dξ
=
dy

dτ

dτ

dξ
= −x − 4bx3 − 3b2x5.

(2.12)

By means of the nonlinear transform, (2.6) is equivalent to the averaged equation

dx

dξ
= y − ay3 +

1
16
y5,

dy

dξ
= −x − 4bx3 − 3b2x5,

(2.13)

where a and b are parameters, a > 1/2, b < 0.
The Hamiltonian function of system (2.13) is

H
(
x, y

)
=
y2

2
−
ay4

4
+
y6

96
+
x2

2
+ bx4 +

b2

2
x6. (2.14)

3. Characteristic of the Singular Points

The singular points of system (2.13) are

A00(0, 0), A01
(
0,±y1

)
, A02

(
0,±y2

)
, A10(±x1, 0), A11

(
±x1,±y1

)
,

A12
(
±x1,±y2

)
, A20(±x2, 0), A21

(
±x2,±y1

)
, A22

(
±x2,±y2

)
,

(3.1)

where x1 =
√
−1/b, x2 =

√
−1/3b, y1 = 2

√
2a +

√
4a2 − 1, y2 = 2

√
2a −

√
4a2 − 1.

For a singular point of system (2.13), its characteristic is determined by the eigenvalue
of the polynomial

p(λ) = λ2 −G
(
x, y

)
, (3.2)

where

G
(
x, y

)
=
(

1 − 3ay2 +
5

16
y4

)(
−1 − 12bx2 − 15b2x4

)
. (3.3)
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By the bifurcation theory of the plane polynomial vector fields, for a singular point
(xi, yj) of a planar Hamiltonian system, if G(xi, yj) > 0, then this singular point is a saddle
point; if G(xi, yj) < 0, then it is a center point; if G(xi, yj) = 0, the singular point is a cusp [12].

Based on the bifurcation theory of the plane polynomial vector fields, it is found that
the singular points A00(0, 0), A01(0,±y1), A10(±x1, 0), A11(±x1,±y1), A22(±x2,±y2) are the
centers, and the singular points A02(0,±y2), A12(±x1,±y2), A20(±x2, 0), A21(±x2,±y1) are the
saddle points.

From (2.14), we can obtain the value of the Hamiltonian function at the singular point
of system (2.13), respectively,

hc0 = H
(
±x1,±y1

)
= s + t, hc1 = H(±x1, 0) = 0, hs2 = H

(
±x1,±y2

)
= s − t,

hs3 = H
(
±x2,±y1

)
= s + t − 2

27b
, hs4 = H(±x2, 0) = − 2

27b
,

hs5 = H
(
±x2,±y2

)
= s − t − 2

27b
, hc6 = H(0, 0) = 0,

hc7 = H
(
0,±y1

)
= s + t, hs8 = H

(
0,±y2

)
= s − t,

(3.4)

where s = 4a − (32a3/3), t = (4 − 16a2)
√

4a2 − 1/3.

4. Bifurcation Parameter and Dynamic Analysis

In order to compare hs2, hs3, hs4, we consider these curves:

(C1) : hs2 = hs3, (C2) : hs2 = hs4, (C3) : hs3 = hs4. (4.1)

These three curves and a = 1/2 divided the plane into some different bifurcation
regions as shown in Figure 5.

Where the region I is 1/2 < a <
√

3/3 and 2/27(t− s) < b < 0, the region II is a >
√

3/3,
and 1/27t < b < 0. The region III is a >

√
3/3 and 2/27(t − s) < b < 1/27t.

Case I

We consider the parameter condition of UP = (a, b) = (0.6, −0.05) ∈ II, the phase portrait of
system (2.13) as shown in Figure 6.

So, hc0 = −0.293150, hc1 = 0, hs2 = 0.485150, hs3 = 1.188330, hs4 = 1.481481, hc5 = 1.966632,
hc6 = 0, hc7 = −0.293150, hs8 = 0.485150. We can obtain hc0 < hc1 < hs2 < hs3 < hs4 < hc5, hc0 = hc7,
hc1 = hc6, hs2 = hs8.

Figure 7 demonstrates the changing process of the phase portraits as h varied under
the condition UP .

There are nine different families {Γhj }, (j = 1, 2, . . . , 9) of closed orbits for system (2.13)

as the variable h changes, which are described as follows:{Th1i}, h ∈ (hc0, h
s
2), four families

closed orbits enclosing the singular points (±x1, ±y1);{Th2i}, h ∈ (hc0, h
s
2): two families

closed orbits enclosing the singular points (0, ±y1);{Th3i}, h ∈ (hc1, h
s
2): two families closed

orbits enclosing the singular points (±x1, ±y1); {Th4 }, h ∈ (hc1, h
s
2): one family closed orbit
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Figure 6: The phase portrait of system (2.13) under the condition UP.

enclosing the singular point (0, 0);{Th5i}, h ∈ (hs2, h
s
3): two families closed orbits enclosing

the singular points (±x1, ±y1), (±x1, ±y2) and (±x1, 0);{Th6 }, h ∈ (hs2, h
s
3): one family closed

orbit enclosing the singular points(0, 0), (0, ±y1) and (0, ±y2);{Th7i}, h ∈ (hs3, h
s
4): two

families closed orbits enclosing the singular points (±x2, ±y2), (±x2, 0);{Th8i}, h ∈ (hs4, h
c
5):

four families closed orbits enclosing the singular points (±x2, ±y2); {Th9 }, h ∈ (hs3, ∞): the
global closed orbit enclosing all the singular points.

Notice that as h increases, the periodic orbits T7 and T8 contract inwards all other
periodic orbits expand outwards.
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Figure 7: The changing process of the phase portraits as h varied under the condition UP.
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Figure 8: Phase portraits of system (2.13) in the region I.

−3 −2 −1 1 2 3

x

−3

−2

−1

0

1

2

3

y

Figure 9: Phase portraits of system (2.13) in the region III.

The phase portraits are topologically equivalent to the Figure 6 when the parameters
(a, b) ∈ II.

Case II

When a through the line a =
√

3/3 from right to left that means the region II changes into the
region I, the bifurcation happened. Figure 8 show the phase portraits of system (2.13) in the
region I.
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The phase portraits are topologically equivalent to Figure 8 when the parameters
(a, b) ∈ I.

Case III

When b through the curven b = 1/27t, t = (4− 16a2)
√

4a2 − 1/3 from up to down that means
the region II changes into the region III, the bifurcation happened. Figure 9 shows the phase
portraits of system (2.13) in the region III.

The phase portraits are topologically equivalent to Figure 9 when the parameters
(a, b) ∈ III.

Based on the above analysis, we know that the phase portraits are different from each
other because there are in different regions.

5. Conclusions

The dynamic characteristics of a molecular diffusion model are considered in this paper,
by using the bifurcation theory of planar dynamical system, Laplace transform, and maple
software. First the model equation was transformed to the averaged equation by means of
Laplace transform, and we obtain that when bifurcation parameters (a, b) through the line
a =

√
3/3 and the curve b = 1/27t the interphase structure will change suddenly, and then

we get the phase portraits of system (2.13) in different regions. The results obtained enriches
the dynamic research contents of the Liquid-liquid system, and have important theory values
and apply values for further study of the IDZ model as well as to find the change regions in
which the mass transfer rate maybe change suddenly.
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