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approach. The potential energy of the beam is maximized to compute the worst case loading
and minimized to determine the optimal cross-sectional shape which results in coupled nonlinear
differential equations for the unknown functions except for the case of a variable width beam. The
uncertain component of the transverse load acting on the beam is not known a priori resulting in
load uncertainty subject only to an norm constraint. Similarly the optimal area function is subject to
a volume constraint leading to an isoperimetric variational problem. The min-max approach leads
to robust optimal designs which are not susceptible to unexpected load variations as it occurs
under operational conditions. The solution methodology is illustrated for the variable width beam
by obtaining analytical results for several cases. The efficiency of the optimal designs is computed
with respect to a uniform beam under worst case loading taking the maximum deflection as the
quantity for comparison. It is observed that the optimal shapes are more than 70% efficient for the
examples given in this study.
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1. Introduction

Under operational conditions, a structure is usually subjected to uncertainties which
may arise from fluctuation and scatter of external loads, environmental conditions,
boundary conditions, and geometrical and material properties. However quite often, design
uncertainties arise from incomplete knowledge and unpredictable nature of the load under
operational conditions.

In the present study optimality conditions are derived for the optimal robust design
of a beam subject to a transverse load which has unknown and known parts. Moreover
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uncertain moments and/or shear forces may be acting at the endpoints of the beam. In
conventional design, it is common practice to neglect the load uncertainties when analyzing
a structure and assessing the structural performance on the basis of a deterministic model.
To compensate for performance variability caused by load variations, a safety factor is
introduced magnitude of which correlates with the level of uncertainty with higher levels
leading to larger safety factors. However, the safety factors specified may be either too
conservative or too small to compensate for the lack of knowledge of operational loads.
Efficiency and reliability of the structure can be improved by taking the load uncertainties into
consideration in the design process leading to a design which is robust under load variations.
This approach is equivalent to optimizing the design for worst case loading and leads to
an optimization problem for the area function and to an antioptimization problem for the
load function. The final design is robust in the sense that the sensitivity of the beam to load
variations is substantially reduced. This is accomplished by maximizing its potential energy
over loading while minimizing it with respect to its cross-sectional shape. Mathematically
these results in a min-max optimal design problem can be studied by variational
calculus.

Finding the worst case loading on a structure corresponds to an antioptimization
problem the examples of which can be found [1, 2] where optimization under uncertain
bending and buckling loads is studied. Designing robust structures to carry loads that are
not known in advance is discussed in papers [3–5] where the authors proposed a minmax
formulation to maximize the compliance with respect to loading and to minimize it with
respect to design variables. These problems lead to a coupled optimization/antioptimization
formulation where the objective is to compute the “best” design under “worst” case loading
resulting in a robust design insensitive to load variations.

An alternative strategy to treat the uncertainties is convex modeling in which the
uncertainties belong to a convex set [6–9]. This approach allows the designer to use not
the averaged results but extremal properties of the system being modeled, according to the
convex set chosen. The limitation of the convex modeling is that only small variations around
a nominal value of the uncertain quantity can be considered and the model becomes less
accurate as the variations become larger. Other methods of taking load uncertainties in the
design process can be found in [10, 11]. The main objective of these techniques is to achieve
robust designs which are not susceptible to failure under unexpected loads [12–14]. Recently
the optimization under dimensional uncertainty was applied to the design of microbeams
[15].

In the present work, a system of nonlinear differential equations is derived in terms
of state, design and load variables using calculus of variations and the methods of Lagrange
multipliers and slack variables. These expressions serve as the optimality and antioptimality
conditions of the problem. The design variable is the cross-sectional shape of the beam and
is subject to a volume constraint. The load variables comprise a combination of deterministic
and uncertain transverse loads as well as uncertain moments and shear forces which may
act at the boundaries. The only constraints on the unknown loads involve finite norms
and an upper bound on the transverse load. The optimization method involves a minmax
formulation where the objective is to minimize the compliance with respect to the cross-
sectional shape and maximize it with respect to the unknown loads. The formulation ensures
that the optimal designs correspond to the most unfavorable loading and, therefore, these
designs are conservative for any other loading. The solution methodology is illustrated
with several examples involving cases which allow the computation of closed-form
solutions.
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2. Problem Formulation and Design Constraints

The differential equation governing the deflection of a variable cross-section beam subject to
a combination of uncertain and deterministic loads, as shown in Figure 1, can be expressed
in nondimensional form as

(
an(x)′′(x)

)′′ = F(x) +G(x), for x ∈ (0, 1) (2.1)

where I(x) = a(x)n is the stiffness function, a(x) ∈ C2[0, 1] is the cross sectional area,
y(x) ∈ C4[0, 1] is the deflection, F(x) ∈ C0[0, 1] is the unknown uncertain loading and
G(x) ∈ C0[0, 1] is the given deterministic loading. The primes denote the derivative with
respect to x ∈ [0, 1]. In (2.1), n = 1, 2, 3 is a constant where n corresponds to a variable width,
a geometrically similar cross-section and a variable height, respectively. The beam is subject
to two boundary conditions at the endpoints x = 0 and x = 1. The boundary conditions may
also contain uncertain and deterministic parts in the form of moments and shear forces which
can be expressed as

B0i(y)
∣∣
x=0 = f0 + g0, B1i(y)

∣∣
x=1 = f1 + g1, i = 1, 2, (2.2)

where B0i and B1i are boundary operators at x = 0 and x = 1, respectively, f0 and f1 are
uncertain constants, and g0 and g1 are deterministic constants. In addition to the boundary
conditions, the deflection, area and load functions should satisfy certain continuity conditions
which arise as a result of discontinuities in the first derivative of the uncertain load function.
Let the uncertain load function F(x) act on the beam between the points s1 and s2, that is, it
is applied on the interval 0 < s1 ≤ x ≤ s2 < 1. In general F(x) can be expressed in the form

F(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 0 < x ≤ s1,

F1(x) ≤ Fmax, if s1 ≤ x ≤ d1,

Fmax, if d1 ≤ x ≤ d2,

F2(x) ≤ Fmax, if d2 ≤ x ≤ s2,

0, if s2 ≤ x < 1,

(2.3)

where d1 and d2 are unknown constants to be determined from the continuity conditions

F1(d1) = Fmax, F2(d2) = Fmax. (2.4)

The optimal area function is computed for each interval and should be a continuous function
of x which requires that

a−(s1) = a+(s1), a−(s2) = a+(s2), a−(d1) = a+(d1), a−(d2) = a+(d2), (2.5)



4 Mathematical Problems in Engineering

where a− and a+ denote the values of the area function a(x) to the left and right of the relevant
point. Similarly the moment and shear force should be continuous along the beam in the
absence of point loads or moments, and in particular at these points that can be expressed as

any′′
∣
∣
x=ξ−

= any′′
∣
∣
x=ξ+

,
(
any′′

)′∣∣
∣
x=ξ−

=
(
any′′

)′∣∣
∣
x=ξ+

(2.6)

where ξ− and ξ+ are the points to the left and right of ξ = s1, s2, d1, and d2. In the sections
on the implementation of the solution method, it is shown that the number of unknowns
resulting from the integration of differential equations matches the number of boundary and
continuity conditions leading to unique solutions.

Physically the stiffness of a beam has a finite value and in practice the volume of the
beam is specified leading to a design constraint which can be expressed mathematically as

∫1

0
a(x)dx = 1, (2.7)

which simply constraints the volume of the beam available for optimization. Similarly the
uncertain loads acting on the beam are required to have finite norms and an upper bound
as would be the case under operating conditions even though these loadings are not known
precisely. For the uncertain load F(x), these constraints can be expressed as

‖F(x)‖pLp =
∫1

0
F(x)pdx = 1, 1 < p <∞, max

0≤0≤1
F(x) ≤ Fmax, (2.8)

that is, the Lp norm of the uncertain transverse load is constrained to have the value 1 and the
uncertain transverse load is bounded from above. Finally, the uncertain moments and shear
forces acting at the endpoints are of finite magnitude in practice that can be expressed as

m
p

0 +m
p

1 = η, v
p

0 + vp1 = γ, (2.9)

where η > 0 and γ > 0 are given constants.

2.1. Objective Functional

The design optimization can be achieved by choosing a suitable performance index for the
problem which serves as an objective functional of a minmax problem. In the present case a
suitable objective functional is the potential energy of the beam which is given by

PE
(
a, F,m, v;y

)
=

1
2

∫1

0
an
(
y′′
)2
dx −

∫1

0
(F +G)ydx

+
1
2
(
y′(0)m(0) − y′(1)m(1) + y(0)v(0) − y(1)v(1)

)
,

(2.10)

the Euler-Lagrange equation of which yields the state equation (2.1) and the natural
boundary conditions. Thus the functional PE(a, F,m, v;y) has the advantage of producing
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the deflection function y(x) when minimized with respect to y. Another objective functional
can be defined as the compliance of the beam given by

C
(
a, F,m, v;y

)
=
∫1

0
(F +G)ydx, (2.11)

which is a measure of the relative stiffness of the beam under distributed loads. Substituting
(2.1) into (2.11) and performing integration by parts, we obtain

∫1

0
(F +G)ydx =

∫1

0
an
(
y′′
)2
dx = 2PE

(
a, F,m, v;y

)
+ 2C

(
a, F,m, v;y

)
. (2.12)

Equations (2.11) and (2.12) show that the potential energy and the beam compliance are
related as

PE
(
a, F,m, v;y

)
= −1

2
C
(
a, F,m, v;y

)
. (2.13)

As such the two objective functionals are closely related. In the present study the potential
energy given by (2.10) is chosen as the performance index of the optimization problem.

2.2. Robust Optimal Design Problem

Find the cross-sectional area a(x) of the optimal beam for given values of n, p and the
deterministic loading G(x) such that the beam’s potential energy PE(a, F,m, v;y) given by
(2.10) is minimized subject to the volume constraint given by (2.7) under the worst case
loadings with respect to the uncertain load F(x), uncertain end moments m = (m0, m1), and
shear forces v = (v0, v1) where F(x), m, and s satisfy the constraints (2.8) and (2.9).

The robust design problem constitutes an optimization problem with respect to the
area function a(x), and an antioptimization problem with respect to the uncertain loads
F(x), m and s. Thus the solution of the following minmax problem is sought:

min
a(x)

max
F,m,v

PE
(
a, F,m, v;y

)
, (2.14)

subject to constraints (2.8) and (2.9) where PE(a, F,m, v;y) is given by (2.10). The solution
to the antioptimization problem yields the worst case loadings and the solution to the
optimization problem yields the optimal cross-sectional area as a function of x. Solving this
problem as a nested minmax problem leads to the optimal robust area function under worst
case of loading and mathematically to a system of three nonlinear differential equations in
three unknowns: y(x), a(x), and F(x).
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3. Optimality Conditions

The derivations of the optimality and antioptimality conditions are given next. In view of the
presence of several constraints on the design problem, the Lagrange multiplier technique is
implemented by introducing the Lagrangian given by

L
(
a, F,m, v;y

)
= PE

(
a, F,m, v;y

)
+ μ1

(∫1

0
F(x)pdx − 1

)

+ μ2

(∫1

0
a(x)dx − 1

)

+ μ3

(
m
p

0 +m
p

1 − η
)
+ μ4

(
v
p

0 + vp1 − γ
)
+
∫1

0
μ5(x)

(
F(x) − h(x)2 − Fmax

)
dx,

(3.1)

where μi, i = 1, 2, 3, 4, and μ5(x) are Lagrange multipliers and h(x) is a slack variable. The
variation of L(a, F,m, v;y) with respect to y gives the differential equation and the boundary
conditions. The variation of L(a, F,m, v;y) with respect to a(x) yields

∫1

0

(
nan−1(y′′

)2 − μ2

)
δadx = 0, (3.2)

where δa is arbitrary. Thus, from the fundamental theorem of calculus of variations, it follows
that

nan−1(y′′
)2 − μ2 = 0. (3.3)

The variation of L(a, F,m, v;y) with respect to F(x) yields

∫1

0

(
−y + μ1pF

p−1 + μ5(x)
)
δF(x)dx = 0, (3.4)

where δF is arbitrary. Thus,

−y + μ1pF
p−1 + μ5(x) = 0. (3.5)

The variation of L(a, F,m, v;y) with respect to h(x) yields

μ5(x)h(x) = 0. (3.6)

This equation implies that h(x) must be equal to zero when μ5(x)/= 0, and μ5(x) must be zero
when h(x)/= 0. As a result, μ5(x) in equation (3.5) can be discarded since it is equal to zero
when the second constraint in (2.8) is not active. Differentiation of L(a, F,m, v;y) with respect
to m0, and m1 as well as v0, and v1 yields

y′(0) + 2pμ3m
p−1
0 = 0, −y′(1) + 2pμ3m

p−1
1 = 0,

y(0) + 2pμ4v
p−1
0 = 0, −y(1) + 2pμ4v

p−1
1 = 0.

(3.7)
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Using equations (2.1) and (3.5) results in the following expressions for y′′ and a(x):

y′′ = c11a
(1−n)/2, (3.8)

a(x) = c−1
11

∫x

0
(x − t)(F(t) +G(t))dt + a1x + a2, for n = 1 (3.9)

= c12
(
y′′
)2/(1−n)

, for n = 2, 3, (3.10)

where a1, a2, and c11 are arbitrary constants and c12 = c
2/(n−1)
11 . Equations (3.8) and (3.9) are

optimality conditions for the area function a(x). Similarly, from (3.5) and (3.6), one obtains

y =

⎧
⎨

⎩

c21F
p−1, for F < Fmax,

c21F
p−1
max, for F ≥ Fmax,

F(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c22y
1/(p−1), for y <

(
Fmax

c22

)p−1

,

Fmax, for y ≥
(
Fmax

c22

)p−1

,

(3.11)

where c21 is an arbitrary constant and c22 = c
1/(1−p)
21 . Equation (3.11) is the antioptimality

condition for the worst case loading F(x). Substituting a(x) and F(x) from (3.9) and (3.11),
respectively, into (2.1), we obtain a fourth-order nonlinear differential equation for y(x) given
by

(
cn12

(
y′′
)(1+n)/(1−n))′′ = c22y

1/(p−1) +G(x) for y <
(
Fmax

c22

)p−1

, (3.12)

(
cn12

(
y′′
)(1+n)/(1−n))′′ = Fmax +G(x) for y ≥

(
Fmax

c22

)p−1

, (3.13)

where n = 2, 3. It is noted that for the beam with a variable width, that is, n = 1,
the optimality condition (3.8) uncouples the functions y(x) and a(x) that lead to linear
differential equations for the unknown functions. This case is treated in more detail in the
examples given to illustrate the solution methodology. Alternatively, (3.12) can be expressed
as an integrodifferential equation by integrating it twice, namely,

(
cn12

(
y′′
)(1+n)/(1−n))′′ =

∫x

0
(x − t)

(
c22y

1/(p−1) +G(t)
)
dt + c3x + c4, (3.14)
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where c3 and c4 are integration constants which are to be determined from the boundary
conditions (2.2). In the presence of uncertain moments and shear forces, the boundary
conditions are obtained by noting that

m0 = c5
(
−y′(0)

)1/(p−1)
, m1 = c5

(
y′(1)

)1/(p−1)
, (3.15)

v0 = c6
(
−y(0)

)1/(p−1)
, v1 = c6

(
y(0)

)1/(p−1)
, (3.16)

where c5 = (2pμ3)
1/(1−p) and c6 = (2pμ4)

1/(1−p). If the boundary x = 0 is subject to uncertain
and deterministic moments m(0), then from (2.2) and (3.15), it follows that

a(0)ny′′(0) − c5
(
−y′(0)

)1/(p−1) = m0d. (3.17)

Similarly, if uncertain and deterministic shear force v(1) is applied at x = 1, then

a(1)ny′′(1) − c6
(
−y′(1)

)1/(p−1) = v1d, (3.18)

for which (2.2) and (3.16) are used. Once the solution for y(x) is computed, the optimal area
function aopt(x) and the worst case loading Fworst are obtained from (3.9)–(3.11). A nonlinear
differential equation in terms of F(x) can also be obtained by noting that

a(1−n)/2 =
(
c21

c11

)(
Fp−1

)′′
, n = 2, 3, (3.19)

which follows from equations (3.10) and (3.11). Substituting (3.8) and (3.19) into (2.1), we
obtain

c7

(((
Fp−1

)′′)2n/(1−n)((
Fp−1

)′′)−1
)′′

= F(x) +G(x), (3.20)

where c7 = c2n/(n−1)
11 c

(n+1)/(1−n)
21 is an arbitrary constant.

4. Analytical Solutions

The theoretical framework developed in Sections 2 and 3 to solve optimal design
problems under load uncertainty, in general, requires the use of numerical methods for its
implementation. However, the special case of n = 1 (variable width beam) and p = 2 (L2

norm of the transverse load) can be studied using closed-form solutions. These solutions, in
turn, can be used to illustrate the method and investigate the efficiency of the robust designs.
Moreover explicit solutions for the optimal beam shape and the worst case loadings serve
as benchmark results for other cases where the solutions can be obtained numerically. In
this section, the problem to be solved is summarized briefly and closed-form solutions are
obtained for the optimal area function and the uncertain loads.
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G(x)

F(x)

m0
m1

x = 0 x = 1

s1

s2

d1

d2

x

y

Figure 1: Beam diagram with external forces.

We consider a simply supported beam subject to an uncertain load, F(x), 0 ≤ x ≤ 1,
which may be acting on part of the beam and may have an upper limit as shown in Figure 1
where G(x) is the deterministic component of the transverse load. The uncertain load can be
defined as

F(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if 0 ≤ x ≤ s1,

f(x), if s1 ≤ x ≤ s2,

0, if s2 ≤ x ≤ 1,

(4.1)

where s1 and s2 are given parameters and f(x) ∈ C0[s1, s2] is an unknown continuous
function. In addition the beam is subjected to uncertain momentsm0 andm1 at the boundaries
x = 0 and x = 1, respectively (Figure 1).

Governing equation of the deflection of the beam given by (2.1) becomes

(
a(x)y(x)′′

)′′ = F(x) +G(x), (4.2)

for n = 1. The constraints given by (2.7)–(2.9) become

∫1

0
a(x)dx = 1, ‖F(x)‖2

L2
≡
∫1

0
F(x)2dx = 1,

max
0≤x≤1

F(x) ≤ fmax, m2
0 +m

2
1 = η.

(4.3)
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For a simply supported beam, the boundary conditions are given by

y(0) = 0, m(0) = a(0) y′′(0) = m0,

y(1) = 0, m(1) = a(1) y′′(1) = −m1,
(4.4)

where m(0) and m(1) are moments at the boundary points x = 0 and x = 1. The design
problem involves the minimization of the potential energy of the beam under worst case
of loading and as such involves optimization with respect to the area function a(x) and
antioptimization with respect to the loading functions F(x), m0 and m1 subject to the
constraints (4.3). This problem can be expressed as a minmax problem,namely,

min
a(x)

max
F(x),m

PE
(
a(x), F(x), m;y

)
, (4.5)

where PE is the performance index (potential energy) given by

PE
(
a, F,m;y

)
= PE

(
a(x), F(x), m;y

)

=
1
2

∫1

0
a(x)

(
y′′
)2
dx −

∫1

0
(F(x) +G(x))ydx

+
1
2
m0y

′(0) − 1
2
m1y

′(1),

(4.6)

and m denotes the vector m = (m0, m1). In (4.5), the first term is the strain energy and the
second, third and fourth terms make up the potential energy of the external loadings.

For the computation of the optimal area function a(x) and the worst case loading
F(x), m0 and m1 subject to the constraints (4.3), the Lagrangian given by (3.1) becomes

L
(
a, F,m;y

)
= PE

(
a, F,m;y

)
+ μ1

(∫1

0
F(x)2dx − 1

)

+ μ2

(∫1

0
a(x)dx − 1

)

+ μ3

(
m2

0 +m
2
1 − η

)
.

(4.7)

The variation of L(a, F,m;y) with respect to y gives the differential equation (4.2) and the
boundary conditions (4.4). The variation of L(a, F,m;y) with respect to a(x) yields

∫1

0

(
y′′
)2
δadx + μ2

∫1

0
δadx = 0, (4.8)

where δa is arbitrary. Thus, from the fundamental theorem of calculus of variations, it follows
that

(
y′′
)2 + μ2 = 0. (4.9)
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Similarly, the variations of L(a, F,m;y) with respect to F and m yield

−y + 4μ1f(x) = 0, for x ∈ [s1, s2], (4.10)

y′(0) + 4μ3m0 = 0, −y′(1) + 2μ3m1 = 0. (4.11)

Thus, the optimality condition of the problem is given by

y′′ = constant = β. (4.12)

Similarly, the antioptimization conditions can be expressed as

f(x) =

⎧
⎪⎨

⎪⎩

y

2μ1
, for y > 2μ1fmax,

fmax, for y < 2μ1fmax,

where s1 ≤ x ≤ s2, (4.13a)

m0 = −
y′(0)
4μ3

, m0 =
y′(1)
4μ3

. (4.13b)

Substituting the optimality and antioptimality conditions into the differential equation (4.10),
we obtain

a′′(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(x)
β

, for 0 ≤ x ≤ s1,

f(x) +G(x)
β

, for s1 ≤ x ≤ s2,

G(x)
β

, for s2 ≤ x ≤ 1,

(4.14)

where f(x) is given by (4.13a). A system of linear differential equations in y(x) and a(x)
given by (4.12), (4.13a), and (4.14) can be solved simultaneously. In the present case it is
possible to find an analytical solution for y(x) satisfying the boundary conditions, namely,

y =
β

2
x(x − 1), for 0 ≤ x ≤ 1. (4.15)

Similarly, the optimal area function is given by

aopt(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

G(x)
β

+ c1x + c2, for 0 ≤ x ≤ s1,

x3

48μ1
(x − 2) +

1
β
G(x) + c3x + c4, for s1 ≤ x ≤ s2,

G(x)β + c5x + c6, for s2 ≤ x ≤ 1,

(4.16)
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when y > 2μ1fmax where G(x) is the second indefinite integral of G(x) and ci, i = 1, . . . , 6 are
integration constants to be determined from the boundary conditions (4.4), and continuity
conditions

a−(s1) = a+(s1), a−(s2) = a+(s2), (4.17)

where a− and a+ denote the area function to the left and right of the points s1 and s2,
respectively. Furthermore in the absence of concentrated loads as required by the continuity
of the uncertain and deterministic loads, the shear force V (x) = (a(x)y′′(x))′ on the beam will
also be continuous. From the optimality condition (4.12), it follows that V (x) = βa′(x) . Thus
we have the further continuity conditions

V (s1) = a′−(s1) = a′+(s1), V (s2) = a′−(s2) = a′+(s2), (4.18)

where a′− and a′+ denote the derivatives of the area function to the left and right of the points
s1 and s2 , respectively. The case when y(x) < 2μ1fmax for x in a finite interval will be solved
in the example problems. The uncertain functions f(x), m0 and m1 can be computed from
equations (4.3), (4.10), (4.11) and (4.14). In particular the uncertain loading f(x), s1 ≤ s ≤ s2

is given by

f(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

β

4μ1
x(x − 1), for s1 ≤ x ≤ d1,

fmax, for d1 ≤ x ≤ d2,

β

4μ1
x(x − 1), for d2 ≤ x ≤ s2,

(4.19)

where d1 and d2 are unknown locations to be determined from the continuity conditions

f−(d1) = f+(d1) = fmax, f−(d2) = f+(d2) = fmax, (4.20)

where f(x)− and f(x)+ denote the uncertain load functions to the left and right of the points
d1 and d2, respectively. From equations (4.3), (4.11) and (4.14), it follows that m0 = m1 =
η/
√

2.
It is noted that the number of unknowns equals the number of equations resulting in

unique solutions. This aspect the method of solution will be illustrated in the next section by
applying the technique to several problems of practical interest.

To assess the efficiency of the optimal designs, comparisons are made with uniform
beams under uncertain loads for which a(x) = 1 for 0 ≤ x ≤ 1. The antioptimality condition
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(4.10) applies to this case also and consequently the differential equation for a uniform beam
under worst case loading becomes

d4y

dx4
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(x), for 0 ≤ x ≤ s1,

y

2μ1
+G(x), for s1 ≤ x ≤ d1,

fmax +G(x), for d1 ≤ x ≤ d2,

y

2μ1
+G(x), for d2 ≤ x ≤ s2,

G(x), for s2 ≤ x ≤ 1.

(4.21)

The solution of the differential equation (4.21) subject to the boundary conditions (4.4) and
the constraints (4.3) gives the deflection yun(x) of a uniform beam under worst case loading.
The efficiency of the design can be determined by comparing the maximum deflections of the
uniform and optimal beams, namely,

Ieff =
ymax

yun
× 100%, (4.22)

where Ieff is the efficiency index in percentage, yun and ymax are the maximum deflections of
the uniform and optimal beams under worst case of loadings.

5. Applications of Method

Example 5.1 (unconstrained F(x) with 0 < s1 < s2 < 1). Let the beam be subjected to only
the uncertain transverse load F(x) given by equation (4.1) with 0 < s1 < s2 < 1, that is, no
uncertain moments are applied on the boundaries so that m0 = m1 = η = 0, and there is no
deterministic load applied, that is, G(x) = 0. Moreover it is set equal to fmax = ∞. For this
case the optimal area function satisfying the moment boundary conditions in equation (4.4)
can be computed from equations (4.16) as

a(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c1x, for 0 ≤ x ≤ s1,

1
48μ1

x3(x − 2) + c2x + c3, for s1 ≤ x ≤ s2,

c4(1 − x), for s2 ≤ x ≤ 1.

(5.1)

Equations (4.20) for a(x) contain six unknowns β, μ1, c1, c2, c3, and c4 which are computed
from six equations for the volume and L2 norm constraints (4.3), and the continuity
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conditions (4.17) and (4.18). These constants in terms of s1 and s2 are given by

μ1 =
1

40
s5

2 −
1
40
s5

1 −
1
16
s4

2 +
1

16
s4

1 +
1

24
s3

2 −
1

24
s3

1,

c1 =
5
L

(
3s3

1 − 8s2
1 + 3s2s

2
1 + 6s1 − 8s2s1 + 3s2

2s1

+6s2 − 8s2
2 + 3s3

2

)

,

c2 =
5
(
3s4

1 − 4s3
1 + 8s3

2 − 6s2
2 − 3s4

2

)

K
,

c3 =
−5s3

1(3s1 − 4)
K

,

c4 =
−5
(
3s3

1 − 4s2
1 + 3s2s

2
1 − 4s2s1 + 3s2

2s1 − 4s2
2 + 3s3

2

)

L
,

β = ±
√
P

2
,

(5.2)

where

L = 6s4
1 − 15s3

1 + 6s3
1s2 + 10s2

1 − 15s2s
2
1 + 6s2

2s
2
1 + 10s2s1

− 15s2
2s1 + 6s1s

3
2 + 10s2

2 − 15s3
2 + 6s4

2,

K = −6s5
2 + 6s5

1 + 15s4
2 − 15s4

1 − 10s3
2 + 10s3

1,

P =
1
5
s5

2 −
1
5
s5

1 −
1
2
s4

2 +
1
2
s4

1 +
1
3
s3

2 −
1
3
s3

1.

(5.3)

A numerical example is given for the case s1 = 0.2 and s2 = 0.8 for which β = −0.08584, μ1 =
0.003684, c1 = 4.479, c2 = 5.655, c3 = −0.1538, and c4 = 4.479. The optimal area function a(x)
and the antioptimal F(x) (worst case loading) are shown in Figure 2.

In the case of a uniform beam, the worst case loading is given by f(x) = 5.825x(1 − x)
for s1 ≤ x ≤ s2 and the corresponding deflection is y = 0.04292x(1 − x). In this case yun =
0.01452, ymax = 0.01073 and the efficiency is 74% as determined by the efficiency index given
by equation (4.22).

Example 5.2 (unconstrained F(x) with s1 = 0, s2 = 1 and deterministic loading). Let the beam
subject to only the uncertain transverse load F(x) given by equation (4.1) with s1 = 0, s2 = 1,
and the deterministic load G(x) > 0. Moreover, fmax =∞. Solution for the worst case loading
is given by (4.19) with s1 = d1 = 0, s2 = d2 = 1, that is, F(x) = (β/4μ1)x(x − 1) for 0 ≤ x ≤ 1.
The differential equation for the area function takes the form

a′′(x) =
1

4μ1

(
x2 − x

)
+

1
β
G(x), 0 ≤ x ≤ 1, (5.4)
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Figure 2: Curves of optimal a(x) and worst case loading F(x) are plotted against x for s1 = 0.2 and s2 = 0.8
(Example 5.1).
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Figure 3: Curves of optimal a(x) (solid line) and F(x) (broken line) are plotted against x (Example 5.2).

where the optimality condition (4.12) is used. Let G(x) be specified as G(x) = sin((π/2)x).
Then the solution of (5.4) satisfying the volume constraint (4.3) and the boundary conditions
(4.4) is given as

aopt(x) =
1

48μ1
x3(x − 2) − 4

βπ2
sin
(π

2
x
)
+
(

4
βπ2

+
1

48μ1

)
x, (5.5)

where β = −0.1467 and μ1 = −0.006694. The optimal area function aopt(x) and the worst case
loading F(x) are shown in Figure 3.

In the case of a uniform beam, the worst case loading is given by f(x) = 5.479x(1 − x)
for 0 ≤ x ≤ 1, and the corresponding deflection is y = 0.07335x(1 − x). In this case
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yun = 0.02321, ymax = 0.01833, and the efficiency is 79% as determined by the efficiency index
given by equation (4.22).

6. Conclusions

The optimality conditions were derived for robust shape design of beams subject to unknown
loads with the moment of inertia related to the area function as I = an, n = 1, 2, 3, and
the Lp, 1 < p < ∞ norm of the transverse load subject to an equality constraint. The
potential energy of the beam was specified as the performance index which was minimized
with respect to area function (optimization) and maximized with respect to load function
(antioptimization). Lagrange multiplier method was used to take various constraints into
account and the slack variable method was used to take the upper bound on the transverse
load into account. In general the optimality conditions are expressed as a system of coupled
nonlinear differential equations in terms of deflection, area and load functions necessitating
the use of numerical methods. However, the special case of n = 1 and p = 2 was solved
explicitly to illustrate the method, to provide benchmark solutions and to assess the efficiency
of the designs.

Analytical solutions were obtained for the special case under consideration and several
example problems were solved involving various cases of loadings. Numerical results were
given for the optimal area and antioptimal load functions. The efficiencies of the optimal
designs were computed in terms of the maximum deflections of the optimal beam and
the uniform beam under least favorable loading. It was shown that for the cases studied
the design efficiency can exceed 70%. Load uncertainties arise due to the unpredictable
conditions occurring under operational conditions and are usually the cause of unexpected
failures. This situation indicates the importance of a robust design since a design optimized
for a known load is strong only for this load, but it will be weak if the loading conditions
happen to change.
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