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1. Introduction

In this paper we use a game-theoretic analysis for a single-server queue with maintenance.
When the queue becomes empty, the server leaves the system. It is usually associated with
vacations. However, in our case, the server is vacant from the system not just to perform
some unspecified maintenance (as it is the case in most systems with server vacations), but
to render a random quantity of jobs. This maintenance can be associated with a semiroutine
diagnostic, as computer servers render from time to time. When the server has a break, it is a
right time to perform a background work.

In our case, the server will be facing random amounts of various diagnostic procedures
and he will have to do some minimum quantity of them. In addition, his vacation from the
main system should also be limited by some reasonable time limit. Consequently, the server
is scheduled to be vacant until one of the two events will take place first: the total amount
of jobs performed is L or the time he spends in the maintenance facility is T . The server’s
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absence policy is however not rigid, due to one more factor. Jobs are included in packets of
random quantities (as it is the case in computer networks and telecommunications), so that
by no means can the server break a packet with unfinished jobs and return to the system even
if the total amount of jobs crosses L or his time spent with maintenance expires beyond T .
The server alone cannot break a single job in a middle if his time in the maintenance facility
is expired. The server will ultimately return to the primary system after he is done with a
packet. This policy is more reasonable than a rigid one, but the system modeling is obviously
more complex.

Consequently, the return time, the amount of done jobs, and most importantly, the
number of customers so far accumulated in the buffer become a nontrivial problem that
is investigated by means of fluctuation analysis. More specifically, it seems plausible to
introduce a multivariate random walk process, with two antagonistic components (the
number of jobs and the cumulative time), say players A and B. In light of stochastic game
theory, the game will be over when a player wins. However, the information on player’s
victory is not available in the real time, but at one of the epochs of time designated for
(random) observations. It means that the end of the game does not occur at the moment
when the defeat takes place, but with a random delay. Thus, the information collected about
the game can be crude or fine dependent on the intensity of the observation process. Now,
due to delays, and because the game will actually continue even after one of the players
is defeated, a delayed information can cause the winner to endure damages exceeding his
threshold. For example, if server’s time in the maintenance facility is expired, but he is not
done with a packet (an analog of a delayed observation), he remains in the facility until he
completes the packet. Meanwhile, the total quantity of jobs he processed by then also exceeds
L. Then, he returns to the system with both, the amount of jobs done greater than L and the
time spent at the facility greater than T . (Here the game is pronounced to be over, at the
opportune observation epoch, with both players winning.)

We need to notice that there is one more player C involved in the game, though
passively. This player receives strikes from both players A and B, but never responds and
his defeat is imminent. It occurs either during the game between players A and B, or
thereafter when either one of the players or their coalition attacks C until C is defeated. In
our case, player C is represented by the flow of customers arriving to the main system during
server’s work at the maintenance facility and possibly during server’s waiting time in the
system.

In a nutshell, the game aspect of this analysis lies in two active players exerting
random damages to each other at random times. The first phase of the game continues until
the casualties to one of the players exceed a certain threshold (L for player A and T for
player B) upon one of the legitimate “observation” times (successive completion of servicing
packets). When this takes place, the first phase of the game is over. There is a third player
(C) who suffers casualties (from both players) but does not actively participate in neither
phase of the game. At the beginning of phase two, the total amount of casualties to player C
is observed and the entire game is over if there is at least one. Otherwise, the game enters its
second phase and continues until the player C suffers one or more hits. (Each strike carries
out multiples hits.) Player C is represented by the input flow of customers to the system
and the “total casualties” to player C is the amount of customers accumulated in the system
during the two phases of the game.

In the past analyses of antagonistic games [1–13], the focus was on warfare [2–6, 8, 12],
economics [1, 5, 7, 9, 11], and ecology [10]. For the first time (to the best of our knowledge),
stochastic games are directly applied to queueing in this form.
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Description of the System

The input to the system is a marked Poisson process with position independent marking and
the FIFO discipline of lined up units. The server takes only one unit at a time and have it
departed once being processed. (More on this below.)

When the queue becomes exhausted, the server leaves the system (for special
vacations) beginning with his diagnostic checkup. Suppose that the server first observes
a batch of X1 jobs that he needs to complete. Each job needs a random amount of time
beginning with δ1. So, the X1 jobs the server work on sequentially will be done in Δ1 :=
δ1 + · · · + δX1 units of time.

After this is finished, the server turns to another batch of jobs,X2 and so on.We assume
thatXi ≥ 1, a.s. The total amount of jobs to be rendered is limited but someminimum of them,
say L, must be rendered before the server returns to the system. In addition, the total amount
of time needed to complete these jobs is also limited by a fixed positive number T . We need
to clarify this constraints. In general the total quantity of all jobs is limited by L. However, the
server must not break a batch to comply with this rule. In other words, if for some k, he will
be serving k batches with

Ak := X1 + · · · +Xk ≥ L, (1.1)

while

Ak−1 = X1 + · · · +Xk−1 < L, k = 1, 2, . . . , X0 = 0. (1.2)

Analogously, the time the server spends on diagnostic is limited by T , but never at expense
of breaking a job or even a packet (i.e., a batch), so that

τk := Δ1 + · · · + Δk ≥ T, (1.3)

but

τk−1 = Δ1 + · · · + Δk−1 < T, k = 1, 2, . . . ,Δ0 = 0. (1.4)

Therefore the server returns to the system when one of the two events take place (whichever
comes first): the cumulative amount of jobs exceeds L or the total time spent with the jobs
exceeds T after completion of a last batch of jobs (any of these taking place for the first time).

If τn is as in (1.3), we obviously have

τn = δ1 + · · · + δX1 + δX1+1 + · · · + δX2 + · · · + δXn , (1.5)

as the time spent for X1 + · · · +Xn jobs.
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We need to find how many jobs were actually done upon server’s return to the
system, as well as the return time, and most importantly, how many customers were so far
accumulated in the buffer. We first define the random indices

ν1 = inf{n : An = X1 + · · · +Xn ≥ L},

ν2 = inf{n : τn ≥ T},

ν := min{ν1, ν2}.

(1.6)

With ν so defined, we see that τν will be the return time (also referred to as the first passage time
or the exit time), while Aν and Bν are the total quantity of jobs done during the maintenance
time and the total number of customers fill in the buffer, respectively, upon server’s return
to the system. Notice that if the server, upon his return, finds no customers in the system, he
will rest and wait for a first batch to come. We will discuss this new phase in due course.

Consequently, we will be interested in the joint functional

Φν(u, z, θ) := EuAνzBνe−θτν , (1.7)

in which both Aν and τν are “active components,” while Bν is a “passive component”. The
reason for these names is that Aν and τν both actively involved in server’s return and their
values are related to L and T , respectively, while Bν is not and its value is only assumed on
server’s return.

Aν is the amount of jobs rendered by the server upon his return to the system, Bν is the
number of customers by the end of the maintenance period, and τν is the first passage time,
that is, the time when the server returns to the system and thus exits the maintenance mode.

The Game

In one of the setting for stochastic antagonistic games [4, 14–17], there is a bivariate marked
point process

G1 :=
∞∑

k=0

(Xk, Yk)ετk (1.8)

representing incremental casualties Xk and Yk to players A and B observed at time τk, k =
0, 1, . . . . The players actions in reality take place at different times, but they are observed
jointly upon times T = {τ0, τ1, . . .}. The first passage time takes place at one of the observed
epochs from T when the casualties to one of the players become “unbearable.”

In our case, however, the two players will be represented by incremental marks Xk

and τk − τk−1 instead, while marks Yk will be continually observed and associated with the
casualties to the third player C whose status will be raised upon moving on to phase two of
the game. (One of the authors of this paper has been involved in multiphase games [15, 18–
20] directly related to this model.)

Without loss of generality, we will be using the same notation for the randommeasure
G1, however meaning Xk’s and τk − τk−1’s as active components representing players A and
B, while Yk is meant to be a passive component representing player C.
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In the second phase the game turns to

G2 :=
∞∑

j=0

Zjεtj , (1.9)

with Z0 = Yν and t0, t1, . . . are the times when the winner of phase one exerts hits to player C
in increments of Z0, Z1, . . . until the total casualties Cm := Z0 + · · · + Zm to C at tm cross level
N. The total game is over.

The Queue on Phase II

When the server returns to the system at τν, he finds Bν customers in the buffer, and unless
Bν ≥ N, the server does not resume his service and waits for more units to arrive at times
t1, t2, . . . . Once, Cm ≥ N, a new busy period begins. In this paper, we assume for simplicity,
N = 1 and leave a more general case of N for an upcoming work (in its association with the
N-policy). Nevertheless, the use of fluctuation analysis on the second phase with N = 1 is
almost mandatory, because we are not able to discern analytically whether or not Bν > 0.

The Layout of the Paper

The introductory section is followed by the formalism of our model and the use of fluctuation
analysis. The named functional Φν(u, z, θ) := EuAνzBνe−θτν is obtained in a closed form with
the focus on the marginal functional EzBνe−θτν (in Section 3) giving the number of units
accumulated in the buffer upon exit from the secondary work (phase I). The tractability of
EzBνe−θτν is then demonstrated on a special case of the marked point process G1 in phase I
(with no restriction on the queueing system), allowing us in Section 4 to arrive at fully explicit
formulas. Section 5 deals with phase II of the game (waiting time after server’s return) and
the output functional Φ̃μ(z, θ) := EzCμe−θtμ , where Cμ is the number of customers in the
system at time tμ (the exit from phase II and the beginning of a busy period). Section 6 offers a
Kendall-like compact formula for the queue in the steady state in the form of the probability
generating function. The paper concludes with a summary of the results obtained and the
discussion of the upcoming work on continuous time parameter queueing process and an
extended global control under the revival of rendered jobs during the maintenance period.

A Relationship to the Existing Literature

The present model generalizes the very old classical MX/G/1/∞ queue [21, page 301], but
it goes beyond it. It also modifies N- and T-policy (cf. Tian and Zhang [22, pages 27-28 and
32], resp.), multiple vacations systems (cf. Jain et al. [23, page 357]) all in one, let alone the
inclusion of the secondary work, and not just vacations.

We use the method of fluctuation analysis [4–6, 14–19, 24, 25], some of which
previously applied to antagonistic games [4, 5, 15, 18, 19] and described the system (at
least in part) as a game. To the best of our knowledge such an approach is novel and only
fragments of this model are related to the past work. A lion portion of this paper is related
to sequential games [15, 18–20]. The latter includes two or more phases of a game, mostly a
conflict between two players. For example article [15] introduced a game of two players A
and B, in which phase I involved a series of one-sided attacks on player A (such as economic
sanctions, small ambushes, or threats). They continued until damage to player A became
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serious enough to respond. The latter turned the game to phase II with mutual attacks, in
which attacks to player A became more vigorous than during phase I. In another paper
modeling a sequential game [19], phase I runs a mutual conflict with weak attacks on each
other that were “tolerated” until cumulative damages to one of the players were crossing
some thresholds. Once this took place, the second phase began with more aggressive and
dangerous attacks leading to the destruction of one of the players. The paper dealt with
the exit time from the game as well as the cumulative damages to either player at the exit.
In various variants of such or a similar game, the authors treated discrete- or continues-
valued components (cf. [4]). In some cases, like in the present variant of the conflict, the
components are mixed. The variety of the nature of the component suggests different types
of inverse operators involved to solve the problem. Article [25] by the second author offers an
introduction to such different cases. Other work on sequential games can be found in [26–30].

The notion of T-policy as stated in Tian and Zhang [22] and earlier in Heyman [31]
is to call the server back as soon as his vacation time hits T . A more plausible scenario of T-
policy is to call the server back after his vacation time hits T, but not at expense of breaking his
vacation in the middle, especially if it is a multiple vacation case. Furthermore, if the server
(as it is in our case) performs explicit and not virtual jobs, then it makes sense to restrict
the exit from his vacations by not only having him to end a job, but also a packet of jobs. So,
formally we do not generalize [31], but modify it to a seeminglymore realistic scenario. As far
as N-policy alone (i.e., if T = ∞), we also modify it due to the server’s obligation not to break
a random batch of jobs until it is finished. A classic and most often cited to paper onN-policy
and multiple vacations is by Lee et al. [32], which is somewhat related to our present model.

While a majority of work on N-policy with (or without) multiple vacations use the
“supplementary variable” technique by finding the probability generating function (pgf)
of the continuous time parameter queueing process (cf. Lee et al. [32]), we work on the
embedded process upon departures. However, the results we obtain here will be used
later on to have the pgf of the continuous time parameter queue using techniques of time-
sensitive functionals, which offers benefits of no mandatory assumption on the service time
distribution to be absolutely continuous (used in the supplementary variables method).

As far as the techniques utilized in this paper, we relate to fluctuations of stochastic
processes [24, 33–35] widely used in queueing [36, 37], economics [14, 17, 38–40], physics
[41–44], astronomy [42], and biology [42]. Pertinent cases of fluctuation phenomena in
single- and multivariate marked point processes are treated by the second author and his
collaborators in [14, 16, 17, 24, 25]. The reader is also advised to see more general work in
[33–35].

Finally our present paper is also related to Abolnikov et al. [36] about “hybrid queues”
which comes closest of all to our present work. The authors there considered a queue also
with maintenance jobs similar to ours, but without a time restriction, and most importantly,
without explicit treatment of the process during the maintenance period.

2. Formalism of the Model and the Main Past Results

To formulate a result previously obtained in Dshalalow and Liew [16] we utilize a generic
bivariate marked point process. Let

(A,B,T) :=
∑

i≥0
(Xi, Yi)ετi , (Xi, Yi) ∈ {0, 1, . . .}, τi ≥ 0 (2.1)



Mathematical Problems in Engineering 7

(εa is the Dirac mass) be a delayed marked renewal process on a probability space
(Ω,F(Ω), P). We assume that (A,B,T) is with position dependent marking such that

γ0(u, z, θ) := EuX0zY0e−θτ0 , ‖u‖ ≤ 1, ‖z‖ ≤ 1, Re(θ) ≥ 0,

γ(u, z, θ) := EuX1zY1e−θ(τ1−τ0), ‖u‖ ≤ 1, ‖z‖ ≤ 1, Re(θ) ≥ 0.
(2.2)

Given some fixed thresholds L = 1, 2, . . . , and T > 0, we define

ν1 := inf{n ≥ 0 : An = X0 + · · · +Xn ≥ L},

ν2 := inf{n ≥ 0 : τn = Δ0 + · · · + Δn > T},

ν := min{ν1, ν2},

(2.3)

the random index such that the cumulative marks Aν and τν will exceed L or T , respectively.
Notice that Bν is the only one of the three random components that assumes a value at τν,
making B = (Y0, Y1, . . .) a passive component. Since A = (X0, X1, . . .) and T = (Δ0,Δ1, . . .)
are directly related to the control levels L and T , they are referred to as active components of
(A,B,T). The following functional:

Φν := Φν(u, z, θ) = EuAνzBνe−θτν (2.4)

will describe the status of the process upon its exit from the rectangle [0, L) × [0, T] at τν.
We will make use of the Laplace-Carson transform

LCp(·)(s) := s

∫∞

p=0
e−sp(·)dp, Re(s) > 0, (2.5)

whose inverse obviously is

LC−1
s (·)
(
p
)
= L−1

s

(
·1
s

)(
p
)
, (2.6)

where L−1 denotes the inverse of the Laplace transform.
Next, we introduce another (discrete) transformation

Dp

{
f
(
p
)}
(x) :=

∞∑

p=0

xpf
(
p
)
(1 − x), ‖x‖ < 1, (2.7)

where f is an integrable function defined on set N0. The inverse operator below can restore
f , if we apply it for all k:

Dk
x

(
Dp

{
f
(
p
)}

(x)
)
= f(k), k = 0, 1, . . . , (2.8)
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where the inverse Dk is

k �−→ Dk
xϕ
(
x, y
)
=

⎧
⎪⎪⎨

⎪⎪⎩

lim
x→ 0

1
k!

∂k

∂xk

[
1

1 − x
ϕ
(
x, y
)]
, k ≥ 0,

0, k < 0,

(2.9)

if applied to a function ϕ(x, y) analytic at zero in the first variable.
Theorem 2.1 by Dshalalow and Liew [16] given below establishes an explicit formula

for Φν.

Theorem 2.1. The functional Φν of (2.4) satisfies the following formula:

Φν = Φν(u, z, θ)

= LC−1
y

[
DL−1

x

{
γ0(u, z, θ) − γ0

(
xu, z, θ + y

)

+
γ0
(
xu, z, θ + y

)

1 − γ
(
xu, z, θ + y

)
[
γ(u, z, θ) − γ

(
xu, z, θ + y

)]
}]

(T).

(2.10)

In the sequel, we will drop the delay in (A,B,T) by setting

X0 = Y0 = τ0 = 0, (2.11)

thereby making

γ0(u, z, θ) = 1. (2.12)

The latter will reduce (2.10) to

Φν = LC−1
y

[
DL−1

x

{
γ(u, z, θ) − γ

(
xu, z, θ + y

)
+ 1 − 1

1 − γ
(
xu, z, θ + y

)
}]

(T)

= 1 −
[
1 − γ(u, z, θ)

]
LC−1

y

[
DL−1

x

{
1

1 − γ
(
xu, z, θ + y

)
}]

(T).

(2.13)

In particular, for u = 1 we obtain the marginal functional

EzBνe−θτν = 1 −
[
1 − γ(1, z, θ)

]
LC−1

y

[
DL−1

x

{
1

1 − γ
(
x, z, θ + y

)
}]

(T). (2.14)
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We will now focus on γ(u, z, θ). With the conventional formula for the double expectation we
have

γ(u, z, θ) = E
[
uX1zY1e−θΔ1

]

= E
[
uX1E

[
zY1e−θ(δ1+···+δX1) | X1

]]
.

(2.15)

Now, we can regard Y1 as the sum of customers that enter the system during the times
δ1, . . . , δX1 , that is,

Y1 = y1 + · · · + yX1 (2.16)

with

yj =
{
number of customers accumulated in

(
δj−1, δj

]}
, j = 1, . . . , X1. (2.17)

Since (y1, δ1), (y2, δ2) . . . are conditionally (given σ-algebra σ(X1)) independent and jointly
identically distributed random vectors, we have

E
[
zy1e−θδ1 · · · zyX1 e−θδX1 | σ(X1)

]
=
[
g(z, θ)

]X1 , (2.18)

where

g(z, θ) := Ezy1e−θδ1 (2.19)

is the common Laplace-Stieltjes transform (LST) of the r.v.’s δ1, δ2, . . . . Using (2.18)-(2.19)we
have

γ(u, z, θ) = E
[
uX1
[
g(z, θ)

]X1
]
= G
(
ug(z, θ)

)
, (2.20)

where

G(v) := EvX1 , X1 ≥ 1, (2.21)

is the probability generating function (pgf) of r.v. X1.
Finally, substituting (2.20) in (2.14), we get

EuAνzBνe−θτν = 1 −
[
1 −G

(
ug(z, θ)

)]
LC−1

y

[
DL−1

x

{
1

1 −G
(
xug
(
z, θ + y

))
}]

(T), (2.22)

giving the joint marginal transform of r.v.’s Bν (the number of units upon server’s return to
the system) and τν (the time of server’s return). We note that the closest functional to (2.22)



10 Mathematical Problems in Engineering

was the one considered in Abolnikov et al. [36], but without LC−1
y , as no restriction in T was

there imposed. Consequently, the vacation model there was simpler from the fluctuations
stand. In the rest of the comprehensive literature on vacations (cf. the monograph [22]), there
is none to deal with secondary jobs and fluctuation analysis that will bear fruits as we will
see it from the upcoming sections.

3. EuAνzBνe−θτν Adopted to the Queueing System

In this section we return to the queueing system and adopt the generic bivariate marked
point process (A,B,T) of the previous section, now interpreting the component A as the
maintenance routine taking place during server’s vacationing from the main system as
observed over T. The component B describes the accumulation process of the incoming
units in the system during the server’s absence. Considering that the input to the system
is marked Poisson (also referred to as compound Poisson), with position independent marking
and intensity λ,

I =
∞∑

i=1

Uiεti , (3.1)

where the marks Ui’s are iid r.v.’s with the common pgf and the mean

a(z) := EzUi , a := EUi, i = 1, 2, . . . . (3.2)

Assuming that the times δ1, δ2, . . . needed to process successive jobs during the maintenance
period are iid r.v.’s with the common LST

δ(θ) := Ee−θδ1 . (3.3)

we easily conclude that the joint functional g(z, θ) of the number of customers entering the
main facility during processing any job (left behind in (2.19)) will then be

g(z, θ) = δ(θ + λ − λa(z)), (3.4)

equation (3.4) is due to the usual double expectation routine occurring in queueing.
Consequently, with (3.4), formula (2.22) for the joint transform of the customers

accumulated during the entire maintenance process and the server’s return time will be

EuAνzBνe−θτν = 1 − [1 −G(uδ(λ − λa(z) + θ))]

× LC−1
y

[
DL−1

x

{
1

1 −G
(
xuδ
(
y + λ − λa(z) + θ

))
}]

(T), L ≥ 1.
(3.5)

Specifically, for L = 1, EuAνzBνe−θτν degenerates to

EuAνzBνe−θτν = G(uδ(λ − λa(z) + θ)), L = 1. (3.6)
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4. A Special Case of the Maintenance Process

First, we will avoid a relative simplicity with L = 1, as in this case the operator DL−1 will
degenerate. So, we assume that L ≥ 2. Next, make two assumptions on the maintenance
process and go with the special case.

(i) There is the LST of the processing time of a job

Ee−θδ1 = δ(θ) =
δ

δ + θ
. (4.1)

(ii) The distribution of the batch sizes X1, X2, . . . is geometric with parameter p and pgf

G(u) =
pu

1 − qu
, p + q = 1. (4.2)

Given the above assumptions, we calculate γ(x, z, y) of (2.20) as needed for (3.5). After
straightforward algebra we have

γ
(
xu, z, y + θ

)
= G
(
xuδ
(
y + λ − λa(z) + θ

))

=
pxu
(
δ/
(
δ + λ − λa(z) + y + θ

))

1 − qxu
((
δ/δ + λ − λa(z) + y + θ

))

=
pxuδ

δ + λ − λa(z) + y + θ − δxuq
,

(4.3)

1 − γ
(
xu, z, y + θ

)
=

δ + λ − λa(z) + y + θ − δxuq − δxup

δ + λ − λa(z) + y + θ − δxuq

=
δ + λ − λa(z) + y + θ − xuδ

δ + λ − λa(z) + y + θ − δxuq
,

(4.4)

1
1 − γ
(
xu, z, y + θ

) =
1

1 −G
(
xuδ
(
y + λ − λa(z) + θ

))

=
δ + λ − λa(z) + y + θ − δxuq

δ + λ − λa(z) + y + θ − xuδ

= q + p
δ + λ − λa(z) + y + θ

δ + λ − λa(z) + y + θ − xuδ
.

(4.5)
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We first apply the operatorDL−1
x to (4.5) considering that it is linear and has constant functions

as its fixed points (cf. [4, 14, 25]):

DL−1
x

{
1

1 − γ
(
xu, z, y + θ

)
}

= DL−1
x

{
1

1 −G
(
xuδ
(
y + λ − λa(z) + θ

))
}

= DL−1
x

{
q + p

δ + λ − λa(z) + y + θ

δ + λ − λa(z) + y + θ − xuδ

}

= q +DL−1
x

{
p

δ + λ − λa(z) + y + θ

δ + λ − λa(z) + y + θ − xuδ

}

= q + pDL−1
x

{
1

1 − xuδ/
(
δ + λ − λa(z) + y + θ

)
}
.

(4.6)

Furthermore, using the property that

Dk
x

{
1

1 − bx

}
=

1 − bk+1

1 − b
(4.7)

(cf. [4]) we obtain

DL−1
x

{
1

1 − γ
(
xu, z, y + θ

)
}

= DL−1
x

{
1

1 −G
(
xuδ
(
y + λ − λa(z) + θ

))
}

= q + p
1 −
[
δu/
(
δ + λ − λa(z) + y + θ

)]L

1 − δu/
(
δ + λ − λa(z) + y + θ

) .

(4.8)

We now prepareDL−1
x {1/(1−γ(xu, z, y+θ))} = DL−1

x {1/(1−G(xuδ(y+λ−λa(z)+θ)))} for the
further application of LC−1

y , and after a simple algebra and partial fractions decomposition
we arrive at

DL−1
x

{
1

1 − γ
(
xu, z, y + θ

)
}

= DL−1
x

{
1

1 −G
(
xuδ
(
y + λ − λa(z) + θ

))
}

= 1 +
pδu

δ − δu + λ − λa(z) + y + θ

−
p(δu)L

(
δ − δu + λ − λa(z) + y + θ

)[
δ + λ − λa(z) + y + θ

]L−1 .

(4.9)
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To apply the Laplace-Carson inverse we need to divideDL−1
x {1/(1− γ(xu, z, y+θ))} by y first

and then use the Laplace inverse. Using again the partial fraction decomposition, after the
division by y, we have the expression

1
y
DL−1

x

{
1

1 − γ
(
xu, z, y + θ

)
}

=
1
y
+

pδu

δ − δu + λ − λa(z) + θ

(
1
y
− 1
δ − δu + λ − λa(z) + θ + y

)

−
p(δu)L

δ − δu + λ − λa(z) + θ

×
[

1

y
(
δ+λ−λa(z)+θ+y

)L−1 −
1

(
δ−δu+λ−λa(z)+θ+y

)(
δ+λ−λa(z)+θ+y

)L−1

]
.

(4.10)

Applying the Laplace inverse to the first two terms of (4.10) and using the standard tables
for the Laplace transform we have

L−1
y

(
1
y
+

pδu

δ − δu + λ − λa(z) + θ

(
1
y
− 1
δ − δu + λ − λa(z) + θ + y

))
(T)

= 1 +
pδu

δ − δu + λ − λa(z) + θ

(
1 − e−(δ−δu+λ−λa(z)+θ)T

)
.

(4.11)

To process the third term we first notice that

L−1
y

{
1

[
δ + λ − λa(z) + θ + y

]L−1

}
(T) = e−(δ+λ−λa(z)+θ)T

TL−2

(L − 2)!
(4.12)

and, in particular, for δ = 0 and L = 2,

L−1
y

{
1

λ − λa(z) + θ + y

}
(T) = e−(λ−λa(z)+θ)T . (4.13)

Then we will use the property of the Laplace transform applied to the convolution of two
functions h and g:

Lp

(
h ∗ g
(
p
))(

y
)
= ĥ
(
y
)
ĝ
(
y
)
. (4.14)
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Consequently, the inverse of the product of two Laplace images is the convolution of their
inverses. So,

L−1
y

(
1

y
(
δ + λ − λa(z) + θ + y

)L−1

)
(T)

=
∫T

u=0

uL−2

(L − 2)!
e−(δ+λ−λa(z)+θ)udu

×

⎛

⎝using
∫ t

u=0
λe−λu

(λu)n

n!
du = 1 −

n∑

j=0

e−λt
(λt)j

j!

⎞

⎠

=
1

[δ + λ − λa(z) + θ]L−1

⎡

⎣1 −
L−2∑

j=0

e−[δ+λ−λa(z)+θ]T
[(δ + λ − λa(z) + θ)T]j

j!

⎤

⎦.

(4.15)

Similarly,

L−1
y

(
1

(
δ − δu + λ − λa(z) + θ + y

)(
δ + λ − λa(z) + θ + y

)L−1

)
(T)

=
∫T

u=0
e−(δ+λ−λa(z)+θ)v

vL−2

(L − 2)!
e−(δ−δu+λ−λa(z)+θ)(T−v)dv

= e−(δ−δu+λ−λa(z)+θ)T
∫T

v=0
e−δv

vL−2

(L − 2)!
dv

=
e−(δ−δu+λ−λa(z)+θ)T

(δu)L−1

⎡

⎣1 −
L−2∑

j=0

e−δuT
(δuT)j

j!

⎤

⎦.

(4.16)

From (4.10)–(4.13) and (4.15)-(4.16)we obtain

LC−1
y

[
DL−1

x

{
1

1 −G
(
xuδ
(
y + λ − λa(z) + θ

))
}]

(T) = 1 −
pδuH(δu, z, θ)

Δ(u, z, θ)
, (4.17)

where

H(δu, z, θ) =
(

δu

h(δ, z, θ)

)L−1
Σ(δ, z, θ) + e−Δ(u,z,θ)T [1 − Σ(δu, 1, 0)] − 1, (4.18)

Σ(δ, z, θ) = 1 −
L−2∑

j=0

e−h(δ,z,θ)T
[h(δ, z, θ)T]j

j!
, (4.19)

h(δ, z, θ) = δ + λ − λa(z) + θ, (4.20)

Δ(u, z, θ) = δ − δu + λ − λa(z) + θ. (4.21)
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From (3.5), using (4.4) for x = 1 and (4.17)–(4.21), after simple algebra, we finally have

EuAνzBνe−θτν = 1 − [1 −G(uδ(λ − λa(z) + θ))]

× LC−1
y

[
DL−1

x

{
1

1 −G
(
xuδ
(
y + λ − λa(z) + θ

))
}]

(T)

= 1 − Δ(u, z, θ)
h(δ, z, θ) − δuq

(
1 −

pδuH(δu, z, θ)
Δ(u, z, θ)

)

= pδu
1 +H(δu, z, θ)
h(δ, z, θ) − δuq

, L ≥ 2.

(4.22)

In particular,

EzBνe−θτν = Φν(1, z, θ) = pδ
1 +H(δ, z, θ)
h
(
δp, z, θ

) , L ≥ 2, (4.23)

where

H(δ, z, θ) =
(

δ

h(δ, z, θ)

)L−1
Σ(δ, z, θ) + e−h(0,z,θ)T [1 − Σ(δ, 1, 0)] − 1, (4.24)

Σ(δ, 1, 0) = 1 −
L−2∑

j=0

e−δT
[δT]j

j!
. (4.25)

From (3.6) and (4.3), for L = 1 we get

EuAνzBνe−θτν =
puδ

δ + λ − λa(z) + θ − δuq
, L = 1. (4.26)

In particular,

EzBνe−θτν =
pδ

pδ + λ − λa(z) + θ
, L = 1. (4.27)

In a nutshell we have the following.

Theorem 4.1. Given assumptions (4.1) and (4.2), the number of customers Bν that enter the system
during the server’s maintenance work (i.e., between his departure from the system and his return
at τν) along with the time τν and the number of jobs Aν rendered by τν in the form EuAνzBνe−θτν

satisfies formulas (4.18)–(4.22) and (4.26). The corresponding marginal functional EzBνe−θτν satisfies
formulas (4.19)-(4.20), (4.23)–(4.25), (4.27).
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5. Phase 2: The Waiting Period

Now, when the server returns to the system, he finds Bν customers in the buffer, which does
not have to be positive. In case if Bν = 0, the server does not leave the system as he did in
the conclusion of a busy period, and so he waits for any batch of customers. Consequently,
his service finally resumes when a group of units enters the system. However, it sounds like
most likely customers will wait for the server rather than other way around. The problem is
not trivial as it is for a regular MX/G/1/∞ queue, with the server waiting for the first batch
of customers unconditionally. We turn again to fluctuation analysis considering a generic
delayed marked renewal process

(Z, T) :=
∑

k≥0
Zkεtk , (5.1)

with generally position dependent marking. The process Z runs its course until its
cumulative mark

Cn = Z0 + · · · + Zn (5.2)

crosses some integer N at tn. In other words, with

μ = inf{n : Cn ≥ N} (5.3)

Cμ ≥ N at the exit time tμ. We describe the process (Z, T) by

Γ0(z, θ) := E
[
zZ0e−θt0

]
, ‖z‖ ≤ 1, Re(θ) ≥ 0,

Γ(z, θ) := E
[
zZ1e−θ(t1−t0)

]
, ‖z‖ ≤ 1, Re(θ) ≥ 0.

(5.4)

We are interested in the joint functional

Φ̃μ(1, z, θ) := E
[
zCμe−θtμ

]
. (5.5)

The latter is known [16] to obey the formula

Φ̃μ(1, z, θ) = Γ0(z, θ) − [1 − Γ(z, θ)]DN−1
x

{
Γ0(xz, θ)

1 − Γ(xz, θ)

}
, (5.6)

with

Γ0(z, θ) = Φν(1, z, θ), (5.7)

when bearing in mind a period when the server returns to the system, with the history of

t0 = τν, Z0 = Bν. (5.8)
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Note that the server would then wait until N customers or more will accumulate upon one
of the arrivals. (Recall that the input is bulk.) In the event, Z0 ≥ N, Γ0(z, θ)will contain factor
zN (with the rest being analytic in z) and thus make the second term of (5.6) vanishes, as

DN−1
x

(
xNϕ(1, xz, θ)

)
= D0

x

(
xϕ(1, xz, θ)

)
= 0. (5.9)

In this case, Φ̃μ(z, θ)would equal Γ0(z, θ). Thus, formula (5.6)will take care of the case when
Z0 ≥ N by itself.

Obviously,

Γ(z, θ) = a(z)
λ

λ + θ
(5.10)

in our case of the marked Poisson process with position independent marking. Consequently,
we have the marginal functional

Φ̃μ(1, z, θ) = E
[
zCμe−θtμ

]

= Φν(1, z, θ) −
[
1 − λ

λ + θ
a(z)
]
DN−1

x

{
Φν(1, xz, θ)

1 − λ/(λ + θ)a(xz)

}
.

(5.11)

Furthermore, we assume that the threshold N = 1 (although in some upcoming versions we
would like to retain the generality of N) thereby further reducing (5.11) to

Φ̃μ(1, z, θ) = Φν(1, z, θ) −
[
1 − λ

λ + θ
a(z)
]
D0

x{Φν(1, xz, θ)}

= Φν(1, z, θ) −
[
1 − λ

λ + θ
a(z)
]
Φν(1, 0, θ),

(5.12)

where

Φν(1, z, θ) = δp
1 +H(δ, z, θ)
h
(
δp, z, θ

) . (5.13)

To find Φν(1, 0, θ) explicitly we turn to formulas (4.18)–(4.21):

Φν(1, 0, θ) = δp
1 +H(δ, 0, θ)
δp + λ + θ

,

H(δ, 0, θ) =
(

δ

δ + λ + θ

)L−1
⎡

⎣1−
L−2∑

j=0

e−(δ+λ+θ)T
[(δ + λ + θ)T]j

j!

⎤

⎦ −

⎡

⎣1−
L−2∑

j=0

e−(δ+λ+θ)T
(δT)j

j!

⎤

⎦.

(5.14)

The above can be summarized as Theorem 5.1. For convenience, we bring all formulas
together in one place.
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Theorem 5.1. The number of units Cμ accumulated in the buffer upon the beginning of a busy period
tμ, jointly with tμ, for L ≥ 2, is given by the transform

E
[
zCμe−θtμ

]
= Φ̃μ(1, z, θ) = Φν(1, z, θ) −

[
1 − λ

λ + θ
a(z)
]
Φν(1, 0, θ), (5.15)

where

Φν(1, z, θ) = δp
1 +H(δ, z, θ)
h
(
δp, z, θ

) ,

H(δ, z, θ) =
(

δ

h(δ, z, θ)

)L−1
Σ(δ, z, θ) + e−h(0,z,θ)T [1 − Σ(δ, 1, 0)] − 1,

Σ(δ, z, θ) = 1 −
L−2∑

j=0

e−h(δ,z,θ)T
[h(δ, z, θ)T]j

j!
,

h(δ, z, θ) = δ + λ − λa(z) + θ,

Φν(1, 0, θ) = δp
1 +H(δ, 0, θ)
δp + λ + θ

,

H(δ, 0, θ) =
(

δ

δ + λ + θ

)L−1
⎡

⎣1−
L−2∑

j=0

e−(δ+λ+θ)T
[(δ + λ + θ)T]j

j!

⎤

⎦−

⎡

⎣1−
L−2∑

j=0

e−(δ+λ+θ)T
(δT)j

j!

⎤

⎦,

Σ(δ, 1, 0) = 1 −
L−2∑

j=0

e−δT
(δT)j

j!
.

(5.16)

The marginal functional EzCμ can be obtained from (5.15)-(5.16) by letting θ = 0:

EzCμ = Φ̃μ(1, z, 0) = Φν(1, z, 0) − [1 − a(z)]Φν(1, 0, 0), (5.17)

where, in particular,

Φν(1, 0, 0)=δp
1+H(δ, 0, 0)

δp + λ
=

pδ

pδ + λ

{(
δ

δ + λ

)L−1
Σ(δ, 0, 0)+e−λT(1− Σ(δ, 1, 0))

}
,

H(δ, 0, 0) =
(

δ

δ + λ

)L−1
⎡

⎣1 −
L−2∑

j=0

e−(δ+λ)T
[(δ + λ)T]j

j!

⎤

⎦ −

⎡

⎣1 −
L−2∑

j=0

e−(δ+λ)T
(δT)j

j!

⎤

⎦.

(5.18)

For L = 1,

Φ̃μ(1, z, θ) =
pδ

pδ + λ − λa(z) + θ
−
[
1 − λ

λ + θ
a(z)
]

pδ

pδ + λ + θ
, L = 1. (5.19)
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For the sequel, we will need ECμ and for thus, we need EBν = Φ′
ν(1). After

straightforward computations, we arrive at the following.

Proposition 5.2. The mean number of units α := ECμ at the beginning of a busy period satisfies the
following formula:

α = ECμ = EBν + aΦν(1, 0, 0), L ≥ 2, (5.20)

where

EBν =
λa

pδ
+ λa

[
T +
(
L − 1
δ

− T

)
Σ(δ, 1, 0) − Te−δT

(δT)L−2

(L − 2)!

]
, L ≥ 2,

α = ECμ =
λa

pδ
+ a

pδ

pδ + λ
, L = 1,

(5.21)

with Φν(1, 0, 0) satisfying (5.18) and a being defined in (3.2).

6. The System on a Busy Period and in Equilibrium

In Section 5 (Theorem 5.1) we calculated the pgf of the quantity of the units accumulated
in the buffer at the beginning of a busy period. The time during which the system gained
in Cμ customers consisted of two phases. The first phase was when the server performed a
maintenance completing Aμ amount of jobs. Phase 2 involved a waiting period in the event
the buffer was empty.

The rest of the analysis (as regards the embedded process) is almost identical to that
of the usual bulk input MX/G/1/∞ queue. We therefore restrict ourselves to the main
formalism and present the final formulas.

(i) The input to the system is bulk Poisson I =
∑∞

i=1 Uiεti with position independent
marking and a(z) = EzUi , a = EUi, i ≥ 1, as per (3.1)-(3.2), and intensity λ of its
point process

∑∞
i=1 εti .

(ii) Service is general and independent including independence of the input that is,
service times σ1, σ2, . . . are iid r.v. with a common LST

β(θ) = Ee−σ1 , Re(θ) ≥ 0, b := Eσ1. (6.1)

(iii) Q(t) is the right continuou squeueing process (the number of customers at time
t ≥ 0).

(iv) T1, T2, . . . are successive departures of individual units.

(v) {Qn := Q(Tn);n = 0, 1, . . .} is the embedded Markov chain upon departures.

(vi) The transition probability matrix P = (pij) of {Qn} is a delta-2 matrix (cf. [36])
similar to that of MX/G/1/∞ queue, with only zero row different, with no impact
on ergodicity condition ρ := λab < 1 (necessary and sufficient). The zero row
contains the transition probabilities over the two-phase maintenance with waiting
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and service period (zero-service cycle), so that the queue length upon the end of
such cycle is Cμ + I([tμ, tμ + σ1)) and its pgf, after a straightforward calculation, is
EzCμ+I([tμ,tμ+σ1)) = β(λ − λa(z))EzCμ . So, the pgf of the zero-row in the MX/G/1/∞
system is

P0(z) := E
[
zQ1 | Q0 = 0

]
= β(λ − λa(z))α(z)z−1, (6.2)

where

α(z) := EzCμ (6.3)

(of Theorem 5.1) will replace a(z) in the MX/G/1/∞ system [21].

(vii) Consequently, if Kendall’s formula (most often referred to as Pollaczek-Khinchin
formula) in the MX/G/1/∞ system is

P(z) = p0β(λ − λa(z))
a(z) − 1

z − β(λ − λa(z))
, (6.4)

(cf. Medhi [21]) all we need to do is to replace a(z) with α(z) to get

P(z) = p0β(λ − λa(z))
α(z) − 1

z − β(λ − λa(z))
. (6.5)

Also, in Kendall’s formula, we have

p0 =
1 − ρ

a
. (6.6)

So, we also replace a with

α = ECμ (6.7)

of Proposition 5.2. Here P(z) is the pgf of the embedded queueing process in
equilibrium.

We can summarize the above as the follows.

Theorem 6.1. The embedded queueing process {Qn} in the MX/G/1/∞ type queue with a two-
phase maintenance is ergodic given ρ < 1. Under this condition the pgf of the invariant probability
measure p = (p0, p1, . . .) satisfies the Kendall-like formula

P(z) =
1 − ρ

α
β(λ − λa(z))

α(z) − 1
z − β(λ − λa(z))

, (6.8)

with α and α(z) of Proposition 5.2 and Theorem 5.1, respectively.
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Summary. In conclusion, we studied an exhaustive type MX/G/1/∞ queue with a single
server performing secondary maintenance jobs during his vacationing periods. Unlike most
of queues with vacations, in which the vacationing time is “anonymous,” our server takes on
real jobs. In addition, we introduce a so-called “modified T-Policy” that nonrigidly restricts
the server to a time T to be vacant from the system. However, if the server is in a middle of
a batch of jobs, he must finish them first before coming back. Thus, the return will take place
at the first opportune time. Furthermore, the server must also complete a minimum of L jobs
before returning to the system. Therefore, his discharge from maintenance will take place at
some epoch of time (first passage time) when the server first completes a minimum of jobs
(without interrupting an individual batch) or being vacant during T units of time (with the
same restriction), whichever of these two occurs first. To find the number of units Bν present
in the system (if any) upon server’s return, we use game-theoretic modeling (of two players
A and Bwhoever wins first) and fluctuation analysis for multivariate randomwalk processes.

Now, coming back, if no unit is waiting in the buffer, then the server waits himself
for new units to come. We use again fluctuation analysis to find the total quantity of units
Cν upon server’s return to work and complete the paper with Kendall-like formula for the
stationary distribution of units present in the system upon departure epochs.

In the upcoming work with this model, we plan to use time-sensitive functionals to
interpolate the probabilities on departures to those for any time (time dependent process).
This requires a different approach and would expand the paper. We would also like to
consider a multivalued process which would also revive the number of jobs done during
the maintenance periods in order to more comprehensively optimize the values of L and T .
Again all these would run out of the scope of this paper that aims at introducing a game-
theoretic approach and fluctuations to find the pgf of the equilibrium queue distribution.
We notice that a supplementary variables approach would be very difficult if not impossible
for our model. In addition, it also restricts the service time distributions to those absolutely
continuous.
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