Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2009, Article ID 873683, 22 pages
doi:10.1155/2009/873683

Research Article

Existence of Weak Solutions to a Class of
Degenerate Semiconductor Equations Modeling
Avalanche Generation

Bin Wu'-2

I Department of Mathematics, Southeast University, Nanjing 210096, China

2 College of Mathematics and Physics, Nanjing University of Information Science and Technology,
Nanjing 210044, China

Correspondence should be addressed to Bin Wu, wubin_nuist@126.com

Received 22 February 2009; Accepted 3 June 2009

Recommended by Shijun Liao

We consider the drift-diffusion model with avalanche generation for evolution in time of electron
and hole densities 1, p coupled with the electrostatic potential ¢ in a semiconductor device. We
also assume that the diffusion term is degenerate. The existence of local weak solutions to this

Dirichlet-Neumann mixed boundary value problem is obtained.

Copyright © 2009 Bin Wu. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

1. Introduction

In this paper, we consider the following degenerate semiconductor equations modeling

avalanche generation:

-V-(Vg)=p-n+C(x),
n=V-Jn=R(np)+g,  Jo=V(@)—-pmnVy,
pi+V-Jp=R(np)+g,  —Jp=V(p") +ppVy

with initial and boundary conditions
(()U/nlp) = (alﬁ/ﬁ)/ (x,t) S ZD = rD X (O,T),
oy on Op B B
<E’ 5 &) = (0,0,0), (x,t)€Sn=Tnx(0T),
(n,p) = (no,p0), x€Q, t=0.

(1.1)
(1.2)
(1.3)

(1.4)
(1.5)

(1.6)
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Here the unknowns ¢, n, and p denote the electrostatic potential, the electron density, and
the hole density, respectively. The boundary 0€2 consists of two disjoint subsets I'p and I'y.
The carrier densities and the potential are fixed at I'p (Ohmic contacts), whereas I'y models
the union of insulating boundary segments. J, represents the electron current, and J, is
the analogously defined physical quantity of the positively charged holes. Function C(x)
denotes the doping profile (fixed charged background ions) characterizing the semiconductor
under consideration, while the term g = a1 (V¢)|J,| + a2(V¢)|J,| models the effect of impact
ionization (avalanche generation of charged particles) (cf. [1, 2] for details). R(n,p) =
r(n,p)(1-np) is the net recombination-generation rate, where r characterizes the mechanism
of particle transition. The constant y is the adiabatic or isothermal (if y = 1) exponent. The
regime 0 < y < 1 describes a fast diffusion process in the electron (hole) density, whereas
1 <y < 5is related to slow diffusion.

The standard drift-diffusion model corresponding to y = 1 has been mathematically
and numerically investigated in many papers (see [3-6]). Existence and uniqueness of weak
solutions have been shown. The standard model can be derived from Boltzmann’s equation
once assumed that the semiconductor device is in the low injection regime, that is, for small
absolute values of the applied voltage. In [7] Jiingel showed that in the high-injection regime
diffusion terms are no longer linear. A useful choice for y is y = 5/3. In this case, the parabolic
equations (1.2) and (1.3) become of degenerate type, and existence of solutions does not
follow from standard theory. Recently, many authors [8-10] have studied the existence and
uniqueness of weak solutions of this type of degenerate semiconductor equations without
avalanche generation term. In [9], the degenerate semiconductor equations based on Fermi-
Dirac statistics were introduced by Jiingel for the first time. The existence and uniqueness
results are shown under the assumption that the solution ¢ of Poisson equation with
Dirichlet-Neumann mixed boundary conditions had the regularity ¢ € W?"(Q) (r > N),
this amounts to a geometric condition on €, for example Q € Clland TpNnTy = 0. ([11,
Theorem 3.29]). Then Guan and Wu [8] obtain similar results without the assumption above.

There are some papers concerning the semiconductor equations modeling avalanche
generation. For instance, the existence of weak solutions of nondegenerate stationary problem
has been investigated in [12, 13]. When y = 1, that is, the diffusion term is not degenerate, the
authors [14] obtained the existence of local weak solutions of problem (1.1)—(1.6).

Our main goal in this paper is to study the existence of weak solutions of problem
(1.1)—(1.6). In contrast to the above works, degeneration of diffusion term we are going to
study introduces significant new technical difficulties to estimate the avalanche term.

We make the following assumptions:

(H1) Q ¢ RN(N = 1,2,3) is bounded and 8Q € C%!, whose outward normal vector is 71
and 0Q = E U E, I'pNnI'y = @, measn-1 (FD) >0;

(H2) C(x) € L*(Q);

(H3) r(n,p) is a locally Lipschitz continuous function defined for (n,p) and 0 < r(n,p) <
7 < oo;

(H4) a; € C(RN), 0 < a;(&) < ajp = const. < +oo, for all¢ € RN (i = 1,2);
(H5) 71,5 € W' (Q) N L®(Q), § € H'(Q) N L*(Q), and 7, 5 > 0 in &;

(H6) ng, po € L*(Q) and ng, pp > 0 a.e. in Q.
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Let

Y = {weHl(Q)|w|rD =o}. (1.7)

Definition 1.1. (¢,n,p) is called the weak solution to the problem (1.1)-(1.6) if n¥ € n" +
L*(0,T;Y), pr € p" + L*(0,T;Y), ¢ € ¢ + L*(0, T; Y), ny, pr € L2(0,T; Y*), 11|,y = 10, Pli=o = Po,
and there hold

I V- Vidx = I (p-n+C(x))¢dx, Vte (0,T), V¢eY
Q Q
T T
j (e, &)y y +f f (V(n) = pnVep) - Vidx dt
0 0Je
T
= f I [r(n,p)(1-np) +g]¢dxdt, Ve L?(0,T;Y), (1.8)
oJe
T T
J‘ (Pt &)y y +J f (V(p") + papVe) - Vidx dt
0 0Je
T
= f f [r(n,p)(1-np) +g]¢dxdt, VY¢eL*(0,T;Y).
0Je

Our main result in this paper is as follows.

Theorem 1.2. Under hypotheses (H1)—-(H6), there exists at least one local weak solution to the
problem (1.1)—(1.6).

2. Approximate Problem

For simplicity, we assume that y; = 1,i = 1,2. As [14], we first construct the following bound
approximate sequence g; of avalanche generation term g:

g (n,p, Vi, Vp, V) = (a1 (Vo) | Jul + a2 (V) | o) - [1+ 7(@1 (V) Jul + a2(Vp) prl)]_(lf |
2.1

here 0 < 7 < 1. Obviously, 0 < gr <1/7.
Now we introduce the following approximate problem with the initial and boundary
conditions (1.4)—(1.6):

-V (V¢) =p-n+C(x), (2.2)
n—V-(Vn' —nVy) =r(n,p)(1-np) + g(n,p,Vn, Vp, Vy), (2.3)
pi=V - (Vp" +pVy) =r(n,p)(L=np) + g:(n,p,Vn,Vp,Vg). (24)

This section is devoted to the proof of global existence of weak solutions to the above
approximate problem (2.2)—(2.4), (1.4)—(1.6). We will prove the following existence theorem.
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Theorem 2.1. Under hypotheses (H1)-(H6), there exists at least one global weak solution to the
problem (2.2)—(2.4), (1.4)—(1.6).

The proof is based on Schauder’s fixed pointed theorem. The main difficulty in the
proof is that problem (2.2)-(2.4), (1.4)-(1.6) is degenerated at points where n,p = 0. This
difficulty leads us to consider the following auxiliary regularized problem with the initial
and boundary conditions (1.4)—(1.6):

-V - (V¢) = px — i + C(x), (2.5)
n-V- <<yn£_1 + s) Vn - nqur) =r(n,p)(1-npx) + h(n,p,Vn,Vp, V), (2.6)
p—V- <<yp£71 + £> Vp + kaq;> =r(n,p)(1-nkp) + h(n,p,Vn,Vp, Vy), (2.7)

where s, = min{max{0, s}, k} and

n@ném,8) = (@@ rel 8 - | + @@ |ynl 0+ ne))

i (2.8)
< [+ (@@l 8 -t + @yl - mi])]
forany ¢,7€ Rand ¢,7/,{ € RN.
Let
& = {x e 12(Qn) | Ixll 20 < R}, (2.9)

and 71, p € K. It is obvious that X is a closed convex set and weakly compact in L?(Qr).
The theory of linear elliptic boundary value problems [15] gives a unique ¢ such that

=V (V¢) = pr — fix + C(x), (2.10)
_ oy

¢ls, =9, s 0, (2.11)

1Vell iz + 191l e0n) £ C (2.12)

where C is dependent on k, Qr and the L* norms for C(x) and g, but not on R.
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Next, for the unique weak solution ¢ to problem (2.10)-(2.11), we consider the
following problem:

n—-Vv- <<yﬁz_1 + 5>Vn - ﬁqur> =r(#,p)(1-npx) + h(s1,p,Vn,Vp, V), (2.13)

pt—-V- ((yﬁz_l + £> Vp + ﬁqu,r> =r(#1,p)(1-#kp) + h(71,p,Vn, Vp, V), (2.14)
== on Op B

(np)ls, = (0.P), <&,%> T (0,0), (2.15)

(n,p) = (no,po), x€Q, t=0. (2.16)

Lemma 2.2. Under hypotheses (H1)—(H6), there exists one global and unique weak solution to the
problem (2.13)—(2.16).

Further there are bounds on ||n| 2 1,11 (qy) 414 1|l 20 1,v+) Which depend on €, k, T, Qr, and
the known data, but not on R. Similar estimates also hold for p.

Proof. We begin by choosing a constant p such that

2 _
max {aqg, o} YZkZY 2

> 217
P2 min{an, an) (217)

and observe that (n, p) satisfies (2.13)—(2.16) if and only if (U, V) = (e'n, e P'p) satisfies

Ui - V- (an VU — e P Vi) + apU = e P H (e VU, e VV) + e ?'r(71,P), (2.18)
Vi=V - (anVV +e?p V) + anV = e " H(e”' VU, e VV) + e P'r(i,p), (2.19)
ou ov
— —pt— —pt— R = 22
UV, = @ merp), (Grg0)] =00 (220)
(U, V) =(ng,po), x€Q, t=0, (2.21)

or if and only if (1, v) = (U - e™*'n, V — e *'p) satisfies

u = V- (a11Vu) + appu = e ""H (e’ Vu + Vn, e’ Vo + Vp) + Fy, (2.22)

0=V (a21V0) + anv = e ""H (e’ Vu + Vn,e’' Vo + Vp) + F,, (2.23)
du oo on 0P

u,v =(0,0), (—,—) = <—e‘f’t—,—e"’t—>, 2.24

(u,v)=(ng-n,po-p), x€Q, t=0. (2.25)
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where
~y-1 ~ o~ ~
Yi, +e p+r(i,p)pr
(i) . = ~y-1 == )
P +e p+r(i,p)ik
H(Vu, Vo) = h(7i,p, Vu, Vo, V), (2.26)
<F1> ~ <e‘f’t(V (anVa - V) + (p—an)n+ r(ﬁ,ﬁ)))
F> e (V- (anVp+pVy) + (p—an)p +7(i,p)) )

Clearly, (F;, F>) € (L*(0,T; Y*))".

First, we prove the uniqueness of weak solution to the problem (2.13)-(2.16) which is
equivalent to (2.18)-(2.21). Let (U;, Vi), i = 1,2 be two weak solutions to the problem (2.18)—
(2.21), then (N, P) = (U; — U,, V1 — V,) satisfies

Nt -V (6[11VN) + zxuN = e‘PtG(Vul, VU2, VVl, VVz), (227)
P, =V - (a1 VP) + anP = e ?'G(VU,,VU,, VV;,VV>), (2.28)
ON oP
(N, P)|s, =(0,0), <—,—> =(0,0), (2.29)
> on’ on /s,
(U, V)=(0,0), xeQ, t=0, (2.30)
here

G(VU41,VU,,VV,VV,) = H(ePtVLll,ePtVVl) - H(ePtVLI2, eF‘tVVZ) (2.31)

such that

G(VUy, VU, VVi, VVa) St (Vo) |[yi) e VU =ik V| [yii) e VU~ V|
+ar (V)| [ypL e VVi+p Vg |- yBL e Ve p V|| (232)
< max{alo,zxzo}ykyfle"”(WNl +|VP]).
Take N, P as test functions in (2.27), (2.28), respectively. By (2.32) and Holder inequality,

1d

2 dr Q<|N(t)|2 + |P(t)|2> +min{a11,azl}jg<|VN|2 + |VP|2> +pJ‘Q<NZ . P2>

< max{a, dzo}YkHJ‘ (IVN]+ VP (N| + [P) (2.33)
Q

- ) o\ max {ag, a ) Y2k 2 2, p2
1 YN vp N~ + P~).
<3 mln{a11,az1}fg(| I"+|VP| > + 2min{ay, an } Q< ’ )

Thus the uniqueness is established by Gronwall’s inequality.
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We are now in a position to prove the existence result. Define W = L*(0,T;Y), U =
W x W. Clearly, U is a Hilbert space with respect to the scalar product

T
((w,v),(é1n)) = J‘o IQ(Vu -V¢+ Vo V). (2.34)

Set, for (u,v),(¢,n) €T,

(A(u,v), (¢,1)) f I (a11Vu - V¢ +aVo-Vy) +j f (2ué + anon)
(2.35)

+I I e P H(ef'Vu+ Vn,ef Vo + Vp) (é+1).
0/Q

The operator «# : U — U* is well defined and bounded (because 0 < H < 1/7). To prove
the existence result by using [16, Theorem 30.A], it suffices to verify that the operator < is
hemicontinuous, monotone, and coercive.

Note that

e P |H(e”'V(u+\p) + Vn,e”'V(v+Ap) + Vp) — H(ef' Vu + Vi, ef' Vo + Vp) |
(2.36)
< max{aig, az }Ayk" (| V| + |V])

for any (u,v), (¢, ) € U. The hemicontinuity of <4 is easily obtained by the standard method.
For the monotone, we first notice that

T
J‘ f [H(e”'Vuy + V1, e Vo, + Vp) — H(e”'Vup + Vi, e” Vo, + V)| [(u1 — ) + (01 — v2)]
0/Q
T
> —max{a, aalyk ™[ (V00 = us)|+ 191 - o)) = ] + o1 - w2
0/JQ

> _Mﬂ (V@ =w)P + |V (01 - o))

max {ayg, az )2 y2k? 2
- 2min{awn, @) f f [(Hl uz) + (v1 — ) ]
(2.37)
Hence
(A(u1,v1) =AUz, v2), (U1 — Uz, V1 — V2))
~ T
> meti (1900 - )P + 901 - )P .

max{“lOr“ZO )2 szY -
(N oo
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By the choice of p, we can easily obtain the monotone of 4. Moreover, from (2.38) we also
know that the operator 4 is coercive.

Therefore, there exists a unique (u,v) € U with (u;, v;) € U* such that (ug, vp) = (1o -
n,po—p)in Q and

((u,v1) + Aw,0), (¢,1)) = ((F1, F2), (&m)), Y(&n) €. (2.39)

Especially,

((ur, 1) + A(u,0),(,0)) = ((F1,F2),(4,0)),
<(ut1 Ut) + e4(“/ U), (Or 7])> = <(F1,F2), (0/ 1’1))

(2.40)

That is, (1, v) is a weak solution to the problem (2.22)—(2.25).
Finally, noting that 0 < h < 1/7 we can easily establish the bounds on |[Vu( 12 (o 1,110
and [|u¢][2(o,r:y+) by the standard energy estimate.

Lemma 2.3. Under hypotheses (H1)—(H6), there exists at least one global weak solution to the problem
(2.5)-(2.7), (1.4)-(1.6).

Proof. We define the mapping S as

S: K — (LZ(QT)>2, (7,p) — (n,p) (2.41)

with (n,p) solution of (2.13)—(2.16). From Lemma 2.2, we know that S is well defined and
compact. Indeed, (n,p) lies in a bounded sunsets of (L2(0,T; H 1(Q)))2, and (ny, py) lies in
a bounded subset of (L2(0,T;Y*))*. Since the injection H}(Q) — L?(Q) is compact, we
conclude from Aubin’s lemma that S is relatively compact in (LZ(QT))Z. And for given T

and k, S(K?) < KX? holds if we choose R large enough.
To apply Schauder’s fixed point theorem, we still need to prove that the mapping

S is continuous. Consider any sequence (7j,p;) C K> — (7,p) strongly in (L2(Qr))°
and let S(7ij,p;) = (nj,p;). Since S(KX?) is relatively compact in (L%(Qr))”* and bounded in
(L2(0,T; H'(Q)))?, we can extract subsequences such that

(%), (pj),) — (m,pr)  weaKly in L2(0,T;Y"),
nj—mn, p;j—p strongly in L*(Qr),

(2.42)
nj—mn, p;j—p weaklyin L2<0,T;H1(Q)>,

nj—mn, p;—p ae. inQr.
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We only have to show S(71, p) = (n,p). To do this, we only need to prove
T T
f jgh(ﬁj,ﬁj, Vnj, Vp;, Vi) - § — f Igh(ﬁ, p,Vn,Vp, V) -¢, (2.43)
0 0

where ¢ € L?(0,T;Y) is a test function, and @, ¢ are solutions of (2.10)-(2.11) corresponding
to (11, p;), (11, p), respectively. The reminder of convergence proof is standard (details see [8]
or [9]). Use nj —n € L?(0,T;Y) as test function in a modification of (2.13) in which the
functions 7, p have been replaced by 7, p;, respectively. Then we have

T T T
gf f |V(nj—n)|2§—j <nt,nj—n>y*y—sf I Vn-V(nj-n)
0/Q 0 ! 0/Q
T T
+I j (n]-)qu;]--V(n]-—n)+f j r(n]-,p]-)<1—nj(p]-)k>(nj—n)
0Ja 0Ja
T
+max{a01,a02}max{ka‘l,Zk}f f (|Vn;| + |Vpj| + | Vei|) (nj - n)
0Ja
T T
S—J‘ (nt,nj—n>y*y—sf f Vn-V(nj-n)
0 ’ 0JQ
€ 2 2 !
+Z<”V<"J'_n)”LZ(QT)"'”V(Pj_P)”LZ(QT)>+C . Q(1+|n]-|)|n]-—n|
T 2
fo fquf V(nj-n)| +||n; - ””LZ(QT)>

T
0@ [ (va+ |Vl VgDl -l

+ C(S)<||V(<Pj =) 1 20n +

(2.44)

A similar estimate holds for sfng|V(pj—p)|2. Then adding the two inequalities and
using V¢; — Vg strongly in L?>(Qr) (details see [9]) and (2.42), we conclude that
(IV(nj - n)||L2(QT) + |V (p; —p)||L2(QT) — 0. This implies that (Vn;, Vp;) — (Vn,Vp) ae. in
Qr. Then we can easily prove (2.43) by using Vitali’s theorem.

Now existence of a fixed point of S follows which is a solution of (2.5)-(2.7), (1.4)-
(1.6). O

To obtain the existence result of problem (2.2)-(2.4), (1.4)-(1.6), the following L%
estimates on 7, p, ¢ uniformly in € are necessary.

Lemma 2.4. The solutions of problem (2.5)—(2.7), (1.4)—(1.6) satisfy the estimates

0<n(x,t), plt)<C, ae (xt)eQr, (2.45)

where C is dependent on T, Qr and the known data, but not on e.
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Proof. By taking n~ = min{n,0} € L?(0,T;Y) as test function in (2.6), we have

oo [ o

(2.46)
T T . (T
SJ‘ J m Vg - Vn~ —J J‘ r(n,p)pkn” +J j (r(n,p) +h)n".
0Ja 0o 0o
By taking into account n, = 0 in {n < 0} and the nonnegativity of  and h we obtain
L -2
S| n ()" <0, (2.47)
2)a
and thus n(x, t) > 0 a.e. in Qr. Similarly, we have p(x,t) > 0 a.e. in Qr.
To obtain the upper bound set
M= max{”ﬁ”LW(Q)r 70l = () ”73”30(9)' PO”Lm(Q) }' k>M (2.48)

+4

and use (nxy — M)" as test function in (2.6), then

T
1 J‘(nk_M)Wﬂ)"'sJ‘ J‘ q(nk—M)+(qfl)|V(nk—M)+|2
g+1)q 0/o
< ITI Ve - V<L(nk - M)+ M(ny - M)+">
“JoJa g+1

of [ @ a=np) +myon -

SIZIQ(Pk—nk+C(x))(%(nk—M)+(q+”+ (n—M)* > f j <r+ >(nk_M)+q

(2.49)

Adding the equality (2.49) for n and a similar inequality for p, we get

1

+1 +(a+1)
R RCE USSR

q+1f f (Pk—nk)<(nk M)+<q”>_( )+<M>>
+M‘[ f (prc =) (s = M) = (pi = M) (2.50)

q+1f j C(x)<(nk —M)+( (i —M)*(q” )
¥ P Lo Me@ ) (0n - M) - (- M),
0/Q T
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Noticing that
40
(Pk - 1’lk) <(71k - M)+9 — (Pk - M) > <0, Vo>1 (2.51)

and applying Holder inequality, we further have

1 g+1
1 = MY | sy + “(”" -M)’ L941(Q)
(2.52)
T g+l +||9+1
<C(a+ 1)) (0% =M iz + || (=M ) + €
where C is independent of € and q. Gronwall’s inequality then implies that
111 = M) |1 g + || (i = M) < Ce (2.53)
“ Li*1(Q)

for all g > 1 and k > M. Since the right-hand side of this equality does not depend on k, we
canlet k — oo and then g — oo to obtain the desired upper bound. O

Thus, taking k large enough, we see that (¢, ¢, p,) solves
=V (Vge) = pe —ne + C(x), (2.54)

(ne); =V - ((Ynf;_l + 6) Vn, - nﬂ%) =1(ne,pe) (1 = nepe) + gr (e, pe, Ve, Ve, Vi),
(2.55)

(o) = V- ((rpl" +€) Vpe + V) = r(ne,pe) (1= nepe) + 8o (espe, Vrie, Ve, V)
(2.56)

subject to the initial and boundary conditions (1.4)—(1.6).

Proof of Theorem 2.1. Noticing that the function g, is bound, we can obtain the following
convergence properties by using the same method as the proof in [8, Theorem 1.1] and
Lemma 3.2:

<ng(y—1)/2’p€()’*1)/2) . ( n(y—l)/ZIP(Y‘l)ﬂ) strongly in L*(Qr),

(nslpg) — (1’[, P), a.e. in QT/

(VnZ, VP!) — (Vn?,Vp") weakly in L? <0, T; Hl(Q)>, 257)
((ne),, (Pg)t,) — (i, pr) weakly in L2 (0,T;Yy),
@ — ¢ weakly in L* <0, T; Hl(Q)>,

(neVee, peVip.) — (nVeg, pVy)  weakly in L*(Qr).
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In addition, a standard elliptic estimate gives

IV (e =)l 20,y < (P = P) = (ne =)l 2 (2.58)
from which we conclude
Vg, — V¢ strongly in L*(Qr), (2.59)
and furthermore

Vg, — Vg ae. in Qr. (2.60)

Next, using (nl — nY) as test function in (2.55), we get

T 5 T T
J f |V(nz—ny)| S—f (nt,nZ—nY)Y*,Y+£J‘ f Vng-V<nz—nY>
0JQ 0 0JQ
+ J‘OT L}Vny . V(nz - nY> + I: IQnEqug . V(nz - nY>

T

+ max{alo, azo}fo J‘Q <|VTLZ

+ |sz

nZ—nyiﬁo

(2.61)

+ (ne+pe) | Vge])

as € — 0, where we have used

1/2

T T 172 , ¢ )
sf j Vng-V<nZ—nV> S51/2<I f €|Vne|2> <f f |V(nz—n7>| > <e2C—0,
0Ja 0Ja 0Ja
T . 1 (T a ) T
. ) = _ _r Rvs
-[0 J‘QnEV(‘p‘g V<n‘g n ) - 1-[0 Lz (pe —ne + C(x))(ng n > fo IQnEV% Vn

1 (T .
—_— V. - Vnr't 0,
+Y+1I0J‘Q ger ¥

(2.62)

and (2.57)—(2.60). The same argument shows that ||VpZ - VpY||L2(QT) — Qase — 0.

Thus, there exists a subsequence (not relabeled) such that V! — Vn’,Vpl — Vp¥
almost everywhere in Qr as ¢ — 0. Then it follows from Vitali’s theorem that

gr (e, pe, Ve, Vpe, Vo) — gr(n,p, Vn, Vp, V)  strongly in L*(Qr). (2.63)

Now we can conclude that (g, n, p) is the solution of the problem (2.2)-(2.4), (1.4)-
(1.6) from the above convergence by standard method and then complete the proof of
Theorem 2.1. O
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3. Proof of the Main Result

In the last section, we prove that there is at least one global weak solution (., 117, p;) to the
problem (2.2)—(2.4), (1.4)-(1.6) for every given 7. In the following what we need to do is
to prove that the limit of (n.,p., ¢r) is a solution of (1.1)-(1.6). To this end, we first give
some uniform estimates for the problem (2.2)-(2.4), (1.4)—(1.6). For simplicity, we drop the
subscript T of (nr,pr, ¢) and seta; =1,i=1,2.

Lemma 3.1. Forallu € H (Q), there holds

1-
lull @y < Cllull o Il (3.1)

where a,s satisfy

O<1—a=N<1—1><1, I1<s<
2 s

5 (3.2)

This is the well-known Gagliardo-Nirenberg Inequality [15].

Lemma 3.2. If (¢, n, p) is the solution of the problem (2.2)—(2.4), (1.4)—(1.6), the following estimate
holds:

[ [ e epivf

; ; . (3.3)
< 5f f (|V(nY)|2 + |V(pv)|2) +C(5) U (f (nY“ +p7+1>dx) + 1], vy >1,
0Ja o\ o
where & is a sufficiently small constant.
Proof. First of all, the following L* estimate of ¢
1/2
lg )l < C {1 N RGCRTE0S } V>0 (4)

can follow from the standard techniques in [17]. Then by taking ¢s — ¢ as test function in (2.2),
we have

[ 1va-r [ 55947 [ ¢-n+co)-n. 69
The assumptions we have made and Poincaré inequality yield

Vg =92 < C(l +lp - n”LZ(Q)> < C<1 +lnllr2q) + IIPIILZ(Q)>' (3.6)
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Using (n" — 1)y as test function for (2.2), and noting that 2 < y + 1 we get

T T T T
f f nY|V<PI2=f f Wlwl“f f (P—n+C(x))[(nY—W)<P]—f f gV (n' -7 - Vg
0/ Q 0JQ 0/ Q 0JQ
T
2 + +
<l lg + [ Mol (77 +97)

[ 1l 190 19 =)l

<o [ Loy |([orem) )
of f o[ ) ]

aof o o (o) ]

(3.7)

A similar estimate for fngpYqulz follows from a same procedure. Then the proof is
completed.

O
Lemma 3.3. If (¢, n, p) is the solution of the problem (2.2)—(2.4), (1.4)—(1.6), there holds that
172l Lo 0,700 () + ||V(71Y)||L2(QT0) <C, (3.8)
||p||L°°(O,T0;LY+1(Q)) + ”V(PY)”LZ(QTU) <C, (3.9)
”‘I’”LZ(O,TO;H1 @) T ”‘I’“Lw(QTO) <C, (3.10)

for some sufficiently small Ty; here positive constant C is independent of T.
Proof. Without loss of generality, we assume N = 3 and the N =1 or 2 case is easier.

Case 1. 2 <y < 5. In this case, from Holder inequality and (3.3), we have

Jj L(”z +p?) Vg’ < C<IOT fg(ny +p)| Vg + IOTJ‘QIquIz>
<o [ (womp +1venP)+co UZ(L (w7 pr)ax) 1].

(3.11)
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Noting that 2 < y < 5, we can choose a constant g such that 6y/5 < 2q < y + 1. Then by taking
n247Y 7% and p24Y 17 as test function in (2.3) and (2.4), respectively, and adding them
together, we get

ﬁf o (n2oret g et o M f ZJ o [V + v o)|7]
ﬁf ( o er” Y+1 ,[ [ 27 (n-no) + 7 (p - Po)]
’ j 0 j o Vg (v (217 =727) - pV (7 - 7))

' J oT j o (Vo) -9 (@17) + 9 (") -V (7))

[ f s sol(or ) (o)

=L+---+ 14

(3.12)

We estimate the right-hand side term by term. Due to the equation of ¢ and (3.6), we obtain
et [ e [P ) st )
o[ [ vy [m-mv (@) - @-pv )]
R e R Gt I
q-r+
[ N0y (7l 17 )

clfo [ ey ]

where we use that (p — n)(n?77*1 —p291*1) <0and 2g-y+1 < y+1 wheny > 2. I3 and I; can
be bounded as

I3 < %IOT J;<|V(n¥)|2 + |V(p7)|2> +C(\y), (3.14)
I < %IZIQ<|V(nY)|2 +|V(p") |2> + CIOT IQ <n2 + p2>

+C(L) UT f <n4q‘2Y + P4q_2y> + ITI <n2 + P2> |V<If|2:| ,
0Ja 0Jea

(3.15)
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where we have used the nonnegativity of n and p. Inserting (3.13)-(3.15) into (3.12) we
conclude that

f Q(nzﬁ” F P f Z jg[ww)ﬁ + V7]
<\ UOT jg(lV(nY)Iz + |V(pY)|2> + J; (nY“ + pY+1>:| (3.16)

+C()Ll)|:ﬂfg<nr+1 +py+1> +f§fg<n2+p2>|vw|2+1],

Similarly, taking n” — 7" and p” — p” as test function in (2.3) and (2.4), we conclude that

] () fz [ wene«1venr]
= JQ (" +p) + fg [ (n— no) + " (p ~ po)]

[ [ o v@ e v6) V@l [ [ vy f@-nve) - G-pven)
[ vy 9 () v ([ (RO sg) [0+ )

SA1Uijqvmmf+|V@mf>+fgoﬂu+pﬁg]

e | R R G R R e

(3.17)
Choosing A, sufficiently small, and then summing (3.16) and (3.17), we have

[y [ f menretwony]

+J‘ < 2741 4 2 y+1 j ’[ [|V(nq)| + V()| ] (3.18)

<C()@Uj (w4 prt) + ff (n2r +p™) IZIQ<n2+p2>|V¢|2+1].
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Now we estimate the term jOTanZY (or fOTprzY ). Due to Lemma 2.2 we get

T T T
2y _ q)s < q (1-a)s q||as
nt = (71 ) = ||7l ”Hl(g)”n ”LZ(Q)
0/Q 0/ Q 0/Q

(3.19)
T T p
< )sz ||V(nq)||iz(g) +C(Ap) f (I n2qu> +1{,
0 o\Ja
where s, a, f satisfy
2y 1 g as
=— l-a=3(=--— 1 1- 2 = 2
s e 0<l-a 3(2 2)/)<, 0<(l-a)s<2, p (- (3.20)
Consequently we obtain, taking into account (3.11) and the choice of g,
! 2
[ (reprsy« [ [ [ven«veny]
Q 0/Jo
(3.21)
T max{2,p}
< C(Aq, A2, 6) [1 +J‘ <J‘ <ny+1 " PHl)dx) ]
o\Ja
for sufficiently small A, and 6 such that (1, + 6)C(A;) <1, where f only depends on y.
This proves that
r+1 y+1 < .
észf‘%ﬁ]fg [n (H) +p (t)] <C (3.22)
for some sufficiently small Ty by Lemma 2.2 of the appendix in [14] , and thus
To 5
f f [lV(nY)lz + |V ] <C. (3.23)
0o
Using the above estimates and (3.4)—(3.6), we can obtain (3.10).
Case 2. 1 <y < 2. In this case, the estimates on Iy, I, I3 are the same as Case 1, and
I < ﬁfj (IV@E)P+ VN [*) + chf (n*+p?)
“4)o)e 0Jeo
(3.24)

+C (M) UZ fg (niadr2 g pla=r2) o IOT Lz (n"+p") IquIZ] :
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Then we have
[ e« f vt v
<A [ f Z jg(wmwz +[V(EN[P) + f (e +rﬂ“>]
+C(A1) UOT fg(ny+1 +Py+1> + JZ Lz <n4q—3y+2 " p4q—3y+2> i IOT IQ(nY + pY)lv(Plz + 1]‘

(3.25)

Next, by a small change in (3.17), we obtain
Y -1i- 1J‘Q<ny+1 +pY+1> " IZ IQ [|V(ny)|2 + |V(PY)|2]
<l [ [ Z fg(|V<nY>|2 [V + fg(n“ +p“1)]
T T
canlf oo
NECEUBRRCRLT
<A [ f OT fg(wwnz + VD[P + fg(nr“ +rﬂ“)]

+C(\) [JZ fg(n“Z +PY+2> + Jj fg(ny +;9Y)|V(p|2 + 1].

(3.26)

Choose g such that
1
i(Y+2) <q< —; , (3.27)

and reset

as

=5 =R (3.28)

+2 1
S=Y_, 0<1—a=3<—— q ><1, 0<(1-a)s<2,
q 2 Y+2

By a discuss similar to (3.19), we obtain

IZ f QnY+2 < AZIZ||V(nq)||§2(Q) +C(L) UZ <fgn2qu>ﬂ + 1]. (3.29)
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Finally, noting 49 — 3y + 2 < y + 2, from (3.25)—(3.29) and estimate (3.3) we deduce that (3.21)
also holds for 1 < y < 2. Therefore, we can also obtain estimates (3.8)—(3.10) when 1 < y
<2. O

The following lemma is indispensable to prove the L2(0, Ty; Y*) estimates of n; and p;
uniformly in 7.

Lemma 3.4. If (¢, n, p) is the solution of the problem (2.2)—(2.4), (1.4)—(1.6), there holds that
<c, 2 10 3.30

Proof. Denote by V>(Qr) a Banach space in which function v satisfies

T 1/2
Iollv0p) = sup o) lr2q) + <j f |VU|2> < co. (3.31)
0<t<T 0Ja

The following proof is base on Moser’s iteration technique [15]. We insert (n — s)™ into (2.3),
(p—s)" into (2.4), integrate over the interval (0, T;), and add the equations to obtain

o9 - orf vt o v
([ vy o[ [ pv vy e[ [ Reupesofn- (o))

S [ penecwn[oi-e) (-] [ [ onlo-or e o-s]

(3.32)

Since (p — n)[(n> - s?)" — (p* - s%)"] is negative, and choosing s > ¢y = max{sup{no,po},
sups, {7,p}} +1, we have

%J‘g [(Tl(t) - S)‘f2 + (P(t) - s)+2] + J‘OTO IQ [|V(n _ S)+|2 4 |V(P _ S)+

]
< JZO JQC(x) [n(n -s) " +p(p- s)+] + JZO fg(ge +7) [(" -s)" +(p- 5)+]

=I1+Iz

(3.33)

for all s > ¢y.
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Applying Holder inequality, we obtain

I < ICEO ey lImlizign, [| 01=9)"+ (0=5)|| L ,|Q0 N I > 5 > 817
2 0 (3.34)
< )L3||(n )+ (p-s)” o) +C(\3)|Qr, N [n>s,p>s] |2/(N+2)l
To
< (190 + ) o) + 10+ ) V0l 120
X || (n—-s)"+(p- S)+”L2<N+Z>/N(QTO) |QT0 N[n>sp>s] |1/(N+2)
(3.35)

* 7”(71 -8)"+(p- S)+||L2(N+2)/N(QTO) |QT0 N[n>s,p> 5]|(N+4)/2(N+2)

<A|[(n-9)"+(p- S)+”i2<N*2>/N(QTO) +C(A3)|Qn N [n>s,p > s] |2/(N+2),

where | - | denotes measure, and [n > s,p > s] = {(x,t) | n(x,t) > s,p(x,t) > s}.
Choose 13 sufficiently small, together with (3.33)-(3.35) and V,(Qp,) <
L*N2/N(Qr,), then

2
< C(A3)|Qr, N [me > 5,pe > 5] |7 V2. (3.36)

L2(N+2)/N (QT(]) -

||(ne —s)" + (p.—s)"

On the other hand, we have

IZ fg[(n -5) 4 (p-s)’]

(3.37)
S ||(n£ _ S)+ + (Pg _ S)+ LZ(N+2)/N(QTD)|QTO n [ng > S,pg > S] |(N+4)/2(N+2)'
Let y(s) = |Qr, N [n: > s, pe > s]|. From (3.36) and (3.37), we obtain
To
f f [(n —s) +(p- s)+] < C(Ag) x(s)N*O2N#) -y > o) (3.38)
0Ja
which proves (3.30) by [15, Lemma 5.2 in Chapter 2]. O

Lemma 3.5. If (¢, n, p) is the solution of the problem (2.2)—(2.4), (1.4)—(1.6), there holds that

Imell 2010 < C (3.39)

[l ”LZ(O,TU;Y*) <C (3.40)
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Proof. We only prove (3.39). The proof of (3.40) is completely the same as that for (3.39). Take
test function ¢ € L?(0, Tp; Y) for (2.3). Then by Lemma 3.2-3.4 we conclude from

To
.[o (ne, @)y y| < (”V("Y)HLZ(QTO) + ”"V‘I’”LZ(QTO)> ”v¢||LZ(QTO)
IV ) |20 1+ IVl 2y + Wl s 1PN 0 | I 201
(3.41)
that |7l 2o 1) < c. The proof is complete. O

Proof of Theorem 1.2. By passing to a subsequence if necessary, from Lemma 3.2-3.5, together
with compact lemma of Lions [18], we infer that

((n2)", (pr)") — (n",p") ~strongly in L*(Qr,),
(nT/PT) - (11,]9), a.e. in QTO'

((n)", (pr)") — (n',p") weakly in L? <0, To; H1(9)>,
(3.42)
((nr),, (pT)t) - (nt/Pt) weakly in L*(0, To; "),

(n:Vr, p: V) — (nVy,pVy) weakly in L*(Qr,),

¢r — ¢ weakly® in L* (0, To; Hl(Q)>.

Then by the same argument as the proof of Theorem 2.1, we can conclude that (¢, n, p)
is the solution of the problem (1.1)—(1.6) from the convergence of (3.42) and then complete
the proof of Theorem 1.2. O
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