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1. Introduction
In order to describe the dynamics of bovine tuberculosis in possum populations in New
Zealand, Roberts and Saha [1] introduced an epidemic model:

Ż(t) =
(
p − 1

)
BZ +

(
βC − α)(1 − Z)Z, (1.1)

where Z(t) is the proportion of the population infected with disease against the total
population; p(∈ [0, 1]) is the vertical distribution probability; B is the birth rate independent
on the total population; β is the constant transmission rate; C is the contact rate between
individuals; α is the increase of the death rate suffering from infectious disease. It turns out
that this model can be used to study other epidemics as well. It is easy to see that (1.1) is a
well-known logistic equation with intrinsic growth rate:

r =
(
p − 1

)
B + βC − α, (1.2)

and carrying capacity K = 1 + (p − 1)B/(βC − α).
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Taking into account random perturbation to the disease transmission coefficient β,
(1.1) becomes

dZ =
[(
p − 1

)
BZ +

(
βC − α)(1 − Z)Z]dt + ρC(1 − Z)ZdB(t). (1.3)

By using the Fokker-Planck equation method, Roberts and Saha in [1] investigated the
asymptotic behavior of solutions of (1.3) when R0 = (pB + βC)/(α + β) > 1 (i.e., intrinsic
growth rate r > 0). Recently, Ding et al. in [2] gave some results to deal with the case of
R0 = (pB + βC)/(α + β) < 1; for example, they showed that the zero solution of (1.3) was
asymptotically stable provided that the intensity of random perturbation is sufficiently small.

In the real world, at the same time, mortality rate due to disease has often been affected
by some factors, such as age, seasons, and food supply. Thus, in order to describe epidemic
more reasonable, we suppose that the increase of the death rate α is subjected by random
disturbance also, and the model (1.3) becomes

dZ =
[(
p − 1

)
BZ +

(
βC − α)(1 − Z)Z]dt + ρ1C(1 − Z)ZdB1(t) − ρ2(1 − Z)ZdB2(t).

(1.4)

Here, B1(t) and B2(t) are independent standard Brownian motions; ρ1 and ρ2 are the
intensity of the environmental disturbance. In this paper, for the new model (1.4) we carried
out complete parameters analysis for R0 > 1 (i.e., intrinsic growth rate r > 0), R0 = 1 (i.e.,
r = 0), and R0 < 1 (i.e., r < 0), respectively. Our results are generalizations of the ones in
[1, 2]. Some interesting details about the system are revealed. For instance, we proved that
when R0 < 1, the zero solution of (1.4) is globally asymptotically stable, no matter how large
the intensity of stochastic fluctuation is. Moreover, the explicit expectation and variance of
steady solution of (1.4) are also given. Thus, the statistic properties of dynamics of (1.4) are
completely clear.

The main argument used in this paper is the classical Fokker-Planck equation method.
Of course, to deal with stochastic differential equations without linear growth condition,
there are some other effective methods; we refer the reader to the papers [3–6].

2. Nonnegative Solutions

Following, we show that the solution of the SDE model (1.4) is global existent and unique.

Theorem 2.1. Assume that B, β, α, and C are positive real numbers. Then for any initial value
Z0 (0 ≤ Z0 < 1), there is a unique solution Z(t) to (1.4) on t ≥ 0 and 0 ≤ Z(t) < 1 almost
surely; moreover, the solution Z(t) to (1.4) will remain in R

+ with probability 1.

Proof. It is obvious that the coefficients of (1.4) are locally Lipschitz continuous; hence, for any
initial value Z0 (0 < Z0 < 1), (1.4) has a unique local solution Z(t), t ∈ [0, τe). Moreover, by
Gardiner [7, page 132], we obtain that system with reflecting barrier; hence, Z(t) < 1 almost
surely for any initial value Z0 (0 < Z0 < 1). And, 0 is the solution of model (1.4); hence, the
solution Z(t) to (1.4) for any initial value Z0 (0 ≤ Z0 < 1) will remain in R

+ with probability
1. The proof is complete.

Remark 2.2. To prove that Z(t) < 1, Gong gives other effective method [8, page 371].
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Remark 2.3. To prove that global existence, there is other effective method also, (cf. [3]).

3. The Fokker-Planck Equation

We rewrite (1.4) as

dZ = F(Z)dt +G1(Z)dB1(t) +G2(Z)dB2(t), (3.1)

where

F(Z) =
(
p − 1

)
BZ +

(
βC − α)(1 − Z)Z;

G1(Z) = ρ1C(1 − Z)Z;

G2(Z) = −ρ2(1 − Z)Z.
(3.2)

By Gard [9, page 144], the Fokker-Planck equation of this model is

d2

dZ2

{[
G2

1(Z) +G
2
2(Z)

]
p(Z)

}
− 2

d

dZ

[
F(Z)p(Z)

]
= 0, (3.3)

where p(Z) is the steady density function, due to system with reflecting barrier [7, page 129],
thus p(Z) is proportional to

(
Z

1 − Z
)2r/ρ2

1

Z2(1 − Z)2
exp

{
2
(
p − 1

)
B

ρ2(1 − Z)

}

, (3.4)

where

ρ2 = ρ2
1C + ρ2

2, (3.5)

and the constant of proportionality is determined by
∫1

0 p(Z)dZ = 1.
By differentiating (3.4), it is clear that the extremum of p(Z) is related to the zeros of

quadratic function:

−2ρ2Z2 +
(

3ρ2 − r + (
p − 1

)
B
)
Z + r − ρ2. (3.6)

4. The Asymptotic Behaviour of Solution

To continue, we will regard the ρ2 = ρ2
1C + ρ2

2 as a parameter to separately discuss the
asymptotic behaviour of the solutions of model (1.4) in three cases: intrinsic growth rate
r > 0, r < 0, and r = 0, respectively.
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Figure 1

4.1. Asymptotic Behaviour in the Case r > 0

Case 1 (p ∈ [0,1)). In this case, obviously, limZ→ 1−p(Z) = 0.

(I) If ρ2 < r, then limZ→ 0p(Z) = 0. In (3.6), the function is negative when Z = 1,
positive when Z = 0, and has unique root in (0, 1). Hence, the distribution p(Z)
tends to zero as Z → 0, 1 and is unimodal. The mode of p(Z) to K is ρ → 0, and to
zero is ρ2 → r. (see, e.g., Figure 1(a).)

(II) If ρ2 = r, then limZ→ 0p(Z)/= 0. In (3.6), the function is negative when Z = 1, and is
zero when Z = 0, and zero is unique root in [0, 1). Hence, the distribution p(Z) is
strictly monotonic decreasing function in [0, 1) with a positive maximum at Z = 0
(see Figure 1(b).)

(III) If r < ρ2 < 2r in (3.6), the function is negative when Z = 1 and Z = 0, and the p(Z)
is singular at Z = 0 but integrable in (0, 1).

(i) If 3ρ2 − 2ρ
√

2(ρ2 − r) < r − (p − 1)B, then function (3.6) is strictly negative for
0 < Z < 1; hence the distribution p(Z) is a monotonic decreasing function (see
Figure 1(c).)

(ii) If 3ρ2 − 2ρ
√

2(ρ2 − r) = r − (p − 1)B, then (3.6) has one zero for 0 < Z < 1, the
system occur a pitchfork bifurcation (see Figure 2(a).)

(iii) If 3ρ2 − 2ρ
√

2(ρ2 − r) > r − (p − 1)B, then (3.6) has two zeros for 0 < Z < 1,
and the function p(Z) is bimodal, with a singular peak at Z = 0 and a positive
maximum for some 0 < Z < 1 (see Figure 2(b).)

(iv) If ρ2 ≥ 2r, then p(Z) may be represented by a delta function at Z = 0. That is, if
perturbation sufficient is larger, the disease becomes extinct (see Figure 2(c).)

Case 2 (p = 1). (i) If ρ2 < 2r, then p(Z) is a delta function at Z = 1.
(ii) If ρ2 ≥ 2r, then p(Z) consists of delta function at Z = 0 and Z = 1. The former

corresponds to limt→∞Z(t) = 1 a.s., while for the later the limit for larger t is either zero or
one, the probability of each outcome being determined by the magnitudes of the residues of
the density functions (3.3) at its extremes.
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4.2. Asymptotic Behaviour in the Case r < 0

Case 1 (p ∈ [0,1)). In this case, limZ→ 1−p(Z) = 0. Moreover, for any ρ, obviously, ρ2 ≥ 2r,
then p(Z) may be represented by a delta function at Z = 0. That is, for any perturbation, the
disease becomes extinct; this is the same when there is no stochastic perturbation.

Case 2 (p = 1). In this case, p(Z) consists of delta function at Z = 0 and Z = 1.

4.3. Asymptotic Behaviour in the Case r = 0

Case 1 (p ∈ [0,1)). Equation (3.4) becomes

1

Z2(1 − Z)2
exp

{
2
(
p − 1

)
B

ρ2(1 − Z)

}

, (4.1)

and then p(Z) may be represented by a delta function at Z = 0.

Case 2 (p = 1). In this case, p(Z) consists of delta function at Z = 0 and Z = 1.

5. The Mean and Variance

The first two moments of the distribution may be found directly from the differential equation
by noting that G1(Z) = G2(Z) = G′

1(Z) = G
′
2(Z) = 0 if Z = 0 or 1; from (3.3) we have

d

dZ

[(
G2

1(Z) +G
2
2(Z)

)
p(Z)

]
− 2

[
F(Z)p(z)

]
= 0. (5.1)

Integrating again we obtain

∫1

0
F(Z)p(Z)dZ = 0, (5.2)
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or multiplying (5.1) by Z−1 and integrating we obtain

2
∫1

0
Z−1F(Z)p(Z)dZ −

∫1

0
Z−2

(
G2

1(Z) +G
2
2(Z)

)
p(Z)dZ = 0. (5.3)

Hence, solving (5.1) and (5.3), we obtain expression for the first moment and second moment
of Z:

EZ =

(
2r − ρ2)(βc − α)

ρ2r + 2(βc − α)2 − 2ρ2
(
βc − α)

,

EZ2 =
r

βc − αEZ.
(5.4)

Hence, we obtain expression for the mean μ and variance σ2

μ = EZ, σ2 = EZ2 − μ2 (5.5)

and embody

μ =

(
2r − ρ2)(βc − α)

ρ2r + 2
(
βc − α)2 − 2ρ2

(
βc − α)

,

σ2 =
r
(
2r − ρ2)

ρ2r + 2(βc − α)2 − 2ρ2
(
βc − α)

−
[ (

2r − ρ2)(βc − α)

ρ2r + 2
(
βc − α)2 − 2ρ2(βc − α)

]2

.

(5.6)
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