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The deflection of compliant mechanism (CM) which involves geometrical nonlinearity due to large
deflection of members continues to be an interesting problem in mechanical systems. This paper
deals with an analytical investigation of large deflections in compliant mechanisms. The main
objective is to propose a convenient method of solution for the large deflection problem in CMs in
order to overcome the difficulty and inaccuracy of conventional methods, as well as for the purpose
of mathematical modeling and optimization. For simplicity, an element is considered which is
a cantilever beam out of linear elastic material under vertical end point load. This can further be
used as a building block in more complex compliant mechanisms. First, the governing equation has
been obtained for the cantilever beam; subsequently, the Adomian decomposition method (ADM)
has been utilized to obtain a semianalytical solution. The vertical and horizontal displacements of a
cantilever beam can conveniently be obtained in an explicit analytical form. In addition, variations
of the parameters that affect the characteristics of the deflection have been examined. The results
reveal that the proposed procedure is very accurate, efficient, and convenient for cantilever beams,
and can probably be applied to a large class of practical problems for the purpose of analysis and
optimization.

Copyright © 2009 N. Tolou and J. L. Herder. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

In recent years, it has turned out that many phenomena in engineering, physics, chemistry,
and other branches of science can be described very successfully by nonlinear models using
mathematical tools. Generally, these problems cannot be solved explicitly, and normally fail
to yield exact solutions. This is why over time, so many methods have been developed for
approximate or numerical solutions. The perturbation method [1] is one of the well-known
methods to solve nonlinear equations. However, since using the common perturbation
method is based upon the existence of a small parameter, developing methods for the
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applications which do not contain small parameters is difficult. Very recently, some promising
approximate analytical solutions were proposed, such as Exp-function method [2, 3],
variational iteration method (VIM) [4-6], homotopy-analysis method (HAM) [6, 7], and
homotopy perturbation method (HPM) [6, 8-13]. Other methods are reviewed in [14, 15].

In the beginning of the 1980s, Adomian [16, 17] proposed a new and fruitful method
(the so-called Adomian decomposition method, ADM) for solving linear and nonlinear
(algebraic, differential, partial differential, integral, etc.) equations. It has been shown
[18, 19] that this method yields a rapid convergence of the solutions series to linear and
nonlinear deterministic and stochastic equations. In method, the solution of a functional
equation is considered as an infinite series which is in practice limited to a finite number of
iterations to converge rapidly to accurate solutions. It is well known that this method avoids
linearization and unrealistic assumptions, and efficiently provides a numerical solution with
high accuracy.

A compliant mechanism (CM) is a mechanism that gains some or all of its motion from
the deformation of slender segments rather than from relative motion between rigid-body
links connected by joints [20]. CMs have many advantages over their rigid body counterparts
such as single-piece production, absence of coulomb friction, no need for lubrication, and
compactness. Applications range from surgical instruments to MEMS [20]. However, the
design of CMs is complicated by the flexible members which include elastic links and elastic
hinges. These usually undergo large deflections which introduce geometric nonlinearities.
Therefore, the study of large deflections in elastic beams has long been one of the central
themes of interest aiming at accurately describing the deformation in CMs [20, 21]. Since in
these applications, curvature is nonlinear due to both material and geometrical nonlinearities,
a nonlinear mathematical formulation should be considered. Consequently, deflections are
difficult to determine by analytical methods, hence numerical and approximate methods
should be employed. Due to the complexity of the nonlinear governing equations, only a
few studies have been carried out so far to investigate the nonlinear deformation of beams
[22-26].

The principal aim of this work is to investigate the feasibility of the ADM method
in analyzing compliant mechanical systems. In particular, this work aims to overcome the
difficulty and inaccuracy of conventional methods which depend on elliptic integrals and
functions or which are based on linear beam theory. As a secondary aim, the ADM method is
applied to a cantilever beam to obtain the approximate analytic expressions for the rotation
angle as well as vertical and horizontal end point displacements, in order to use it as a
building block for the purpose of mathematical modeling and optimization of more complex
CMs such as the work of [27]. Thirdly, we are investigating the accuracy and efficiency of this
method for the discussed problem.

The cantilever beam is assumed to be initially straight, inextensible, rigid in shear, of
constant cross-section and end point loaded by force. This force is perpendicular to the initial
beam axis and keeps this orientation as its magnitude is increased. The material is assumed
to follow linear elastic stress-strain behavior and to be isotropic.

The paper is organized as follows: firstly, the moment-curvature relationship and
governing equation are presented in Section 2.1. Since often only infinitesimal displacements
are considered, the governing equation for small deflection is also presented in this section. In
Section 2.2, ADM will be applied to the governing equation in order to obtain a semianalytical
solution. The results of ADM are portrayed graphically and presented numerically in
Section 3 and discussed in Section 4, and will be been compared with those of the numerical
solution using Richardson extrapolation method [28].



Mathematical Problems in Engineering 3

> X

05

P

Figure 1: Cantilever beam subjected to a free end point loading.

2. Materials and Methods
2.1. Moment-Curvature Relationship and Governing Equation

Using the Bernoulli-Euler equation [29], the curvature of a prismatic beam, %, can be written
as

e M
=1 " EI (2.1)
where M is the bending moment, E is Young’s modulus, I is the area moment of inertia of
the beam, while EI is called the bending stiffness of the beam. Furthermore, 6(s) is the slope
of any point along the arc length with respect to the x-axis, and s is the arc-coordinate on the
neutral axis of the beam from the fixed end to the base.

The moment at any point in the beam shown in Figure 1 is given by

M =F(L-6-x), (2.2)

where F is the point load at the free end. Thus, the bending equation of a uniform cross-
section beam with large deflection is

% _ %(L S, -x), 0(0)=0, 0'(1) =0, (2.3)

where the prime denotes the differential with respect to s, and where &, is the horizontal
deflection of beam. The axial elongation of the beam is neglected, because it is much smaller
than the lateral deflection at the free end point.

By differentiating (2.1) once with respect to s and rearranging it, we obtain

a0 _ dM/ds

ds? EI ~ (24)
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By introducing the dimensionless parameter { = s/L, the original equation evolves
into the governing equation for large deformation of a cantilever beam under free end point
load shown in Figure 1 in the following form:

ﬁ+ch(:039—0 0(0)=0, 6'(1) =0 (2.5)
d§2 - Y - Y - .

where a = FL?/EI is the dimensionless end point load. The rotation angle of the beam at
free end point is denoted by 0 = 0(1). The dimensionless exact vertical and horizontal
displacements of the free end point are given by [24]

T 1= ZEW -E(p )] 26)

@ _q_ 2 smGB, 2.7)
L a

where 6, is vertical distance of beam, E(u) is the complete elliptic integral of the second kind,
E(p, ) is the elliptic integral of the second kind, 85 is the rotation angle of the beam free end

point, and
U= V %, Q= arcsin<f%#>. (2.8)

For infinitesimal deflection, we can assume that the linearized form of (2.5) according
to

Z%f +a=0, 6(0)=0, 6(1)=0 (2.9)

is sufficiently accurate to model the problem. Solution of (2.9) is

0(0) = 52-0)¢. (2.10)

2.2, Semianalytical Solution

Prior to applying the ADM [16, 17] to (2.5), in order to better demonstrate how ADM works,
let us consider general equation Hu = g, where H represents a general nonlinear differential
operator consisting of both linear and nonlinear terms, g is the source term, and u is the
unknown function. The linear terms are further decomposed to L(u) + R(u), where L is easily
invertible (usually the highest order derivative) and R comprises the remaining terms of
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linear operator. Now, the nonlinear term is represented by N. For (2.5), the general equation
of Hu = g now can be rewritten as

L(6) + N(0) + R(6) = g. (2.11)

It should be noted that this work deals with the large deformation of elastic beam,
hence the assumption of sin(6) = 0 and cos(8) = 1 is ineffectual. So, the Taylor series
expansion of cos(0) in (2.5) is considered as follows [15]:

2 g
cos((?)—1—6—+6

R (2.12)

Thus, N(6) = a(1 - 62/2! + 6*/4!), R(0) = 0, and L(0) = d*0/d¢>.
The nonlinear operator N (6) can be decomposed into an infinite series of polynomials
given by

N@©) = S Au(60,61,...,6,), (2.13)

n=0

where A, (09,61, ...,0,) are the appropriate Adomian’s polynomials defined by

1 [ee]
Ay = { v Lzzo(ﬁek)]}, n>0, (2.14)

where

A (29091) (49193)
A= (29092 +03) - o = (46,07 + 60363,
As = 5:(20005 +20167) - (4667 + 6030 +120,6,67),
2l al
24 o
As=5 (20004 + 26,05 + 63) - o |46.65 + 66263 + 12(0:0,63 + 6:6360,01 ),

As = %(9095 2010, +20,05) — % [4(0505 + 0267 + 12016165 + 026,07 + 0563600 + 03001 ),

(2.15)
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The inverse operator L™! is defined as the integral with respect to s’ from 0 to ¢

L= ffi(-)d@dg,

If L is a second-order operator, L™! is a twofold indefinite integral:

LIL(O) = 0 - 0(0) - g%(;),

Solving (2.11) for L(0) and multiplying by L™! on both sides gives
L7L(0) = L7 (g) - L' [R(0)] - L' [N(0)].
Comparing (2.17) and (2.18) gives
0=f()=L"(g) - L [RO]-LTIN®)],
where

f©) = fo(§) + f1(8) + f2(8) + -+~ + fu(C)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

So, (2.20) shows that f({) is decomposed into f,({) components where n = 0,..., . Also
fo(¢) is O for the discussed problem, f,(¢) where n = 1,...,00 arises from the prescribed

initial or boundary conditions.
Using (2.19) and (2.20), we have

1) = -3 ~2)

F2(8) = 0.4166666667 x 102¢a’ (g5 —6¢* +102% +0.1295824560 x 10~ 4a'?

+0.1026303239 x 1022~ * — 0.5538583175 x 10~2a'?

~0.2858762790 x 103416 — 16),

f3(8) = —0.2314814815 x 107*¢a’ (g9 — 1028 + 35.35714286¢7 — 42.85714286¢7 — 72¢* + 24083
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—502.8571429 — 0.2332484208 x 1072a® — 0.1847345831 2
+0.9969449715 x 10 a'? + 0.5145773021 x 10—1al4),
4(2) = 0.1112891738 x 1077 qa’|-10.70320788a'* + 38.42479328a'> — 20.73645541a'”
q

+0.4851567153a® + a? (§13 —14¢2 + 76.70562771¢ 1

+185.7142857¢° — 138.6666667¢ + 980.5714286¢7

—1782.857143¢° — 2614.857143¢* + 10380.19048¢°

-192.4675325¢1° — 23055.51515) —10028.57143¢7 — 260¢°
+2600¢8 + 9508.571429 — 12480¢° + 17828.57143@6]
f5(¢) = -0.4970431509 x 10-9a7g[a2g17 - 18a%¢9134.0264492a°¢" — 512.4231866a° ™
+ <1002.160731 a? - 1119.512195) s
+ (—1008.627178112 + 15673.17073> 2
+(2289.943617 a* - 89653.05670 ) ¢
+(~8618.789990a%+260831.8023) ¢ ”
+ (—385879.8606 + 11088.50174a2> g
+ <271668.2927 - 5421.045296a2> i
+ <45652.94574 e 299389.5470> &
+ <798372.1254 - 96311.55799a2> ha
— 745147.3171¢° + (—129054.6519 o’ + 53224.80836) ¢

+ <—177416.0279 + 560287.2601a2)g3 —108.6277719 a®
— 1276774.856 a® + 4642.942943 a® — 8603.404934 a'°

+2396.474351 a'? + 1153328.248],

(2.21)
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Table 1: Comparison of large deflection results in cantilever beams under free end point load using a
linear model and the presented method, showing the absolute error and accuracy as compared to the
well-established Richardson numerical solution (Richardson extrapolation) [24], as well as the number of
polynomials, 1, required for an accuracy of at least 99.00%.

Linear solution Presented method
Number of polynomials,
a Absolute error  Accuracy (%)  Absolute error  Accuracy (%) n, required for accuracy
of 99%
0.1 5E-5 99.90 4E-10 99.99 1
0.2 4E-4 99.63 5E-9 99.99 1
0.3 11E-3 99.18 2E-8 99.99 1
0.4 34E-3 98.55 3E-8 99.99 2
0.5 56E-3 97.76 3E-8 99.99 3
0.6 96E-3 96.81 2E-8 99.99 3
0.7 1E-2 95.71 2E-7 99.99 4
0.8 3E-2 94.47 6E-7 99.99 4
0.9 3E-2 93.10 2E-6 99.99 4
1.0 4E-2 91.62 1E-5 99.99 4
1.1 5E-2 90.02 5E-5 99.99 5
1.2 6E-2 88.33 2E-4 99.96 5
1.3 8E-2 86.54 7E-4 99.86 6
14 9E-2 84.67 2E-3 99.63 7
1.5 1E-1 82.40 5E-3 99.21 8

In the same manner, the rest of the components until fi9($) are obtained. Lastly, in accordance
with the standard Adomian method, the solution of 6(¢) is obtained by the series

00) = S £u(0). (2.22)
n=1

As the number of polynomials of above equation increases from 1 to oo, the solution
changes from the linear solution to the original nonlinear one, while the accuracy increases
accordingly (see right column in Table 1). With this result, the vertical and horizontal
displacements of the beam can be determined by using (2.6) and (2.7), respectively.

3. Results

To test the validity and accuracy of the method used in this study, the residual rotation angle
for the beam shown in Figure 1 was determined as a function of § for the linear solution and
the presented method. The results are displayed in Figure 2.

For further illustration, the results obtained by ADM are compared with the numerical
result obtained by a finite difference technique using Richardson extrapolation [26] as stated
in Table 1.

For the purpose of comparison, both the maximum absolute error and accuracy at
the free end are included in this table. In addition, the number of polynomials required for
an accuracy of at least 99.00% is indicated in this table. The contour of rotation angle of the
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beam at any point along the beam versus a is portrayed graphically in Figure 3. The trends
of rotation angle, vertical and horizontal displacements of the beam at the free end point
versus a are illustrated in Figure 4. Table 1 as well as Figures 2—4 are obtained for a from
0to 1.5.

4, Discussion

This study demonstrates that the ADM method can conveniently be applied to the analysis
of compliant mechanical systems. This method not only overcame the inaccuracy problem
of the linear solution but also it has eliminated some shortcoming in conventional numerical
methods like elliptic integrals, such as implementation difficulties and accuracy problems,
due to table look-up. It provides a semiexact closed form solution for both the rotation angle
of the beam at any point along the beam length as well as the vertical and horizontal position
of the end tip and therefore this can provide a simple way to foretell the physical characteristic
of the deflection without using numerical results. On the other hand, it can further be used
for mathematical modeling and optimization of more complex CMs such as those in the work
of [27].

Figure 2 shows that residuals from the presented method are significantly less than
from the linear solution. Practically, they can be considered negligible. This gives us a reason
to claim that the presented method is remarkably accurate. Also this figure shows that the
method remains accurate if « is varied between 0.5 and 1.5 although the accuracy decreases
with increasing a.

As expected, Table 1 shows that higher values of a (larger deflection) result in less
accuracy for the linear model while just a slight reduction in accuracy can be seen in the
presented method (no more than 0.08%). It also shows that only few polynomials are required
to reach the accuracy of 99.00%. Accordingly, the presented method not only is valid for
small deflection of the beam but also is highly accurate for large deflection. As shown in this
table, the expression for the rotation angle obtained by ADM is very accurate and convenient
because the maximum error and the minimum accuracy for presented method is 5.37E-3
and 99.21%, respectively, and the computations are very straightforward using mathematical
packages. If more accuracy were needed, the number of orthogonal polynomials used in
(2.22) should be increased.

We report that considering computational time required for comparable accuracy, the
presented method needs only 2.8 seconds to reach accurate results after 10 iterations using a
CPU of 2.0 GHz.

As can be seen clearly in Figure 3, the value of the rotation angle of the beam is
increased as the dimensionless displacement ¢ and dimensionless applied force a increase.
Also, both increasing ¢ and «a give rise to a more significant increase of rotating angle. This
approach presents a simple way to predict the results shown in these figures directly from
(2.21): both above results can be predicted due to positive powers of ¢ and a.

Now, as a closed-form expression for the rotation angle of any cross-section of the
beam is obtained, the vertical and horizontal displacements can readily be calculated from
(2.6) and (2.7). As with the previous case, the effect of variations « is significant on all the
above cases as illustrated in Figure 4. An increase in a gives rise to an increase in rotation
angle, and in vertical and horizontal displacements of the beam at free end point. However,
as can be seen in Figure 4, this effect is stronger for the rotational and vertical displacement
and less strong for the horizontal displacement. As mentioned previously, these results can
be straightforwardly predicted by (2.6), (2.7), and (2.21).
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Figure 2: The residual of rotation angle versus ¢ from (a) linear solution and (b) presented method.

5. Conclusion

In this paper, we have successfully utilized ADM to handle the geometric nonlinearity
caused by large deflection of a cantilever beam under a point load at the free end point. For
small deformations, the linear solution is valid, but for larger deformation, we encounter
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Figure 3: The dimensionless normalized rotation angle of the beam versus a and ¢ with respect to a
reference value of 0.644930, for « from 0 to 1.5, and ¢ from 0 tol.
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Figure 4: The dimensionless normalized (+) rotation angle (o) vertical and (e) horizontal displacements of
the beam at free end point versus a from 0 to 1.5; the references values are 0.644930, 0.410876 and 0.104729,
respectively.

a nonlinear problem. Using ADM, we obtained an explicit expression for the rotation
angle along the beam, which lead to a semianalytical solution for vertical and horizontal
displacements. It is evident that the method is very powerful and efficient for solving this
kind of problems arising in compliant mechanisms and other mechanical systems, and
presents a rapid convergence for the solutions. It also overcame the difficulty and inaccuracy
in using conventional numerical and linear methods. Besides, as the semiexact solution of
the governing equation is obtained, the optimal design of practical problems, prediction
of physical characteristic, as well as mathematical modeling of more complex compliant
mechanisms can be achieved conveniently.

It was found that the maximum inaccuracy for proposed solutions occurs at the
free end point and amounts to less than 0.08% as compared to regular numerical solution
methods. The method remains accurate if the dimensionless stiffness is varied although
the accuracy decreases with increasing dimensionless stiffness. On the other hand, the
dimensionless stiffness has less influence on the horizontal displacement of free end point
in comparison to vertical displacement and end point rotation.
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